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Extremes in climate, such as heat waves and drought, are expected to become more
frequent and intense with forecasted climate change. Plant species will almost certainly
differ in their responses to these stressors. We experimentally imposed a heat wave and
drought in the tallgrass prairie ecosystem near Manhattan, Kansas, USA to assess
transcriptional responses of two ecologically important C, grass species, Andropogon
gerardii and Sorghastrum nutans. Based on previous research, we expected that S. nutans
would regulate more genes, particularly those related to stress response, under high heat
and drought. Across all treatments, S. nutans showed greater expression of negative
regulatory and catabolism genes while A. gerardii upregulated cellular and protein
metabolism. As predicted, S. nutans showed greater sensitivity to water stress, particularly
with downregulation of non-coding RNAs and upregulation of water stress and catabolism
genes. A. gerardii was less sensitive to drought, although A. gerardii tended to respond
with upregulation in response to drought versus S. nutans which downregulated more
genes under drier conditions. Surprisingly, A. gerardii only showed minimal gene
expression response to increased temperature, while S. nutans showed no response. Gene
functional annotation suggested that these two species may respond to stress via different
mechanisms. Specifically, A. gerardii tends to maintain molecular function while S. nutans
prioritizes avoidance. Sorghastrum nutans may strategize abscisic acid response and
catabolism to respond rapidly to stress. These results have important implications for
success of these two important grass species under a more variable and extreme climate
forecast for the future.
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Abstract

Extremes in climate, such as heat waves and drought, are expected to become more frequent and
intense with forecasted climate change. Plant species will almost certainly differ in their
responses to these stressors. We experimentally imposed a heat wave and drought in the tallgrass
prairie ecosystem near Manhattan, Kansas, USA to assess transcriptional responses of two
ecologically important C,4 grass species, Andropogon gerardii and Sorghastrum nutans. Based on
previous research, we expected that S. nutans would regulate more genes, particularly those
related to stress response, under high heat and drought. Across all treatments, S. nutans showed
greater expression of negative regulatory and catabolism genes while A. gerardii upregulated
cellular and protein metabolism. As predicted, S. nutans showed greater sensitivity to water
stress, particularly with downregulation of non-coding RNAs and upregulation of water stress
and catabolism genes. 4. gerardii was less sensitive to drought, although 4. gerardii tended to
respond with upregulation in response to drought versus S. nutans which downregulated more
genes under drier conditions. @Jrisingly, A. gerardii only showed minimal gene expression
response to increased temperature, while S. nutans showed no response. Gene functional
annotation suggested that these two species may respond to stress via different mechanisms.
Specifically, 4. gerardii tends to maintain molecular function while S. nutans prioritizes
avoidance. Sorghastrum nutans may strategize abscisic acid response and catabolism to respond
rapidly to stress. These results have important implications for success of these two important
grass species under a more variable and extreme climate forecast for the future.
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Introduction

Climatic extremes, such as drought and heat waves, are predicted to increase in frequency
and magnitude with forecasted climate change (IPCC 2013). These extreme events may
significantly impact ecosystem structure and function depending on their severity (Ciais et al.
2005; Garcia-Herrera et al. 2010; Smith 2011; Knapp et al. 2015). Climate extremes may affect
plants in species-specific ways, such as through timing of bud development (Bokhorst et al.
2008), variation in tissue die-back (Kreyling et al. 2008), and differences in physiological
performance (Hoover et al. 2014a) or chemical composition (AbdEIgawad et al. 2014). Several
recent studies have found species to respond differentially to extreme events like drought and
heat waves (Beierkuhnlein et al. 2011; Hoover et al. 2014a; Nardini et al. 2016). However, the
mechanisms that lead to differences in plant performance are not always clear (McDowell et al.
2008). Understanding gene regulation may help explain the mechanisms of plant response to
novel stressful environments (Leakey et al. 2009; Swarbreck et al. 2011). Gene regulation may
also be more sensitive to periods of extreme climate compared with physiological performance
and growth traits that may have delayed response. Likewise, gene regulation may reveal
variation which can affect fitness, selection, and adaptation to new environmental conditions
(Ouborg and Vriezen 2007; Gibson 2008; Avolio and Smith 2013; Vazquez et al. 2015).
However, most molecular studies of plant responses to drought and heat stress are focused on
model organisms with limited ecological relevance (Leakey et al. 2009), although awareness and
sequencing costs are improving our understanding (Voesenek et al. 2014; Ellegren 2014)

Here, we present a comparison of gene regulation responses of two C,4 grass species,
Andropogon gerardii and Sorghastrum nutans, to an experimentally induced heat wave and
drought in the field. These two dominant grasses are native to the tallgrass prairie ecosystem of
the Central U.S. and play an important role in determining community and ecosystem structure
and function (Smith and Knapp 2003; Whitham et al. 2006; Whitham et al. 2008; Koerner et al.
2014). They are often assumed to be functionally similar (i.e., both closely related
phylogenetically, rhizomatous, C, warm-season tallgrasses, Weaver and Fitzpatrick 1934;
Benson and Hartnett 2006; Estep et al. 2014), and both are relatively resistant to stress (Knapp
1985; Swemmer et al. 2006; Tucker et al. 2011). However, A. gerardii and S. nutans differ in
physiological response and abundance under different temperature and water availability (Silletti
and Knapp 2002; Silletti et al. 2004; Swemmer et al. 2006; Nippert et al. 2009; Hoover et al.
2014b; Hoover et al. 2014a). At the level of gene regulation, A. gerardii has been shown to be
more sensitive to thermal stress (Travers et al. 2007; Travers et al. 2010; but see Smith et al.
2016) while S. nutans is more sensitive to moderate water stress (Smith et al. 2016; Hoffman and
Smith 2017). Specifically, S. nutans was more res ive to both a year-round 2°C increase in
temperature and more variable precipitation patter@imd lower average soil water availability)
than 4. gerardii (Smith et al. 2016). Sorghastrum nutans also showed greater plasticity for
dealing with water stress at the gene level (Hoffman and Smith 2017). To date, much of the
research assessing sensitivity of these grasses to heat and water stress has focused on chronic,
subtle changes in temperature (2°C increase in temperature) and water availability (on average
14% reduction in soil moisture; Fay et al. 2011). It remains unknown whether these two species
would regulate genes differently under more extreme conditions, such as heat waves and
droughts, which are predicted increase in frequency and severity in the Central US with climate
change (Cook et al. 2015).

To increase our mechanistic understanding of the response of 4. gerardii and S. nutans to
climate extremes typical of the region, we analyzed the transcriptional profiles of both grass
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species during an 18-day controlled heat wave under both watered and drought conditions within
natural field plots. As in past research (Travers et al. 2007; Travers et al. 2010; Smith et al.
2016), we measured gene expression using heterologous hybridization with cDNA microarrays
designed for a closely related model species, Zea mays. We coupled the microarray data with
filtering through each species’ RNA-seq transcriptome (Hoffman and Smith 2017). We
hypothesized that gene regulation (number of genes, functional groups) would differ between 4.
gerardii and S. nutans in response to the heat wave under both watered and drought conditions,
with these grasses employing different strategies for coping with extreme heat and water stress.

Methods
Site description and experimental treatments

The study was carried out within the context of an existing long-term climate change
experiment, the Rainfall Manipulation Plots (RaMPs), located at the Konza Prairie Biological
Station in north-eastern Kansas (39°05" N, 96°35" W). The RaMPs is located in a n@e,
annually burned site and consists of twelve 14 x 9 m greenhouse shelters (without walls)
equipped with a clear (UV transparent) polyethylene roof to exclude natural rainfall inputs (Fay
et al. 2011). Our experimental plots were located in two RaMPs (RaMP 12 and 13) in areas
outside the 6 x 6 m experimental plots, but still located underneath the shelter infrastructure.
Each of these areas is approximately 3 x 8 m in size, within which we located a 3 x 6 m
experimental sampling plot. The RaMP 12 sampling plot was watered from late-May to mid-Aug
to create a watered condition, whereas all ambient rainfall was excluded from the RaMP 13
sampling plot to create a drought. For both the watered and drought plots, a controlled high heat
treatment was achieved by installing pairs of rectangular infrared heating lamps (Kalglo 2000 W,
Kalglo Electronic Co Inc., Bethlehem, PA, USA) (Online Resource Fig. 1). This resulted in a
high heat treatment zone with a daytime target maximum of +8°C above ambient midday
temperature (Online Resource Fig. 2), alongside ambient temperature treatment zones. The four
treatments allowed us to examine the effects of drought and heat individually along with their
interaction. The high heat treatment was imposed for an 18-day period (July 17 to August 4),
when heat waves have generally occurred in the past (Hoover et al. 2014b).

Prior to initiation of the experiment, canopy temperature in the watered sampling plot
was measured using an infrared thermometer mounted on a movable platform (approx. 0.5 m
above the canopy). Soil moisture was monitored at a depth of 0-15 cm with 30-cm time-domain
reflectometery probes (Model CS616, Campbell Scientific, Logan, Utah, USA) inserted at a 45°
angle (see supplementary information).

Plant sampling and measurements

The focal species, A. gerardii and S. nutans, are both are rhizomatous C, grasses that
reproduce primarily vegetatively via belowground buds on rhizomes (Brejda et al. 1989; Carter
and VanderWeide 2014), which form dense intermixed stands, making it virtually impossible to
differentiate between clones in the field (Avolio et al. 2011). We sampled individuals of A4.
gerardii and S. nutans from native populations growing within the experimental treatment plots
during two sampling campaigns conducted at Day 4 and Day 18 of the heat wave. Each sampling
campaign was conducted between 11:00 and 15:00 CDT to allow for collection of leaf
temperature and water status (see below).

During each sampling campaign, we sampled two, morphological similar individuals
(tiller or ramets, with 3-5 fully expanded leaves) of each species within the high heat zone and
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ambient temperature zone in both the watered and drought sampling plots 2 samples per
species, four treatments, and two campaign dates, or n = 16 per species, N =52 total samples).
While a sample size of two per species and treatment combination is relatively small, we believe
this sample size was appropriate given that our focus was on broadly detecting interspecific
differences under the high heat and drought conditions. Although we did not control for plant
genotype, we collected our samples within a limited sampling area (10 x 10 cm) to minimize
genotypic differences among samples. Leaf tissue was collected from individuals located within
each treatment within a five-minute ow. For each individual, the first or second fully
expanded leaf was randomly selectedTor genomic analysis to ensure similar leaf age. The entire
leaf was clipped and immediately flash-frozen and stored in liquid nitrogen until brought to the
laboratory. Immediately after, we measured leaf temperature (T)..r) and midday leaf water
potential (') on the remaining fully expanded leaf. T).,s was measured using a LI-6400 system
(LiCOR, Inc., Lincoln, NE, USA).The whole leaf was then collected for determination of mid-
day leaf water potential (LWP) using an Scholander-type pressure chamber (PMS Instruments,
Inc., Corvallis, OR, USA).

RNA preparation and microarray hybridization

Leaf tissue samples were stored in an -80 freezer prior to RNA extraction. Total RNA
was extracted from the 32 leaf samples for both species using TRIzol reagent (Invitrogen,
Carlsbad, CA) (McCarty 1986), and further purified with the RNeasy kit (Invitrogen, Carlsbad,
CA). RNA quantity was measured by a NanoDrop spectrophotometer (Nanodrop products,
Thermo Scientific, Wilmington, DE). The verification of RNA quality, preparation of cDNA,
and the subsequent steps leading to hybridization and array scanning were performed by
Biotechnology Resources of Keck facility at Yale University (http://keck.med.yale.edu/). We
used maize spotted cDNA arrays (SAM 1.2, GEO platform GPL4521) produced by the Center
for Plant Genomics at lowa State University for hybridization. The arrays included 15,680 maize
cDNA probes (14,118 informative) isolated from maize ear tissue.

Quality control of heterologous hybridizations

In total, there were eight hybridizations for each species per sampling campaign (Online
Resource Table 1). Array image data were collected using GenePix software (Version 6, Axon,
Downingtown, PA). Prior to normalization across arrays, features with obvious abnormality and
saturated signal were flagged and excluded from statistical analysis. Two steps were taken to
minimize the probability of mishybridization and sequence divergence between the focal species
and the model species (Leakey et al. 2009). First, we used stringent criteria by excluding spots
with signal to noise ratios less than 3 or larger than 10 to decrease the inclusion of cross-
hybridization artefacts (Verdnik et al. 2002). Second, the cDNA sequences of the maize
microarray SAM1.2 (18,862 sequences) were aligned against the de novo RNA-seq
transcriptome data sets of A. gerardii and S. nutans (Hoffman and Smith 2017), previously
generated using Trinity (version 2.1.1, Haas et al. 2013). We only included BLASTN (Altschul
et al. 1990; Altschul et al. 1997) hits with an e-value cutoff of 1e-1? and alignment length larger
than 150 base pairs from the 4. gerardii and S. nutans transcript data sets. After these two steps,
7,964 and 6,035 probe sequences were included in the analysis, accounting for 61.4% and 56.6%
of the maize SAM 1.2 array probes for A. gerardii and S. nutans respectively. 5,109 features
were common to both species. Because features were screened by both the intensity of
hybridization signal and sequence similarity, the intensity values of the included features were
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reliable for further expression analysis. These same techniques have also been validated
previously using quantitative real-time PCR (qPCR) (Smith et al. 2016).

Array data normalization and statistical analysis

An important source of systematic errors in two-color microarray experiments is the
different properties of the dyes used to label the two samples (Tseng et al. 2001; Yang et al.
2001; Yang et al. 2002) and the hybridization variability from array to array. We used dye-swap
design for the same pair of samples in the hybridizations (Online Resource Table 1) to account
for the dye effect (Dabney and Storey 2007). Background signals were removed from median
signal intensity and modelled similarly to Travers et al. (2010) to remove the array and dye
effect:

Vi =A;+ D;+ ADj + gy,
where y is the median intensity for the kth gene on each array (i) with each dye (j), 4 is the array
effect for each array (i), D is the dye effect for each dye (j), 4D is the array x dye interaction, and
& 1s the stochastic error. Residuals from this model were adjusted by the minimum value to
produce all positive residuals. To examine overall statistical effects, we used the residuals in the
following model:
Vilmno = Sl + Wm + Tn + Co + Sle + SlTn + Wan *+ Eimnos

where r is the residual for each gene (k) with each species (/), water treatment (m), temperature
(n), and sampling date (0), S is the species effect, Wis the water treatment effect (plot), 7" is the
temperature effect, and C is the sampling date effect. Residuals were used to generate log,
expression ratios for the four variables: species (4. gerardii / S. nutans), water treatment
(watered / droughted), temperature (ambient / heated), date (day 4 / day 18). Any genes with
missing signals were removed. We plotted the log, expression ratio against the log;, intensity for
each gene and performed a loess correction to normalize each set of log, values (Online
Resource Fig. 3). Then for each gene without missing values, a linear model was performed to
test each main effect (species, water treatment, temperature, and date) as well as selected
interactions (species x water treatment, species x temperature, and water treatment x
temperature). Because of the variation in genes present across arrays, each model was
constructed only if appropriate data was present. In other words, to test species effect, both
species had to express the given gene. P-values were adjusted using a Bonferroni correction to
account false discovery across multiple tests. All analyses were performed using R (version
3.3.2).

Functional annotation, enrichment, and clustering

The functional annotation of transcripts was based on the Trinotate pipeline (version
3.0.1). We matched microarray probe sequences to known sequences using BLAST against the
SwissProt annotated database (Apweiler et al. 2004), identified protein sequence homology using
HMMER and Pfam (Finn et al. 2011; Finn et al. 2015), and searched for known annotations
within eggNOG and GO databases (The Gene Ontology Consortium 2015; Huerta-Cepas et al.
2016). Ontology enrichment was determined using GOSeq (version 3.4, Young et al. 2010), a
statistical package for R which accounts for multiple testing as well as differing probe lengths.
Finally, clustering of gene modules was performed using the WGCNA package for R (version
1.51, Langfelder and Horvath 2008) with a minimum module size of five genes.

Results
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Efficacy of the heat wave and drought treatments and impacts on T, and ¥ ,iq

On average, the heated (heat wave) treatment resulted in an 8°C increase in canopy
temperature (Online Resource Fig. 2a). The drought treatment decreased volumetric soil water
content by ~ idway through the heat wave (day 9) when compared to the watered treatment,
and the high heat treatment further decreased soil water content by 2% for the watered and 5%
for the drought treatments (Online Resource Fig. 2b). The increase in canopy temperature with
the high heat treatment was reflected in greater leaf temperature (T)e,r) for both species; A.
gerardii and S. nutans had significantly higher T\, at both day 4 and 18 of the heat wave
(Online Resource Fig. 4). Similarly, the decrease in soil water content with the drought and high
heat treatment were reflected in greater water stress in both species (i.e., more negative W,;q,
Online Resource Fig. 4). For A. gerardii, the high heat treatment caused a large decrease in ¥ ;q,
with this decline greatest at day 4 of the heat wave combined with drought (-0.9 MPa, Online
Resource Fig. 4). The decrease in ¥,,;g with the high heat treatment was most pronounced in S.
nutans after 18 days of heat wave under drought (-1.7 MPa, Online Resource Fig. 4).

Environment affects gene regulation in A. gerardii and S. nutans

erall, 1131 genes were shared across both species, 1515 were shared across water treatment,

53 were shared across temperature treatment, and 1390 were shared across date. Species
(p<0.001), water treatment (p< 1), and their interaction (p<0.001) most significantly
impacted gene expression. In otmer words, species gene expression response strongly depended
on the drought environment. Temperature was only a weakly significant predictor of gene
expression (p=0.048) with no significant species by temperature interaction. Gene expression did
not vary across sample date/duration of the heat wave.

Overall differences between A. gerardii and S. nutans

Of 1131 genes found in both species, 160 differed significantly in their regulation
between species. Genes with greater expression in 4. gerardii were enriched in cellular
metabolic process, biological regulation, and protein metabolic process, while genes with greater
expression in S. nutans were enriched in negative regulation of metabolism, biological, and
cellular processes, macromolecule catabolic process, and protein kinase activity (Fig. 1). Within
cellular metabolic process, the most extreme differences were found in a methyltransferase and
other transferases, GTP binding protein, Dihydrouridine synthase (Dus), as well as several
transcription factors (Table 1). Among biological regulation genes, several transcription factors
were strongly upregulated in A. gerardii. Protein metabolic processes included several
ribosomal-related genes as well as fibrillarin upregulated in 4. gerardii. Within genes
significantly upregulated in S. nutans, the negative regulation (inhibition) category consisted of a
finger protein as well as several membrane proteins like CMP-sialic acid transporter homolog
(Table 1). Macromolecule catabolism genes included several proteasomes, 1,2-alpha-
mannosidase, and a ubiquitin-conjugating enzyme. Among genes annotating to the term “stress”,
18 were upregulated in S. nutans versus 31 upregulated in 4. gerardii. Genes annotating broadly
to “regulation” showed 91 upregulated in A. gerardii versus 74 in S. nutans.

Gene clustering was performed for day 18 samples to detect species differences for both
plots at the end of the heat wave. Similarly regulated modules or groups of genes may lead to a
greater understanding of gene networks contributing to different species responses. One gene
module significantly explained species differences in the watered treatment (p<0.001, Fig. 2a)
with genes generally expressed more highly in S. nutans. Two gene modules significantly
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explained species differences in the drought treatment (p=0.01, Fig. 2b and p=0.02, Fig. 2c
respectively). Under drought, genes generally had lower expression in S. nutans.

Genes regulated in A. gerardii

In A. gerardii, 61 genes were significantly regulated in response to drought (5% of 1148
total genes), with 24 genes upregulated under watered conditions and 37 upregulated under
drought conditions. Few GO categories had strong enrichment (i.e., few genes per category). The
drought treatment showed enrichment in response to osmotic stress, chromatin silencing, and
lysosome. The watered treatment suggested greater abundance of xylose metabolism, sucrose
metabolism, and ion transport (although each group contained only one gene) (Fig. 3a). Osmotic
stress genes included an RNA-binding protein, ribosomal protein S3, and aconitate hydratase
(Table 1). Within chromatin silencing genes, both histone acetyltransferases were upiCotlated in
under drought. Among all genes, 24 genes annotating to “stress” were upregulated in the watered
treatment, versus 29 under drought. Only two genes (both withir@ gerardii) responded
significantly to temperature. One gene was upregulated in response to higher temperatures
(Hsp70 protein); another was downregulated under higher temperatures (high mobility group-
box domain).

Genes regulated in S. nutans

Sorghastrum nutans regulated more genes in response to drought than 4. gerardii (23%
of 762 genes total). Of these, 92 showed greater expression in the watered treatment while 82
showed greater expression under drought. Genes upregulated in the watered treatment showed
Gg@richment in non-coding RNA (ncRNA) and RNA metabolism and nitrogen response.
G upregulated under drought showed enrichment in response to water stress, external
encapsulating structure, organophosphate metabolism, and cellular catabolism (Fig. 3b). Within
the watered treatment ncRNA metabolism genes including ERBB-3 binding ribonuleoprotein,
serrate RNA effector molecule, and pseudouridine synthase were upregulated (Table 1).
Sorghastrum nutans in the watered treatment also showed greater expression of aquaporin NIP3-
1, NEP1-interacting protein, and a transcriptional corepressor.

In contrast, S. nutans under drought showed greater expression of osmotic stress genes
E3 ubiquitin ligase SUDI, 9 aldo-keto reductase, and hydrophobic protein LTI6A (Table 1).
Among encapsulating structures, CMP-sialic acid transporter homolog, phosphatidylinositol
kinase, pectin acetylesterase 8, and two glucuronosyltransferases (ranged from fold change of -
1.47 to -1.71) were upregulated under drought. Catabolism genes within the drought treatment
included 26S protease, DNA-directed RNA polymerase II Rpb7p, and phosphatidylinositol
kinase. Lastly, the drought treatment showed increased expression of organophosphate
metabolism genes including GDP-mannose 4,6 dehydratase, triosephosphate isomerase and
phosphatidylinositol-4-phosphate 5-kinase. Among all genes, 12 (1.5%) genes annotating to
“stress” were upregulated in the watered treatment, versus 20 (2.6%) under drought.

Discussion

Increasingly, ecological studies are using molecular techniques to study gene-level
responses to global change in non-model organisms (Travers et al. 2007; Leakey et al. 2009;
Alvarez et al. 2015; Smith et al. 2016). Genomic tools like microarrays have revealed
mechanisms behind plant environmental responses in natural plant populations (Jackson et al.
2002; Travers et al. 2007; Ungerer et al. 2008; Leakey et al. 2009; Travers et al. 2010; Smith et
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al. 2016). Heterologous hybridization has proven useful for studying non-model organisms when
the proper precautions are taken and stringent criteria are utilized to control for
mishybridizations (Leakey et al. 2009; Travers et al. 2010; Alvarez et al. 2015). Both
environmental (Gong et al. 2005; Hammond et al. 2006; Sharma et al. 2006; Travers et al. 2010;
Alvarez et al. 2015) and biotic (Horvath et al. 2007; Broz et al. 2008) stress responses have been
explored. Our study used heterologous hybridization to compare transcriptional responses of two
non-model grasses under field conditions. We used stringent criteria to control for
mishybridizations, multiple steps to normalize the array data, and sequence alignment with
RNA-seq transcriptomes. One significant caveat of the microarray technique is the inability of
microarray technology to distinguish between two scenarios: no microarray signal due to true
low expression versus no microarray signal due to probe-to-gene mismatch. In other words, this
study is limited to low versus high expression contrasts while excluding presence/absence
analysis, and may fail to detect larger, significant shifts in gene expression. Moreover, these two
species have almost certainly evolved unique genes to adapt to harsh conditions sometimes
experienced in the tallgrass prairie. These species-specific genes may be the most insightful but
are undetectable using these methods.

We expected that 4. gerardii and S. nutans, two closely related and functionally similar
species, would differ in their gene responses to heat-wave and drought. Specifically, S. nutans
would regulate a greater number of genes from different groups compared with A. gerardii. This
expectation was based on past evidence for greater sensitivity of S. nutans to more moderate
water stress (Nippert et al. 2009; Hoover et al. 2014a; Smith et al. 2016). Overall, our hypothesis
was supported; S. nutans had greater sensitivity to the imposed drought compared to A. gerardii
in the percentage of regulated transcripts. Despite similar Tj,r and Wy, measurements, A.
gerardii appeared less responsive with a smaller proportion of genes (5%) exhibiting a
significant change under drought. A similar pattern of gene regulation was observed when A.
gerardii and S. nutans were exposed to more moderate changes in water availability in the field
(Smith et al. 2016). Thus, in line with past research, our results suggest that 4. gerardii is more
resistant to and/or better able to cope with water stress than S. nutans. According to gene
modules detected using statistical clustering, S. nutans genes tended toward downregulation on
day 18 of the drought compared to 4. gerardii (Fig. 2), which could represent a surpassed stress
response threshold. Sorghastrum nutans has also shown loss of function under stress with respect
to net photosynthetic rate and biomass production (Hoover et al. 2014a).

Despite strong support for the non-additive effects of water and temperature stress in
some systems (Atkinson and Urwin 2012; Johnson et al. 2014; Suzuki et al. 2014), the two did
not show a significant interaction. However, previous work comparing these two species also
found no environmental interaction (Hoover et al. 2014a). In our study, only two genes within A4.
gerardii responded to the high heat treatment. Previous ecophysiological research has shown
greater relative temperature sensitivity in 4. gerafan)|(Nippert et al. 2009). Gene expression did
not vary across sampling date, despite evidence for plasticity in other species (Hayano-Kanashiro
et al. 2009; Meyer et al. 2014). However, it is important to acknowledge that fewer genes
overlapped across sample date, and only these genes were contrasted. Many genes may have
been expressed during the first sampling date but not during the second date and vice versa.

Over all treatments, 4. gerardii tended to have greater expression of metabolic and
regulatory genes compared to S. nutans, suggesting it maintains high levels of metabolic function
in many environmental conditions and may strategize plasticity at the regulatory level (i.e.,
utilizes more transcription factors, tRNA enzymes, and ribosomal enzymes). In other words,
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gene expression remains fairly constant but may be modified downstream. Expression of
transcription factors has been widely implicated in drought adaptation and response (Yamaguchi-
Shinozaki and Shinozaki 2006; Yoshida et al. 2015; Kudo et al. 2016; Gahlaut et al. 2016). On
the other hand, greater transcription of negative regulators and catabolism genes in S. nutans may
reflect an ability to respond more rapidly to drought stress. Over-expression of negatively
regulating finger proteins in Arabidopsis inhibits pathways and leads to enhanced stress
tolerance ( et al. 2015) and the 26S proteastome helps modulate ABA response as well as
degrade proteins not needed under non-stressed conditions (Stone 2014). Both species appear
equipped to handle stressful conditions, though S. nutans seems to focus on rapid response via
molecular breakdown and pathway inhibition whereas 4. gerardii maintains higher levels of
metabolic process and regulates transcription via transcription factors. Due to multiple statistical
tests performed, only the most significant genes responding to drought were examined. Only two
of these overlapped in A. gerardii and S. nutans, further highlighting their different drought
response strategies.

Andropogon gerardii has previously shown greater ecophysiological response to
temperature (Nippert et al. 2009), but may actually be less sensitive at the gene expression level
to mild temperature stress (Smith et al. 2016). A consensus regarding temperature response may
remain elusive considering only two genes significantly responded to temperature in A. gerardii.
Hsp70 is well known to be upregulated under stress to assist protein folding (Hayano-Kanashiro
et al. 2009; Wang et al. 2015), while high mobility group (HMG) genes are known to be
negatively correlated with stress response (Kim et al. 2010). The general lack of response may be
due to our stringent gene filtering criteria, but may also reflect presence of unique genes in these
species. Non-targeted methods (such as RNA-seq, Hoffman and Smith 2017) have been
successful in these species and would likely reveal more comprehensive differences under
temperature extremes.

Of osmotic stress-related genes upregulated in 4. gerardii in response to drought,
Glycine-rich RNA-binding protein 2 is known to have RNA chaperone activity during abiotic
stress (Kim et al. 2007), 40S ribosomal protein may be upregulated to compensate for mild
osmotic stress (Ma et al. 2016), and aconitate hydratase has been shown to increase under water
and heat stress (Johnson et al. 2014) in a compensatory manner due to its sensitivity to oxidative
damage (Budak et al. 2013). Osmotic stress-related genes were also upregulated in S. nutans
under drought, however their function was quite different. E3 ubiquitin ligase is understood to
play a role in regulating response to ABA (Doblas et al. 2013; Zhao et al. 2014), aldo-keto
reductase 4C9 is involved in scavenging toxins produced under stress (Simpson et al. 2009), and
hydrophobic LTI6A is a transmembrane protein which responds to low temperature stress,
drought, and ABA (Wang et al. 2016). These focal genes tied to osmotic stress response suggest
that while both species are responding to drought, their strategies differ. In this case, S. nutans
not only regulates a greater percentage of genes but also focuses on ABA response, whereas A.
gerardii appears to upregulate genes to compensate for lost function. Among its many roles,
ABA may help with stomatal closure and drought avoidance (Jones and Mansfield 1970).

Within S. nutans, ncRNAs (transcriptional regulators) declined under drought, which
have been shown to downregulate in response to drought (Hackenberg et al. 2015). In this study,
many of these genes mapped to transcription factors or RNA binding, which are typically
upregulated under drought (Yamaguchi-Shinozaki and Shinozaki 2006; Yoshida et al. 2015;
Kudo et al. 2016; Gahlaut et al. 2016; but see Baldoni et al. 2015). This could indicate that S.
nutans experienced mechanistic loss of function under drought conditions. Catabolism related
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genes upregulated under drought may indicate salvaging of important functions. For example,
phosphatidylinositol-4-phosphate 5-kinase is known to modulate ABA response as well as
prevent breakdown of proline, an important ROS scavenger (Leprince et al. 2014). The 26S
protease regulatory subunit lends additional breakdown of molecules potentially involved in
signaling (Stone 2014). Similarly, RNA polymerase subunit Rpb7p is thought to help degrade
mRNAs as a counteractive measure (Shalem et al. 2011). Of the genes not involved in cellular
catabolism, some were tied to cell wall integrity (e.g., pectin acetylesterase) and may serve as a
last resort for survival under extreme stress (Houston et al. 2016). Meanwhile, few genes
suggested loss of function or disassembly role in 4. gerardii, which further emphasizes S.
nutans’ greater sensitivity to drought stress. Of note is A. gerardii’s more consistent regulation of
stress transcripts: this species shifted from 2.1% to 2.5% “stress” annotations following drought,
while S. nutans shifted from 1.6% to 2.6% “stress” annotations. This could mean that 4. gerardii
tolerates stress and avoids sensitivity by constitutively expressing some stress responses. This
makes sense considering the broad array of stressors 4. gerardii is likely to experience (Hulbert
1988; Turner and Knapp 1996; Silletti et al. 2004; Swemmer et al. 2006; Koerner et al. 2014).
Overall, these results suggest that S. nutans’ ecophysiological sensitivity may be mechanistically
tied to downregulation of genes under stress coupled with rapid avoidance strategies, such as the
regulation of ABA. Andropogon gerardii’s apparent lack of sensitivity may result from
upregulation of stress sensitive transcripts coupled with maintenance of cellular processes
despite extreme stress.

Conclusions

Our results suggest that 4. gerardii is more resistant to extremes in water stress and does
not downregulate as many processes as S. nutans. Surprisingly, response to the heat wave was
minimal. While A. gerardii contributes proportionally more aboveground biomass (Smith and
Knapp 2003) and is an important mediator of species diversity in the tallgrass prairie ecosystem
(Collins 2000; Smith et al. 2004), S. nutans is able to attain greater photosynthetic rates that
could be linked to carbon storage (Hoover et al. 2014a). Differences in sensitivity and stress
response mechanisms could ultimately alter community structure and ecosystem function in the
tallgrass prairie ecosystem.
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Maize Description Log, Upregulated | GO category
gene fold- in:
change

Regulation between A. gerardii and S. nutans

CB331760 | methyltransferase 3.56 A. gerardii Cellular metabolic process

DV621283 | GTP binding protein | 3.28 A. gerardii Cellular metabolic process

DV490673 | Dihydrouridine 2.99 A. gerardii Cellular metabolic process
synthase (Dus)

DV491165 | transcription factor 2.60 A. gerardii Biological regulation

BM331929 | transcription factor 2.56 A. gerardii Biological regulation

CD510408 | fibrillarin 2.56 A. gerardii Protein metabolic processes

DV491840 | finger protein -2.66 S. nutans Negative regulation

DV491692 C@ialic acid -2.64 S. nutans Negative regulation
transporter homolog

DV942581 | Proteasome -2.37 S. nutans Macromolecule catabolism

DV490558 | 1,2-alpha- -2.13 S. nutans Macromolecule catabolism
mannosidase

DV493085 | ubiquitin-conjugating | -1.51 S. nutans Macromolecule catabolism
enzyme

Regulation within A. gerardii

CB331250 | RNA-binding protein | -1.01 Drought Osmotic stress

CA989232 | ribosomal protein S3 | -1.51 Drought Osmotic stress

BM347878 | aconitate hydratase -1.17 Drought Osmotic stress

CD651535 | histone -1.33 Drought Chromatin silencing
acetyltransferase

CB815849 | histone -1.86 Drought Chromatin silencing
acetyltransferase

DY576254 | Hsp70 protein -1.06 Heat wave Protein folding

CD662140 | high mobility group- | 1.08 Ambient DNA binding
box domain temp.

Regulation within S. nutans

DV489871 | ERBB-3 binding 1.33 Watered ncRNA metabolism
ribonuleoprotein

DV489639 | serrate RNA effector | 1.24 Watered ncRNA metabolism
molecule

DV943322 | pseudouridine 1.16 Watered ncRNA metabolism
synthase

DV942798 | ribosome production | 1.04 Watered ncRNA metabolism
factor 2

BMO073337 | polyribonucleotide 1.02 Watered ncRNA metabolism
nucleotidyltransferase

CD651136 | Cysteinyl-tRNA 2.14 Watered ncRNA metabolism
synthetase
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BMO078961 | methionine-tRNA 1.26 Watered ncRNA metabolism
ligase

CD651793 | valine-tRNA ligase 1.24 Watered ncRNA metabolism
with editing activity

DV492155 | aquaporin NIP3-1 1.22 Watered Transmembrane activity

BM340348 | NEPI-interacting 1.19 Watered Methyltransferase activity
protein

DV492743 | transcriptional 1.17 Watered Negative regulation of
corepressor transcription

CD527890 | E3 ubiquitin ligase -2.24 Drought Osmotic stress
SUDI1

DV489949 | aldo-keto reductase -2.16 Drought Osmotic stress

BM348293 | hydrophobic protein | -1.01 Drought Osmotic stress
LTI6A

DV491692 | CMP-sialic acid -2.35 Drought Encapsulating structures
transporter homolog

DV492287 | phosphatidylinositol | -2.12 Drought Encapsulating structures
kinase

BM333861 | pectin acetylesterase | -1.65 Drought Encapsulating structures
8

DV491662 | 26S protease -2.40 Drought Catabolism

DV492129 | DNA-directed RNA | -2.35 Drought Catabolism
polymerase Il Rpb7p

DV492287 | phosphatidylinositol | -2.12 Drought Catabolism
kinase

DV942393 | GDP-mannose 4,6 -4.99 Drought Organophosphate metab.
dehydratase

DV493244 | triosephosphate -2.47 Drought Organophosphate metab.
isomerase

DV491451 | phosphatidylinositol- | -2.10 Drought Organophosphate metab.
4-phosphate 5-kinase
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Figure 1(on next page)

Differentially expressed genes in A. gerardii and S. nutans.

Differentially expressed genes have a log, fold change greater than one, shown as colored
points where p<0.05. Positive values indicate greater expression in A. gerardii while negative
values indicate greater expression in S. nutans. Selected Ger@ntology groups are
represented by filled circles. Open@les: red = differentially expressed, gray = not

significantly different
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Figure 2 (on next page)

Gene modules explaining species differences under different water availability.

Gene modules detected explaining species differences in u@r watered (A) and drought (B,
C) conditions. Sample names are presented on the x-axis, where each label applies to two
columns of the same description (e.g. Ag.W.H applies to the first two columns, but both are
replicates of A. gerardii in Watered plot with- Heated treatment). Ag = A. gerardii, Sn = S.
nutans, W = watered, D = drought, H = hea, A = ambient temperature. No annotation

found = N.A.
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Figure 3(on next page)

Differentially expressed genes in response to water availability.

Differentially expressed genes in a) A. gerardii and b) S. nutans only compared between
watered and drought plots (12 and 13). Significantly different genes with log, fold change
greater than one are represented by colored points where p<0.05. Positive values indicate
greater expression in the watered plot while negative values indicate greater expression in
the drought plot. Selected Gene Ontology groups are represented by filled circles. Open

circles: red = differentially expressed, gray = not significantly different.
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