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ABSTRACT

The genus Liolaemus comprises more than 260 species and can be divided in two
subgenera: Eulaemusand Liolaemus sensu stricto. In this paper, we present a phylogenetic
analysis, divergence times, and ancestral distribution ranges of the Liolaemus alticolor-
bibronii group (Liolaemus sensu stricto subgenus). We inferred a total evidence phy-
logeny combining molecular (Cytb and 12S genes) and morphological characters using
Maximum Parsimony and Bayesian Inference. Divergence times were calculated using
Bayesian MCMC with an uncorrelated lognormal distributed relaxed clock, calibrated
with a fossil record. Ancestral ranges were estimated using the Dispersal-Extinction-
Cladogenesis (DEC-Lagrange). Effects of some a priori parameters of DEC were also
tested. Distribution ranged from central Pert to southern Argentina, including areas
at sea level up to the high Andes. The L. alticolor-bibronii group was recovered as
monophyletic, formed by two clades: L. walkeri and L. gracilis, the latter can be split
in two groups. Additionally, many species candidates were recognized. We estimate that
the L. alticolor-bibronii group diversified 14.5 Myr ago, during the Middle Miocene. Our
results suggest that the ancestor of the Liolaemus alticolor-bibronii group was distributed
in a wide area including Patagonia and Puna highlands. The speciation pattern follows
the South-North Diversification Hypothesis, following the Andean uplift.

Subjects Biogeography, Taxonomy, Zoology
Keywords Andean uplift, Ancestral range, Lizards, Liolaemus, Total evidence

INTRODUCTION

The genus Liolaemus WIEGMAN 1834 currently includes 262 species (updated from
(Abdala, Quinteros ¢» Semham, 2015) distributed between Tierra del Fuego in southern
Argentina and northern central Peru. The taxonomic composition and phylogenetic
relationships of this genus have varied over the years. Laurent (1983) proposed dividing
it into two main groups (subgenera): Liolaemus sensu stricto (or Chileno group) and
Eulaemus (or Argentino group). Furthermore, taxonomic studies on these two groups
have led to the recognition of numerous subgroups. Recently, Trorncoso-Palacios et al.
(2015) proposed the division of the Liolaemus sensu stricto subgenus into two main
sections, the L. chiliensis section and the L. nigromaculatus section. The L. alticolor-bibronii
group was attributed to the Liolaemus sensu stricto subgenus (Espinoza, Wiens & Tracy,
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2004; Lobo, 2005; Quinteros, 2012; Quinteros, 2013) and the L. chiliensis section (Troncoso-
Palacios et al., 2015; Panzera et al., 2017). The group was first defined by Ortiz (1981) as the
L. alticolor-walkeri group, containing three species (L. alticolor BARBOUR 1909, L. walkeri
SHREVE 1938, and L. tacnae SHREVE 1941), whereas the L. bibronii group was defined
by Cei (1986) consisting of L. bibronii BELL 1843, L. exploratorum CEI & WILLIAMS
1984, and L. sanjuanensis CEI 1982. The taxonomic composition of these groups increased
and varied in last years. Depending on the criteria, methods and dataset used, species
were assigned to either more specific groups (L. alticolor or L. bibronii group— (Lobo ¢
Espinoza, 1999, and Martinez Oliver & Lobo, 2002) or more inclusive groups, such as the
L. alticolor-bibronii group (Espinoza, Wiens ¢ Tracy, 20045 Lobo, 2005; Quinteros, 20125
Aguilar et al., 2013). In a contribution made by Quinteros (2012), L. alticolor group was
re-described including two new species resulting in a total number of 27 species. More
recently, the number of species was corrected to 30 (Martinez et al., 2011; Aguilar et al.,
2013; Quinteros et al., 2014; Abdala, Quinteros & Semham, 2015). Morando et al. (2007)
performed a phylogeographic study on several populations of L. bibronii and L. gracilis
BELL 1843, concluding that L. bibronii is in fact a species complex with many candidate
species (some of them described by Martinez et al. (2011), Quinteros (2012), Quinteros
et al. (2014) and Abdala, Quinteros ¢» Semham (2015)). Using morphological characters
Quinteros (2013) recovered the L. alticolor-bibronii group as monophyletic and found
sister group relationships to L. gravenhorsti. Furthermore, Aguilar et al. (2013) described
three new species from Peru and performed a phylogenetic analysis of local species of
the L. alticolor-bibronii group. In summary, the L. alticolor-bibronii group is composed
of 30 species, widely distributed in an outstanding altitudinal gradient from sea level to
more than 5,000 masl (Abdala ¢ Quinteros, 2014) between Santa Cruz Province (southern
Argentina), Chile and Ancash (central Peru) (Quinteros, 2012; Quinteros, 2013; Aguilar et
al., 2013). Due to these traits the L. alticolor-bibronii group is an excellent model to infer
the historical events which possibly molded the current distribution of its members.

Until now, there have not been any proposals about the origin or diversification of the
L. alticolor-bibronii group based on phylogenies or quantitative frameworks studying its
biogeography. There are related studies, such as Cei (1979), who characterized Patagonia
as an active center of origin and dispersion, including Liolaemus as an example of a
recent adaptive radiation. Other authors applied phylogenies, but failed to use explicit
biogeographical methodology. Lobo (2001) showed a cladogram of the chiliensis group
(Liolaemus sensus stricto subgenus) including distribution areas of the species. These areas
are similar to those outlined by Roig Juiient (1994), adding some, but not including others,
such as the Puna. Young-Downey (1998) performed a Brooks Parsimony Analysis (BPA,
Brooks, 1990) over a Liolaemus phylogeny, while Schulte et al. (2000) predicted species
distribution based on molecular phylogeny. Even though no explicit methodology was
included, the latter study can be considered an ancestral areas analysis. More details on
the biogeography of the of the Liolaemus sensu stricto subgenus are given by Diaz Gémez ¢
Lobo (2006) who applied three methods (Fitch optimization, DIVA—Ronquist, 1997, and
Weighted Ancestral Areas Analysis—Hausdorf, 1998) to reconstruct the ancestral area of
the subgenus.
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In this study, we perform phylogenetic analyses in search of patterns which could
have molded the current distribution of the species. We use quantitative and explicit
methodology and estimate time divergence to investigate the historical biogeography of
the Liolaemus alticolor-bibronii group.

MATERIALS AND METHODS

Taxon sampling and characters used

We included 30 species of the Liolaemus alticolor-bibronii group, taken primarily from
Quinteros (2013) with recent species additions by Martinez et al. (2011), Aguilar et al.
(2013), Quinteros et al. (2014) and Abdala, Quinteros ¢ Semham (2015), 15 populations of
uncertain taxonomic status and eight outgroup species (increasing in nine the number of
terminal taxa included by Quinteros, 2013). See File S1 for details.

The phylogenetic analyses included typical morphological characters (Lobo, 2001;
Lobo, 2005; Quinteros, 2012; Quinteros, 2013) and sequences of Cytb and 125 genes taken
from the literature (Espinoza, Wiens ¢ Tracy, 2004; Morando et al., 2007; Victoriano et al.,
2008; Aguilar et al., 2013; Troncoso-Palacios et al., 2016; Olave et al., 2011; see File S1 for
specimens’ GenBank accession numbers). Sequences were aligned and edited with MEGA
v.7.0.26 (Kumar, Stecher ¢» Tamura, 2016). Morphological characters were coded into
discrete and continuous based on their variation. Discrete characters were coded as Binary,
Polymorphic Binary, Multistate, and Polymorphic Multistate, while continuous characters
were coded “as such” following Goloboff, Mattoni ¢» Quinteros (2006) methodology.

We included 960 bp from 12§, 809 bp from Cytb and 167 morphological characters
updating the list by Quinteros (2013); see File S2 for details.

Phylogenetic analyses

We conducted Maximum Parsimony (MP) and Bayesian Inference (BI) analyses using
matrices including morphology + Cytb + 125 characters. Alternative analyses excluding
morphology and/or continuous characters were also performed.

Maximum Parsimony analyses were implemented in TNT v.1.1 (Goloboff, Farris ¢»
Nixon, 2003; Goloboff, Farris & Nixon, 2008; Goloboff ¢ Catalano, 2016) under equal and
implied weights (Concavity value = 3; 4; 5; and 6). Continuous characters were included in
MP analyses only, since TNT is the only software supporting them. Runs were performed
using traditional search Tree Bisection Reconnection (TBR), with 500 replicates and saving
20 trees each. Additionally, we performed an analysis using the New Technology Search
tool implemented in TNT (Sectorial Search, Tree Fusing, Tree Drifting, and Ratchet)
with 50 replicates, hitting the best score at least 20 times. Support was measured under
Symmetric Resampling with 500 replicates and a 33% deletion.

For BI, we selected the best-fitting model using jModel Test 3.0.4 (Posada, 2008). The
best-fitting model for CytB and 12S individually was GTR+G, whereas GTR (GTR+I"+1)
fitted best for the concatenate genes. Bayesian Inference analyses were carried out in Mr.
Bayes v3.1 (Ronquist ¢ Huelsenbeck, 2003). We run PartitionFinder v1.1.1 (Lanfear et al.,
2012) to detect the best partition scheme, including both genes (without partition matrix).
Calculations were run twice for 10 million generations each, resulting in a final average
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standard deviation of Split frequencies below 0.05, sampling trees every 1,000 generations
and using four simultaneous chains (one cold and three hot) in each run. Convergences
of the chain to stationary distribution were confirmed using Tracer v1.6 (Rambaut et
al., 2014). We discarded as burn-in the first one thousand sampled trees that were not
within the stationary distribution of log likelihoods. Trees and posterior probabilities were
summarized using the “50% majority rule” consensus method.

Time divergence estimates

Age of nodes and substitution rates were simultaneously estimated (for both topologies, BI
and MP) using Bayesian MCMC (Marcov Chain Monte Carlo) approach as implemented
in BEAST v2.4.0 (Drummond ¢ Rambaut, 2007). We used a fossil assigned to Eulaemus
(Albino, 2008), representing the earliest record of this subgenus, to place a mean prior of
20 Myr on the tree height. Since the fossil was assigned to the Eulaemus subgenus, without
specific status, in our study we must place it as an outgroup taxon, sister of the species
members of the Liolaemus sensus stricto subgenus, which are the focal species. Divergence
times in BEAST were estimated according to Fontanella et al. (2012): (1) alognormal prior
was employed for fossil calibrations (Hedges ¢ Kumar, 2004); (2) a Yule speciation process
with a random starting tree was used for the tree prior; (3) an uncorrelated lognormal
distributed relaxed clock (UCLD) model was employed, allowing evolutionary rates

to vary along branches within lognormal distributions (Drummond et al., 2006). Three
independent runs of 50.000.000 generations each were performed, with sampling every
5,000 generations. The three separate runs were then combined (following removal of 10%
burn-in) using Log Combiner v2.0 (Drummond ¢ Rambaut, 2007). Adequate sampling
and convergence of the chain to stationary distribution were confirmed by inspection of
MCMC samples using Tracer v1.6 (Rambaut et al., 2014). The effective sample size (ESS)
values of all parameters were greater than 200, which was considered a sufficient level
of sampling. The sampled posterior trees were summarized using Tree Annotator v2.0
(Drummond & Rambaut, 2007) to generate a maximum clade credibility tree (maximum
posterior probabilities) and to calculate the mean ages, 95% highest posterior density
(HPD) intervals, posterior probabilities and substitution rates for each node. The BEAST
topology was visualized with Fig Tree v1.2 (Rambaut, 2008).

Biogeographical analyses

In order to assign the ancestral geographic areas of distribution, the regionalization of
South America according to Morrone (2001) was used. Briefly, Morrone (2001) detailed
biogeographic regions, sub regions, and provinces of Latin America and the Caribbean,
pointing out characteric taxa and their predominant vegetation. Even though those areas
are defined by contemporary species, they are a useful methodological tool to avoid the use
of randomly defined areas. We chose the following provinces based on the georeferenced
distribution of the species included (Fig. 1): A: Desierto Peruano Costero, B: Puna, C:
Yungas, D: Atacama, E: Coquimbo, F: Prepuna, G: Monte, H: Chaco, I: Pampa, J: Santiago,
K: Maule and L: Patagonia Central. To infer the processes which modeled the current
distribution of the species of the L. alticolor-bibronii group we used a parametric method
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Figure 1 Map of South America showing the biogeographic regions used. Biogeographic regions of
Morrone (2001) employed in DEC analyses. (A) Desierto Peruano Costero, (B) Puna, (C) Yungas, (D)
Atacama, (E) Coquimbo, (F) Prepuna, (G) Monte, (H) Chaco, (I) Pampa, (J) Santiago, (K) Maule, (L)
Patagonia Central, and (M) Patagonia Subandina.

Full-size & DOI: 10.7717/peerj.4404/fig-1

implemented in RASP (Nylander et al., 2008; Yu, Harris ¢» He, 2010). This method is based
on Dispersal-Extinction-Cladogenesis (DEC) models which require information about a
single ultrametric-dated phylogeny and distributional information of extant species.

For DEC we used the two calibrated trees recovered in BEAST (based on BI and MP
topologies) and applied two different adjacency matrices: (1) unconstrained and (2)
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Table 1 Probabilities of dispersal cost. Probabilities between the areas (A-L) employed in the DEC anal-
ysis under Matrix II. See ‘Materials and Methods’ for area names.

A B C D E F G H I J K L
A 1 0.8 0.6 0.8 0.6 0.4 0.6 0.6 0.4 0.4 0.2 0.4
B 0.8 1 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.4 0.6
C 0.6 0.8 1 0.6 0.6 0.6 0.6 0.8 0.6 0.4 0.2 0.4
D 0.8 0.8 0.6 1 0.8 0.6 0.6 0.6 0.4 0.6 0.4 0.4
1g 0.6 0.8 0.6 0.8 1 0.8 0.6 0.4 0.4 0.6 0.6 0.6
F 0.4 0.8 0.6 0.6 0.8 1 0.8 0.6 0.6 0.8 0.6 0.8
G 0.4 0.8 0.6 0.6 0.6 0.8 1 0.8 0.8 0.6 0.6 0.8
H 0.2 0.8 0.8 0.6 0.4 0.6 0.8 1 0.8 0.4 0.4 0.6
I 0.2 0.6 0.6 0.4 0.4 0.6 0.8 0.8 1 0.4 0.6 0.8
] 0.4 0.6 0.4 0.6 0.6 0.8 0.6 0.4 0.4 1 0.8 0.8
K 0.2 0.4 0.2 0.4 0.6 0.6 0.6 0.4 0.6 0.8 1 0.8
L 0.4 0.6 0.4 0.4 0.6 0.8 0.8 0.6 0.8 0.8 0.8 1

Table 2 Probabilities of dispersal cost. Probabilities between the areas (A-L) employed in the DEC anal-
ysis under Matrix III. See ‘Materials and Methods’ for area names.

A B C D E F G H I J K L
A 1 0.001 0.001 0.8 0.6 0.001 0.001 0.001 0.001 0.4 0.2 0.001
B 0.001 1 0.8 0.001 0.001 0.8 0.8 0.8 0.6 0.001 0.001 0.6
C 0.001 0.8 1 0.001 0.001 0.6 0.6 0.8 0.6 0.001 0.001 0.4
D 0.8 0.001 0.001 1 0.8 0.001 0.001 0.001 0.001 0.6 0.4 0.001
E 0.6 0.001 0.001 0.8 1 0.001 0.001 0.001 0.001 0.8 0.6 0.001
F 0.001 0.8 0.6 0.001 0.001 1 0.8 0.6 0.6 0.001 0.001 0.8
G 0.001 0.8 0.6 0.001 0.001 0.8 1 0.8 0.8 0.001 0.001 0.8
H 0.001 0.8 0.8 0.001 0.001 0.6 0.8 1 0.8 0.001 0.001 0.6
I 0.001 0.6 0.6 0.001 0.001 0.6 0.8 0.08 1 0.001 0.001 0.8
] 0.4 0.001 0.001 0.6 0.8 0.001 0.001 0.001 0.001 1 0.8 0.001
K 0.2 0.001 0.001 0.4 0.6 0.001 0.001 0.001 0.001 0.8 1 0.001
L 0.001 0.6 0.6 0.001 0.001 0.8 0.8 0.6 0.8 0.001 0.001 1

constrained (See ‘Discussion’ for details). We also included three different “area-dispersal”
matrices: a first analysis (Matrix I) was set to allow a dispersal event between every
geographic area without any cost; a second analysis (Matrix II) was set to apply dispersal
cost, where we randomly assigned probability values of dispersion between areas, taking
into account the closeness between them. The values were: 0.8 for adjacent areas; 0.6 for
areas separated by one intermediate area; 0.4 for areas separated by two intermediate areas;
0.2 for areas separated by three intermediate areas; and 0.08 for areas separated by four
intermediate areas (Table 1). A third analysis (Matrix IIT) was set to apply dispersal cost
plus geographic barriers cost, considering probability values from the second analysis plus
values assigned to geographic barriers (in this case, the only clear geographical barrier was
the Andes mountain range). When a geographic barrier was present, a probability value of
Table 2).

close to 0 was assigned (0.001
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Some members of the L. lemniscatus clade is recovered as a sister group of the L. walkeri clade under MP.
Numbers above nodes correspond to Posterior Probabilities (Only Probabilities over 0.95 are shown).
Numbers under nodes correspond to Symmetric Resampling values.
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RESULTS

Phylogeny of the Liolaemus alticolor-bibronii group

The analyses showed two topologies: one recovered under MP and the other under BI.
The topologies found are congruent in the main groups (SPR distance 0.6277—Fig. 2);
however, we also detected incongruence within them.

The Liolaemus alticolor-bibronii group was recovered in both MP and BI analyses, with
different composition and with high support (Figs. 3 and 4). In the BI tree, a clade formed
by the L. gravenhorsti group and the L. lemniscatus group was recovered as sister of the
L. alticolor-bibronii group. On the other hand, the MP analysis recovered the L. lemniscatus
group as a member of the L. alticolor-group, but some terminal taxa were not recovered as
members, despite their previously assignment to the L. alticolor-bibronii group (L. paulinae
DONOSO BARROS 1961, L. sp4, L. sp5, and L. sp14).

Within the Liolaemus alticolor-bibronii group, two main groups were recovered: the
L. gracilis and L. walkeri group (Figs. 2—4). The L. walkeri group, formed by terminal taxa
of northern distribution ranges (North Argentina, Bolivia and Peru), was recovered with
high support in BI, but moderate MP support. The L. gracilis group, on the other hand, was
recovered with high support in MP, but low support in BIL. The latter group contains two
clades: (1) a clade formed by species distributed in central-southern Argentina (referred to
as L. bibronii sensu stricto clade) and (2) the L. robertmertensi group.

The taxonomic composition of each group recovered under MP and BI is listed in
Table 3.
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As we mentioned above, Liolaemus paulinae, previously considered member of the
L. alticolor-bibronii group, was not recovered as a member of the group. The same topology
was recovered for L. spl4 (sister taxon of L. paulinae). Liolaemus araucaniensis MULLER
& HELLMICH 1932 did not show relations to any group, suggesting this species could be
related to the L. belli group.
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metric Resampling values (only values over 60 are shown). Note that the L. lemniscatus is paraphyletic and
some species of this group are nested inside the L. walkeri clade.
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Divergence time estimates
Divergence time estimates of the Liolaemus alticolor-bibronii group were obtained using a
time-calibrated tree with BEAST including MP and BI topologies (Figs. 5 and 6).

Dating
The two topologies resulted in two time calibrated trees with similar times of divergence.
Our results suggest that, according to the BI topology, the Liolaemus gravenhorsti group
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Table 3 Taxonomic composition of the main groups. Species and populations members of the main groups recovered inside the Liolaemus
alticolor-bibronii group under Maximum Parsimony and Bayesian Inference.

Group Maximum Parsimony Bayesian Inference
L. gravenhorsti L. chiliensis; L. cyanogaster; L. gravenhorsti; L. schroederi L. chiliensis; L. cyanogaster; L. exploratorum; L. gravenhorsti;
L. paulinae; L. schroederi
L. lemniscatus L. fuscus; L. lemniscatus L. curicencis; L. fuscus; L. lemniscatus; L. nitidus;
L. pseudolemniscatus
L. alticolor-bibronii L. gracilis group L. walkeri group L. gracilis group L. walkeri group
L. walkeri L. alticolor; L. chavin; L. incaicus; L. lemniscatus group; L. alticolor; L. chaltin; L. chavin; L. incaicus; L. pachacutec;
L. pachacutec; L. sp3; L. tacnae; L. walkeri; L. wari L. puna; L. pyriphlogos
L. gracilis L. bibronii sensu stricto group L. robertmertensi group L. bibronii sensu stricto group L. robertmertensi group L. sp2;
L. sp4; L. sp5
L. bibronii sensu L. abdalai; L. aparicioi; L. bibronii; L. cyaneinotatus; L. abdalai; L. bibronii; L. chungara; L. cyaneinotatus; L. sp6;
stricto L. exploratorum; L. gracilis; L. gracilis3; L. gracilis4; L. sp7; L. sp8; L. sp9; L. sp10; L. sp13; L. yalguaraz
L. pyriphlogos; L. ramirezae 1; L. ramirezae2;
L. sanjuanensis; L. saxatilis; L. sp6; L. sp7; L. sp8; L. sp9;
L. spl0; L. sp15; L. tandiliensis; L. variegatus; L. yalguaraz
L. robertmertensi L. bitaeniatus; L. chaltin; L. chungara; L. pagaburoi; L. puna; L. aparicioi; L. bitaeniatus; L. gracilis; L. pagaburof;
L. ramirezae 3; L. robertmertensi; L. sp1; L. sp2; L. spl1; L. ramirezae; L. robertmertensi; L. sanjuanensis; L. saxatilis;
L. spl12; L. sp13; L. walkeri 5; L. yanalcu L.spll; L. spl2; L. sp15; L. tandiliensis; L. variegatus;
L. yanalcu

(sister group of the L. alticolor-bibronii group) diverged in the Early Miocene 7 Myr (95%
highest posterior density interval (HPD): 9.32-4.89) ago, whereas in the MP topology
this clade diverged 3.25 Myr (95% HPD: 4.82—-1.71) ago. This clade is formed by species
distributed in Argentina and Chile.

We estimated the divergence time of the Liolaemus alticolor-bibronii group to Middle
Miocene around 12.84 Myr ago for BI (95% HPD: 20.01-5.64) and 14.05 Myr ago for MP
(95% HPD: 23.56-4.54).

Considering the clades of the Liolaemus alticolor-bibronii group, we estimated that the
L. gracilis clade diverged 10.49 Myr (95% HPD: 17.06-3.85) ago for BI, being 12.39 Myr
(95% HPD: 17.42-7.25) for MP. This clade splits into two clades: the L. bibronii sensu
stricto clade and the L. robertmertensi group. The L. bibronii sensu stricto clade initiated its
divergence 4.68 Myr (95% HPD: 7.25-2.11) ago in BI, whereas for MP this clade diverged
9.82 Myr (95% HPD: 11.85-5.78) ago. The L. robertmertensi group does so 9.37 Myr (95%
HPD: 15.68-3.01) ago in BI, and 4.2 Myr (95% HPD: 6.84—1.67) ago for MP topology. The
latter originated two clades, one distributed in central-southern Argentina, which diverged
6.75 Myr (95% HPD: 10.29-3.23) ago and the other distributed in Northwestern Argentina
and Bolivia, diverging 5.62 Myr (95% HPD: 7.45-3.81) ago, these clades are recovered only
under BI.

The Liolaemus walkeri clade dates back to the Late Miocene, around 11.54 Myr (95%
HPD: 20.26-2.8) ago in our BI topology, 12.78 Myr (95% HPD: 19.65-5.87) ago in
MP. Liolaemus walkeri group includes a clade distributed exclusively in Peru (with an
origin estimated at 10.38 Myr—95% HPD: 18.15-2.55 in BI, and 10.72 Myr—95% HPD:
19.32-2.12 for MP) as well as a clade distributed mainly in Bolivia (origin estimated around
2.45 Myr—95% HPD: 4.26-0.62—recovered only with BI). While the topology recovered
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under MP L. lemniscatus diverged 3.15 Myr (95% HPD: 5.05-1.23) ago from the L. walkeri
clade, the BI topology, shows the L. lemniscatus group as a member of the L. gravenhorsti
group (outside of the L. alticolor-bibronii group) diverging 3.5 Myr (95% HPD: 5.85-1.22)

ago.

Reconstruction of ancestral distribution
We compared six different scenarios in DEC, for each topology. The best Likelihood scores

were obtained with the unconstrained adjacency matrix (Table 4). Based on this, we show

the results recovered with the unconstrained adjacency matrix for both topologies (BI and
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Full-size Gal DOI: 10.7717/peerj.4404/fig-6

MP). We obtained the same biogeographic scenarios for all three dispersion cost matrices
used (Figs. 7 and 8). Alternative scenarios obtained with the constrained adjacency matrix
can be found in File S3.

Divergence times, ancestral range and major probabilities of the main groups recovered
are shown in Table 5.

The ancestral area of the Liolaemus alticolor-bibronii and the L. gravenhorsti groups
correspond to the range BJ (Puna and Santiago; p: (1) and FJ (Prepuna and Santiago; p:
0.65) for the BI and MP topology, respectively. Due to dispersion and/or vicariance events,
the L. alticolor-bibronii group occupies areas in Argentina, whereas the L. gravenhorsti
remains confined to Chile.

Our results suggest that the ancestral area of the Liolaemus alticolor-bibronii group is
formed by the areas BL (Puna and Patagonia Central; p: 0.67-BI) and F (Prepuna; p:
0.41-MP). Subsequently, a vicariance event for B, and a dispersal event (MP) originated
the L. gracilis group and the L. walkeri clade. With lower probabilities the analyses shows
the following ancestral areas for the L. alticolor-bibronii group: B (Puna; p: 0.16) for BI;
and BF (Puna and Prepuna; p: 0.26) for MP; the range BH (Puna and Chaco; p: 0.17) for
BI, and FJ (Prepuna and Santiago; p: 0.23) or FL (Prepuna and Patagonia Central; p: 0.09)
for MP.
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Table4 Comparison between the results obtained in DEC applying two different adjacency matrices.
Number of alternative ancestral areas obtained from the main groups applying constrained and uncon-
strained adjacency matrix. MI, MII, and MIII correspond to dispersion coast and geographic barriers ma-
trix (see Materials and Methods for details). Global maximum Likelihood scores (—InL) and dispersal and
extinction rates estimated.

Global dispersal Global vicariance Global extinction

Bayesian Inference

Constrained Matrix I 33 10

adjancency Matrix II 39 23

s Matrix Il 46 22 12

Unconstrained Matrix I 31 16

adjancency Matrix II 36 16

i Matrix Il 31 16

Parsimony

Constrained Matrix I 37 18 1

adjancency Matrix II 35 21 6

e Matrix Il 37 22 6

Unconstrained Matrix I 37 16 0

adjancency Matrix II 36 21 6

Inatiix Matrix Il 37 20 6
—InL Dispersal rates Extinction rates

Bayesian Inference

Constrained Matrix I 156.41 0.024 0.013

adjancency Matrix II 154.22 0.015 0.018

matrix Matrix IIT 161.32 0.022 0.020

Unconstrained Matrix I 147.91 0.012 0.002

adjancency Matrix IT 147.47 0.009 0.008

matrix Matrix III 145.54 0.015 0.021

Parsimony

Constrained Matrix I 196.25 0.011 0.013

adjancency Matrix II 167.96 0.021 0.026

matrix Matrix IIT 176.70 0.035 0.025

Unconstrained Matrix I 165.75 0.004 0.012

adjancency Matrix IT 163.39 0.008 0.014

matrix Matrix II 157.28 0.002 0.021

The Liolaemus gracilis group has its origins in L (Patagonia Central; p: 0.5) for both
topologies. A dispersion event inside the L. gracilis group, originated the L. robertmertensi
and the L. bibronii groups. The first one, shows the HL range (Chaco and Patagonia Central;
p: (1) as its ancestral area for Bl and area B (Puna; p: 0.36) for MP, whereas the L. bibronii
sensu stricto remains in L: Patagonia Central (p =1 BL; p=0.57 MP).

The Liolaemus walkeri group has B (Puna; p: 1) as its ancestral area for BI, and BF (Puna
and Prepuna; p: 0.87) for MP. After a dispersion event (BI) and a vicariance event (MP),
the L. walkeri group split into two clades. One occupied the range BC (Puna and Yungas,
p: 0.84) in BI, and B (Puna; p: 1) in MP, and the other remained in B (Puna; p: 0.68) for
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both topologies. In the topology recovered under MP, the L. walkeri clade includes the
L. lemniscatus group, whose ancestral area corresponds to the EF range (Coquimbo and
Prepuna; p: 1), but after an extinction event is currently restricted to E (Coquimbo).

DISCUSSION

Phylogeny of the Liolaemus alticolor-bibronii group

We recovered the Liolaemus gravenhorsti group as sister taxon of the Liolaemus alticolor-
bibronii group. These results are in accordance with previous morphological— (Lobo, 2005;
Diaz Gémez ¢~ Lobo, 2006; Quinteros, 2013) and molecular—(Schulte et al., 2000; Schulte,
20135 Pyron, Burbrink ¢ Wiens, 2013; Zheng ¢» Wiens, 2016) based phylogenies.
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Relationships within the Liolaemus alticolor-bibronii group were previously studied
by Quinteros (2013) and Aguilar et al. (2013 ). In his research, Quinteros (2013) includes
33 terminal taxa which belong to the L. alticolor-bibronii group, performing a more
inclusive study. On the other hand, the molecular-based phylogeny by Aguilar et al. (2013)
was focused on Peruvian terminal taxa (including eight additional taxa members of the
L. alticolor-bibronii group). Aguilar et al. (2013) described the L. alticolor-bibronii group as
paraphyletic (see below). Morando et al. (2004) and Martinez et al. (2011) performed
phylogeographic analyses focusing on populations of L. bibronii and L. gracilis, and
L. bibronii, respectively. The relationships found in the present study are similar to those
detected by Morando et al. (2004) and Martinez et al. (2011), despite the higher number of
terminal taxa included.

The topology recovered by Quinteros (2013) showed low support and low resolution
in the clades inside the Liolaemus alticolor-bibronii group. Nevertheless, we agree with
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Table5 Mean node ages (Ma) and 95% highest posterior density interval (HPD) obtained for the L.
alticolor-bibronii group and the main clades inside. The ancestral areas inferred with a probability > 0.5
with the unconstrained adjacency matrix are also shown. See Fig. 5 for location of groups.

Bayesian Inference Maximum Parsiomny

Group Age (95% Ancestral Age (95% Ancestral
HPD) Area/range HPD) Area/range

Ancestor of the L. gravenhorsti 14.02 Myr BJ; 1 15.25 (20.08— FJ; 0.65

and alticolor-bibronii groups (18.20-10.5) 9.50)

L. alticolor-bibronii 12.84 Myr BL; 0.67 14.05 Myr F; 0.41
(20.01-5.64) (23.56-4.54)

L. walkeri 11.54 Myr B; 1 12.78 Myr BF; 0.87
(20.26-2.8) (19.65-5.87)

L. gracilis 10.49 Myr L; 0.5 12.39 Myr L; 0.5
(17.06-3.85) (17.42-7.25)

L. robertmertensi 9.37 Myr HL; 1 4.2 Myr B; 0.36
(15.68-3.01) (6.84-1.67)

L. bibronii sensu stricto 4.68 Myr L;1 9.82 Myr L;0.57
(7.25-2.11) (11.85-5.78)

(Quinteros, 2013) who detected the L. lemniscatus and the L. robertmertensi groups nested
inside the L. alticolor-bibronii group (Parsimony tree, Fig. 3). Previous studies found both
groups outside of the L. alticolor-bibronii group (Cei, 1986; Cei, 1993; Lobo, 2001; Lobo,
2005; Diaz Gémez & Lobo, 2006). Schulte et al. (2000), Schulte (2013), Pyron, Burbrink

& Wiens (2013), while Zheng ¢ Wiens (2016) found L. robertmertensi settled inside the
L. alticolor-bibronii group, but recovered the L. lemniscatus group outside. Our BI tree
is congruent with the latter topologies. The L. alticolor-bibronii group contains in two
main clades (the L. gracilis and L. walkeri groups), which was not recovered previously.
Reviewing the literature, the most similar topology is described by Aguilar et al. (2013),
which recovered a Peruvian clade (similar to our L. walkeri clade), a clade with species
members of the L. alticolor-bibronii group and of the L. monticola and L. pictus groups.

The Liolaemus walkeri group recovered here shows the same composition as the Peruvian
clade of Aguilar et al. (2013), as well as species distributed in Bolivia and northern Argentina
(Figs. 2 and 3). As we briefly mentioned above, the main differences between our parsimony
and BI trees is the location of the L. lemniscatus group. Using parsimony, this group is
recovered inside the L. alticolor-bibronii group and nested within the L. walkeri group,
whereas in the BI tree it is located outside the L. alticolor-bibronii group as a sister of
the L. gravenhorsti group. The topology recovered under BI is more congruent regarding
species distribution, since the species of the L. lemniscatus group are usually found in
central Argentina and Chile (as are the species members of the L. gravenhorsti group).
The species of the L. walkeri group, on the other hand, are distributed in northwestern
Argentina, Bolivia, and Peru.

The Liolaemus gracilis group has not been previously proposed as such. Again, the BI
tree shows more biogeographical congruence than the parsimony tree. Nevertheless, the
two main clades (L. bibronii sensu stricto and L. robertmertensi groups) which form the
L. gracilis group are recovered in both analyses. In addition, the BI tree recovers L. gracilis,
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L. robertmertensi, L. sanjuanensis, L. saxatilis, and L. tandiliensis as closely related (as in
Morando et al., 2004; Martinez et al., 2011; Aguilar et al., 2013; Pyron, Burbrink & Wiens,
2013; Zheng & Wiens, 2016).

The greater congruence between the Bl and previous studies, compared to the parsimony
tree, can be explained by similarities of the dataset, given that they share the same gene
sequences (Morando et al., 2004; Martinez et al., 2011; Aguilar et al., 2013).

The Liolaemus lemniscatus group was recovered inside the Liolaemus alticolor-bibronii
group (nested in the L. walkeri group) under MP, but outside (sister of the L. gravenhorsti
group) under BI. In previous molecular-based phylogenies, members of the L. lemniscatus
group were found more related to species members of the L. nigroviridis and/or L. monticola
group (Panzera et al., 2017; Pyron, Burbrink & Wiens, 2013; Schulte et al., 2000; Schulte,
2013). Moreover, Pyron, Burbrink & Wiens (2013), Schulte et al. (2000), and Schulte (2013)
recover the L. alticolor-bibronii group as sister of the L. gravenhorsti group (L. chiliensis
group of Schulte, 2013), with both more closely related to the L. elongatus-kriegi complexes
than to the L. lemniscatus and L. nigroviridis groups. In our analyses under BI (excluding
morphology data), the L. lemniscatus group is paraphyletic and is recovered outside the
L. alticolor-bibronii group. Unfortunately, we cannot include species members of the
L. nigroviridis and/or the L. monticola groups in the present study. This will be are search

avenue to further investigate in future studies.

Taxonomic implications

We included 15 populations of uncertain taxonomic status. These populations are currently
assigned to known species members of the L. alticolor-bibronii group, but differ in some
morphological character states. According to our study (BI and Parsimony trees), most of
them can be considered candidate species. Liolaermus sp4 and L. sp5 are morphologically
close to L. araucaniensis. In both trees, BI and Parsimony, L. sp4 and L. sp5 are not closely
related to L. araucaniensis (which appears basal). This result, in addition to the varying
character states, converts these terminal taxa into candidate species. Liolaemus bibronii
was characterized as a species complex by Morando et al. (2007), Martinez et al. (2011) and
Quinteros (2013). Over the last few years, three species previously confused with L. bibronii
have been described: L. cyaneinotatus (Martinez et al., 2011), L. abdalai (Quinteros, 2012),
and L. yalguaraz (Abdala, Quinteros & Semham, 2015). In this study, we include L. sp6,
L. sp7, L. sp8, L. sp9, L. sp10 and L. sp15, all of which are assigned to L. bibronii. Some of
these terminal taxa were included in the phylogeographic study of Morando et al. (2007).
Our results are consistent with those of Morando et al. (2007), Martinez et al. (2011)
and Quinteros (2013), concluding that despite the newly described species, L. bibronii still
corresponds to a complex of species with several candidate species. Liolaemus robertmertensi
was described by Hellmich (1964), but since its description no further taxonomic studies
related to it. In this study, we included three populations attributed to L. robertmertensi: L.
spll, L.spl12,and L. sp13. Liolaemus sp12 has previously been included in molecular-based
phylogenies (Schulte et al., 2000; Espinoza, Wiens ¢ Tracy, 2004), whereas L. sp11 and L. s13
have only been included in a morphology-based phylogeny as L. robertmertensi (Quinteros,
2013). In both analyses (Bayesian and Parsimony) performed here, these terminal taxa are
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not closely related to L. robertmertensi, while still being members of the L. robertmertensi
group. Liolaemus spl4 corresponds to a population distributed near L. tandiliensis. This
terminal taxon was discovered only recently and is currently under description.

Inclusion of morphological and continuous characters

in the analyses

We performed MP and BI analyses excluding morphological data (Figs. 54 and S5).
Nevertheless, similar main groups are recovered. Under MP the Liolaemus alticolor-bibronii
group is paraphyletic and includes members of the L. gravenhorsti group. BI topologies are
similar to those detected under MP. The species members of the L. gravenhorsti group are
nested inside the L. alticolor-bibronii group. Also, main clades of the L. alticolor-bibronii
group are recovered, yet the relationships inside the L. gracilis group are not resolved.
The L. lemniscatus group is recovered paraphyletic. Many authors mention homoplastic
morphology (Alvarez et al., 1999; Escobar Garcia et al., 2009; Mott ¢ Vieites, 2009; Mueller
et al., 2004; among others) but there is also evidence of highly homoplasious mtDNA data
(Engstrom, Shaffer ¢ McCord, 2004). Jarvis et al. (2014) performed a phylogenetic analysis
in a very broad scale of major orders of birds 41.8 million base pairs (14536 loci) finding a
topology with high values of bootstrap support. Gene trees (of every individual locus) in the
same paper found that none of them was congruent to the species tree suggested by Hahn
¢ Nakhleh (2015). Here, the inclusion of morphological data increases clade resolution,
and support the monophyly of some groups.

The study of continuous characters is limited to MP analysis, as it can only be performed
by TNT software. Consequently, we tested which role continuous characters play in
the recovered topology by excluding them. Without continuous characters the Liolaemus
alticolor-bibronii group appears polyphiletyc. The topology recovers the main groups under
MP and BI, but their composition include species members of the L. gravenhorsti group (see
Fig. S6). The use of continuous characters analyzed as such was employed in many previous
studies (Abdala, 2007; Alvarez, Moyers Arévalo & Verzi, 2017; Barrionuevo, 2017; Bardin,
Rouget & Cecca, 2017; Ndjera-Cortazar, Alvarez Castafieda ¢ De Luna, 2015; Quinteros,
2013; among many others). In the present study, continuous characters employed in
morphological analyses assisted to recover the monophyly of the L. alticolor-bibronii group
and supported the monophyly of the L. gravenhorsti group. When comparing the results
obtained under BI and MP (without continuous characters), we find that continuous
characters as well as the optimality criterion influence the different topologies.

The use of a priori component from DEC
Implementation of DEC models in Lagrange allows biogeographic analyses to infer
biogeographic events under different probabilities, taking into account the distances
among areas and the presence of geographic barriers. In this study, we applied two
different adjacency matrices and three area-dispersal matrices, recovering different general
patterns of diversification and species distribution in the Liolaemus alticolor-bibronii group,
which allow inference of its evolutionary history.

Chacén & Renner (2014) explored the influence of the user-defined components
applicable in DEC-Lagrange (adjacency matrix, area-dispersal matrix). They concluded
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that results were most influenced by adjacency matrices, while the area—dispersal matrix
and dispersal probabilities had negligible effects. In this study, we applied three different
matrices with dispersal probabilities. Using the unconstrained adjacency matrix, the
ancestral reconstructions were very congruent among each other; we found only one
difference between the three matrices applied. In their study, Chacén ¢ Renner (2014)
found that an unconstrained adjacency matrix returned the best results (higher Likelihood
score). Contrastingly, results by Ree ¢ Smith (2008) and Clark et al. (2008) show a better
data fit of the constrained matrix. In this study, we tested both, an unconstrained as
well as a constrained adjacency matrix. The number of assigned ambiguous ancestral
areas possible in each node was higher in the constrained than in unconstrained analyses
(Table 4). Furthermore, the results obtained using the unconstrained matrix display higher
Likelihood scores than the constrained matrix (Table 4). Based on these findings, we agree
with Chacon & Renner (2014) concluding that the adjacency matrix influences the results
in a DEC-Lagrange study, but at the same time, when applying a constrained matrix, the
dispersal probabilities matrix had an effect on our results.

Patterns of diversification and biogeographic implications

The use of two different phylogenetic topologies to estimate the time of divergences and
reconstruction of ancestral distribution returned similar results (see Table 5). Despite the
differences recovered in the composition of main groups, their divergence times were
congruent. The exceptions were the Liolaemus robertmertensi and L. bibronii sensu stricto
groups, even though an overlap exists. The ancestral area reconstruction also shows some
differences between the topologies, but overall most results display great congruence. The
main difference is in the ancestral area of the L. alticolor-bibronii group. The BI topology
recovers the range BL (Puna and Patagonia Central), whereas the MP topology recovers
the area F (Prepuna). The first one is congruent with previous studies in Liolaemus (Cei,
1979; Diaz Gémez, 2011; Schulte et al., 2000).

The fossil-calibrated dating analysis indicates that the initial divergence within Eulaemus
occurred approximately 18.08 Myr ago during the Early Miocene, which roughly
corresponds to previous studies (Forntanella et al., 2012). The origin and diversification of
the Liolaemus alticolor-bibronii group could have started around the Early-Middle Miocene
(13—14 Myr ago), which is consistent with results by (Schulte, 2013; Medina et al., 2014;
Zheng & Wiens, 2016). During that period, many dramatic changes occurred, eventually
leading to the Andes uplift. The Central Andes lifted quickly, geologically speaking, from the
late Miocene to the Early Pliocene (Whitmore ¢ Prance, 1987; Gregory-Wodzicki, 2000).The
uplift separated the East from the West of the continent and affected the dispersion of
many taxa and potentially induced the differentiation between populations (Elias et al.,
2009). Our results support previous studies suggesting an influence of the Andean uplift
on the diversification of South American taxa (Schulte et al., 2000; Hoorn et al., 2010;
Pincheira-Donoso et al., 2013).

Regarding its evolution and distribution, it can be assumed that the Liolaemus alticolor-
bibronii group colonized areas along the lower Andes. Our results indicate that the ancestral
area of the group extended from the Patagonian Andes to the northern Andes (Argentina,
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Bolivia, and Perd). This is in accordance with paleontological evidence: the oldest known
fossil of Liolaemus corresponds to Patagonia in the Miocene era, at the Gaiman Formation
in Chubut, Argentina (Albino, 2008).

Our findings are also consistent with those of Diaz Gémez (2011), whose DIVA
(Dispersion-Vicariance-Ronquist, 1997) analysis located the Liolaemidae common
ancestor’s distribution from Peru to Patagonia, along the Andes and arid regions of
South America. Cei (1979) concluded that Patagonia was the center of origin for at least
four Liolaemus groups, describing two main faunal regions of Patagonia: (1) septentrional
region (older Patagonia) and (2) meridional region (Santa Cruz Province). Our results
agree with Cei (1979)’s hypothesis as the first region described in his paper comprises
areas of the Andes and Patagonia included in the distribution areas calculated in the
present study. On the other hand, our results disagree with those published by Schulte et
al. (2000) who found the areas of Andes, occidental lower lands, and eastern lower lands
to be ancestral area of the Liolaemus sensu stricto subgenus which correspond to Sierras
Pampeanas, Maulina, and Chile Central in our study.

According to Bremer (1992), the ancestral area of a taxon is not necessarily to a single
place, but may be equal or larger than the area presently inhabited by the taxon. Results
of an ancestral area analysis will display a taxon’s ancestral distribution range which is
equal or smaller than the sum of distribution ranges of its descendants. Including a fossil
group neither distributed in ancestral nor current areas of the studied taxa, may result in
an ancestral area larger than the sum of the descendants’ distributions. In our study, we
used a fossil record attributed to Liolaemus (Albino, 2008) in an area already present in the
analysis.

The common ancestor of the clade formed by the Liolaemus alticolor-bibronii group
plus (L. gravenhorsti + L. lemniscatus groups) had its divergence around 14-15 Myr ago.
This calibration coincides with the beginning of the Andes uplift (Donato et al., 2003)
and our DEC analyses (Figs. 7-8), which suggest that vicariance event could have led
to the current clade distribution in Chile (L. gravenhorsti and L. lemniscatus groups)
Argentina, Bolivia, and Peru (L. alticolor-bibronii group). Because of their geography,
orogeny, and vast biodiversity, the Andes Mountains were a subject of interest of many
distribution and evolution studies (Castroviejo-Fisher et al., 2014; Chaves ¢ Smith, 2011;
Goicoechea et al., 2012; Torres-Carvajal et al., 2016). Based on a phylogenetic analysis of
Proctoporus/Riama lizards, Doan & Schargel (2003) proposed the south-to-north speciation
hypothesis (SNSH), which predicts a pattern of cladogenesis of Andean species following
the rise of the Andes, with basal lineages occurring in southern areas and derived ones in
northern areas. Our results gained with BI topology agree with the hypothesis of Doan ¢
Schargel (2003), since the ancestral area recovered for the L. alticolor-bibronii group includes
Patagonia, and the derived groups show a northern distribution. On the other hand, our
results obtained with MP topology reject the SNSH, since the ancestral range of the
L. alticolor-bibronii group corresponds to Prepuna, and the derived groups are distributed
across both, north and south of Prepuna. The SNSH was also rejected for Proctoporus lizards
based on a phylogenetic analysis with increased character and taxon sampling (Goicoechea
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etal., 2012), as well as for other organisms such as glass frogs (Castroviejo-Fisher ef al.,
2014).

The Liolaemus gravenhorsti group has its origins 7.72 Myr (95% HPD: 9.32-6.21) ago
matching the continued Andes uplift. At that time (around 6.2 Myr ago), lakes and fluvial
deposits were affected by a deformation event, possibly the final uplift stage reaching the
present average altitude of 4,400 masl (Garzione et al., 2008), which may have triggered a
dispersal or a vicariance event of L. chiliensis and L. cyanogaster towards Argentina.

The divergence time of the Liolaemus alticolor-bibronii group was estimated around
12-14 Myr ago, which corresponds to the formation of the Atacama Desert approximately
14.7 Myr ago, based on the lack of accumulation of cupric deposits in northern Chile
(Alpers ¢ Brimhall, 1988). Our results of BI topology suggest that following the desert’s
formation a vicariance event could have split the L. alticolor-bibronii group into two main
clades distributed North (L. walkeri clade) and South (L. gracilis group) of the Atacama
Desert. A similar scenario was recovered with MP topology, but instead of a vicariance
event, dispersal events led to the L. walkeri group to the north, and the L. gracilis group to
the south.

The diversification of the Liolaemus gracilis group approximately 10-12 Myr ago
coincides with the uplift the Austral Andes (altitude >4,000 masl), which reached their
maximum elevation around 8-12 Myr ago (Miocene-Pliocene) (Hartley, 2003). This
geological event may have dispersed the species of the L. gracilis group giving origin to
two clades: one distributed in central-northern Argentina (L. robertmertensi group), and a
clade distributed in central-southern Argentina (L. bibronii sensu stricto clade). Similarly,
Cosacov et al. (2010) report a phylogeographic break for Calceolaria poliriza in southern
Mendoza possibly caused by a landscape discontinuity (Ramnios ¢ Kay, 2006) during the
uplift of the Andes in the Late Miocene (11 Myr). Inside the L. gracilis group, the L. bibronii
sensu stricto clade originates 5 Myr ago, while the group’s more terminal clades diverge
in the Pleistocene (2.5 Myr) and are distributed in Patagonia. Sérsic et al. (2011) studied
phylogeographical patterns of plants and vertebrates (including some Liolaemus species)
from Patagonia. Specifically, Sérsic et al. (2011) argued that the phylogeographic break of
L. bibronii could be concordant with the Rio Limay basin which drains (or that in the past
drained) the East Andean watershed crossing the Patagonian steppe to the Atlantic Ocean.
Other studies (Morando, Avila & Sites Jr, 2003; Morando et al., 2007; Avila, Morando ¢
Sites Jr, 2006) claimed that three species of Liolaemus (among them L. bibronii) shared a
vicariant pattern produced by the coastline shifts along the Atlantic at the northern and
southern rim of the Somuncura Plateau.

The Liolaemus robertmertensi group (recovered under BI) is distributed in Sierras
Pampeanas (Central and northwestern Argentina) and Sierras Subandinas (northwestern
Argentina). A possible explanation for the present distribution of the group’s Astereceae
species is proposed by Crisci et al. (2001): they found a historical pattern that related
Tandilia to Ventania, Mahuidas, Sierras Pampeanas and Sierras Subandinas to the West,
and Uruguay and southern Brazil to the East. Crisci et al. (2001) hypothesize that the
endemism of these mountainous chains is a result of generally arid conditions during the
Tertiary and/or Quaternary geologic periods in southern South America, which eventually
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led to an isolation and differentiation of these populations in the more elevated areas.
The ancestral area recovered under MP for the L. robertmertensi group is Puna, and its
diversification time is approximately 4.2 Myr. This species group currently inhabits the
Sierras Subandinas. These mountains showed a second deformation cycle at 4.5 Myr, with
an out of sequence growth event (Herndndez ¢» Echavarria, 2009). This can explain the
vicariance and dispersal events that the species of the group experienced.

The Liolaemus walkeri clade started its diversification 11-12 Myr ago in an area which
today corresponds to the Andean Plateau. This plateau rose from 2,500 masl to 4,000 masl
around 10 Myr ago, during the Miocene-Pliocene (Gubbels, Isacks ¢ Farrar, 1993; Gregory-
Wodzicki, 2000; Hartley, 2003) under an arid to semiarid climate conditions (Hartley,
2003). The L. walkeri clade is formed by two clades distributed in central and southern
Peru, Bolivia and northern Argentina. This distribution could be due to a dispersal event
from the Puna to Yungas (the northern distributed clade) while the other clade remained
in the Puna. The clade split follows a similar pattern as the plant genus Distichia which
separated due to the plateau’s climate conditions into clades in northern Argentina and
Chile (towards the South) and Ecuador and Colombia (towards the North) (Ramirez
Huaroto, 2012).

The desertification process from the Miocene to Pliocene may have caused the range
expansion of the ancestors of the species members of the Liolaemus alticolor-bibroni group.
Subsequently, the arid/humid cycles which followed the glacial and interglacial period of
the Pliocene and Pleistocene produced expansion and retraction of arid and damp habitats,
acting as geographic barriers and causing fragmentation and speciation of the extant taxa.

In conclusion, we describe the possible ancestral area of the Liolaemus alticolor-bibronii
group as a large area which includes Patagonia and the Puna highlands during the Lower
Miocene and the Pleistocene. The inclusion of species members of the L. monticola and L.
nigroviridis groups will probably modify the ancestral area-range of the L. alticolor-bibronii

group.
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