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ABSTRACT
Extremes in climate, such as heat waves and drought, are expected to become more
frequent and intense with forecasted climate change. Plant species will almost certainly
differ in their responses to these stressors. We experimentally imposed a heat wave
and drought in the tallgrass prairie ecosystem near Manhattan, Kansas, USA to assess
transcriptional responses of two ecologically important C4 grass species, Andropogon
gerardii and Sorghastrum nutans. Based on previous research, we expected that S.
nutans would regulate more genes, particularly those related to stress response, under
high heat and drought. Across all treatments, S. nutans showed greater expression of
negative regulatory and catabolism genes while A. gerardii upregulated cellular and
protein metabolism. As predicted, S. nutans showed greater sensitivity to water stress,
particularly with downregulation of non-coding RNAs and upregulation of water
stress and catabolism genes. A. gerardii was less sensitive to drought, although A.
gerardii tended to respond with upregulation in response to drought versus S. nutans
which downregulated more genes under drier conditions. Surprisingly, A. gerardii only
showed minimal gene expression response to increased temperature, while S. nutans
showed no response. Gene functional annotation suggested that these two species may
respond to stress via different mechanisms. Specifically, A. gerardii tends to maintain
molecular function while S. nutans prioritizes avoidance. Sorghastrum nutans may
strategize abscisic acid response and catabolism to respond rapidly to stress. These
results have important implications for success of these two important grass species
under a more variable and extreme climate forecast for the future.

Subjects Ecosystem Science, Plant Science, Climate Change Biology
Keywords Andropogon gerardii, Sorghastrum nutans, Microarray, Drought, Heat wave, C4 grass,
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INTRODUCTION
Climatic extremes, such as drought and heat waves, are predicted to increase in frequency
and magnitude with forecasted climate change (Stocker et al., 2013). These extreme
events may significantly impact ecosystem structure and function depending on their
severity (Ciais et al., 2005; García-Herrera et al., 2010; Smith, 2011; Knapp et al., 2015).
Climate extremes may affect plants in species-specific ways, such as through timing
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of bud development (Bokhorst et al., 2008), variation in tissue die-back (Kreyling et al.,
2008), and differences in physiological performance (Hoover, Knapp & Smith, 2014a) or
chemical composition (AbdElgawad et al., 2014). Several recent studies have found species
to respond differentially to extreme events like drought and heat waves (Beierkuhnlein et
al., 2011; Hoover, Knapp & Smith, 2014a; Nardini et al., 2016). However, the mechanisms
that lead to differences in plant performance are not always clear (McDowell et al.,
2008). Understanding gene regulation may help explain the mechanisms of plant
response to novel stressful environments (Leakey et al., 2009; Swarbreck et al., 2011). Gene
regulation may also be more sensitive to periods of extreme climate compared with
physiological performance and growth traits that may have delayed response. Likewise,
gene regulation may reveal variation which can affect fitness, selection, and adaptation
to new environmental conditions (Ouborg & Vriezen, 2007; Gibson, 2008; Avolio & Smith,
2013; Vázquez et al., 2015). However, most molecular studies of plant responses to drought
and heat stress are focused on model organisms with limited ecological relevance (Leakey
et al., 2009).

Here, we present a comparison of gene regulation responses of two C4 grass species,
Andropogon gerardii and Sorghastrum nutans, to an experimentally induced heat wave and
drought in the field. These two dominant grasses are native to the tallgrass prairie ecosystem
of the Central US and play an important role in determining community and ecosystem
structure and function (Smith & Knapp, 2003; Whitham et al., 2006; Whitham et al., 2008;
Koerner et al., 2014). They are often assumed to be functionally similar (i.e., both closely
related phylogenetically, rhizomatous, C4 warm-season tallgrasses, Weaver & Fitzpatrick,
1934; Benson & Hartnett, 2006; Estep et al., 2014), and both are relatively resistant to
stress (Knapp, 1985; Swemmer, Knapp & Smith, 2006; Tucker, Craine & Nippert, 2011).
However, A. gerardii and S. nutans differ in physiological response and abundance under
different temperature and water availability (Silletti & Knapp, 2002; Silletti, Knapp & Blair,
2004; Swemmer, Knapp & Smith, 2006; Nippert et al., 2009; Hoover, Knapp & Smith, 2014b;
Hoover, Knapp & Smith, 2014a). At the level of gene regulation, A. gerardii has been
shown to be more sensitive to thermal stress (Travers et al., 2007; Travers et al., 2010; but
see Smith, Hoffman & Avolio, 2016) while S. nutans is more sensitive to moderate water
stress (Smith, Hoffman & Avolio, 2016; Hoffman & Smith, 2017). Specifically, S. nutans was
more responsive to both a year-round 2 ◦C increase in temperature and more variable
precipitation patterns (and lower average soil water availability) than A. gerardii (Smith,
Hoffman & Avolio, 2016). Sorghastrum nutans also showed greater plasticity for dealing
with water stress at the gene level (Hoffman & Smith, 2017). To date, much of the research
assessing sensitivity of these grasses to heat and water stress has focused on chronic, subtle
changes in temperature (2 ◦C increase in temperature) and water availability (on average
14% reduction in soil moisture; Fay et al., 2011). It remains unknown whether these two
species would regulate genes differently under more extreme conditions, such as heat waves
and droughts, which are predicted increase in frequency and severity in the Central US
with climate change (Cook, Ault & Smerdon, 2015).

To increase our mechanistic understanding of the response of A. gerardii and S. nutans
to climate extremes typical of the region, we analyzed the transcriptional profiles of both
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grass species during an 18-day controlled heat wave under both watered and drought
conditions within natural field plots. As in past research (Travers et al., 2007; Travers et al.,
2010; Smith, Hoffman & Avolio, 2016), we measured gene expression using heterologous
hybridization with cDNA microarrays designed for a closely related model species, Zea
mays. We coupled the microarray data with filtering through each species’ RNA-seq
transcriptome (Hoffman & Smith, 2017). We hypothesized that gene regulation (number
of genes, functional groups) would differ between A. gerardii and S. nutans in response to
the heat wave under both watered and drought conditions, with these grasses employing
different strategies for coping with extreme heat and water stress.

METHODS
Site description and experimental treatments
The study was carried out within the context of an existing long-term climate change
experiment, the Rainfall Manipulation Plots (RaMPs), located at the Konza Prairie
Biological Station in north-eastern Kansas (39◦05′N, 96◦35′W). Kansas State University,
Manhattan, KS, USA and the Konza Prairie Biological Station granted explicit permission
to the authors to sample with minimal impact within the RaMPs. The RaMPs is located in
a native, annually burned site and consists of twelve 14× 9 m greenhouse shelters (without
walls) equipped with a clear (UV transparent) polyethylene roof to exclude natural rainfall
inputs (Fay et al., 2011). Our experimental plots were located in two RaMPs (RaMP 12
and 13) in areas outside the 6 × 6 m experimental plots, but still located underneath
the shelter infrastructure. Each of these areas is approximately 3 × 8 m in size, within
which we located a 3 × 6 m experimental sampling plot. The RaMP 12 sampling plot was
watered from late-May to mid-Aug to create a watered condition, whereas all ambient
rainfall was excluded from the RaMP 13 sampling plot to create a drought. For both the
watered and drought plots, a controlled high heat treatment was achieved by installing
pairs of rectangular infrared heating lamps (Kalglo 2000 W; Kalglo Electronic Co Inc.,
Bethlehem, PA, USA) (Fig. S1). This resulted in a high heat treatment zone with a daytime
target maximum of+8 ◦C above ambient midday temperature (Fig. S2), alongside ambient
temperature treatment zones. The four treatments allowed us to examine the effects of
drought and heat individually along with their interaction. The high heat treatment was
imposed for an 18-day period (July 17 to August 4), when heat waves have generally
occurred in the past (Hoover, Knapp & Smith, 2014b).

Prior to initiation of the experiment, canopy temperature in the watered sampling plot
was measured using an infrared thermometer mounted on a movable platform (approx.
0.5 m above the canopy). Soil moisture was monitored at a depth of 0–15 cm with 30-cm
time-domain reflectometery probes (Model CS616, Campbell Scientific, Logan, Utah,
USA) inserted at a 45◦ angle (see Supplemental Information).

Plant sampling and measurements
The focal species, A. gerardii and S. nutans, are both are rhizomatous C4 grasses that
reproduce primarily vegetatively via belowground buds on rhizomes (Brejda, Moser &
Waller, 1989; Carter & VanderWeide, 2014), which form dense intermixed stands, making
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it virtually impossible to differentiate between clones in the field (Avolio, Chang & Smith,
2011).We sampled individuals ofA. gerardii and S. nutans fromnative populations growing
within the experimental treatment plots during two sampling campaigns conducted at Day
4 and Day 18 of the heat wave. Each sampling campaign was conducted between 11:00 and
15:00 CDT to allow for collection of leaf temperature and water status (see below).

During each sampling campaign, we sampled two, morphological similar individuals
(tiller or ramets, with 3–5 fully expanded leaves) of each species within the high heat zone
and ambient temperature zone in both the watered and drought sampling plots (n= 2
samples per species, four treatments, and two campaign dates, or n= 16 per species,
N = 32 total samples). While a sample size of two per species and treatment combination
is relatively small, we believe this sample size was appropriate given that our focus was on
broadly detecting interspecific differences under the high heat and drought conditions.
Although we did not control for plant genotype, we collected our samples within a limited
sampling area (10 × 10 cm) to minimize genotypic differences among samples. Leaf tissue
was collected from individuals located within each treatment within a five-minute window.
For each individual, the first or second fully expanded leaf was randomly selected for
genomic analysis to ensure similar leaf age. The entire leaf was clipped and immediately
flash-frozen and stored in liquid nitrogen until brought to the laboratory. Immediately
after, we measured leaf temperature (Tleaf) and midday leaf water potential (9mid) on the
remaining fully expanded leaf. Tleaf was measured using a LI-6400 system (LiCOR, Inc.,
Lincoln, NE, USA). The whole leaf was then collected for determination of mid-day leaf
water potential (LWP) using an Scholander-type pressure chamber (PMS Instruments,
Inc., Corvallis, OR, USA).

RNA preparation and microarray hybridization
Leaf tissue samples were stored in an −80 freezer prior to RNA extraction. Total RNA
was extracted from the 32 leaf samples for both species using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) (McCarty, 1986), and further purified with the RNeasy kit (Invitrogen,
Carlsbad, CA, USA). RNA quantity was measured by a NanoDrop spectrophotometer
(Nanodrop products, Thermo Scientific, Wilmington, DE, USA). The verification of
RNA quality, preparation of cDNA, and the subsequent steps leading to hybridization
and array scanning were performed by Biotechnology Resources of Keck facility at Yale
University (http://keck.med.yale.edu/). We used maize spotted cDNA arrays (SAM 1.2,
GEO platform GPL4521) produced by the Center for Plant Genomics at Iowa State
University for hybridization. The arrays included 15,680 maize cDNA probes (14,118
informative) isolated from maize ear tissue.

Quality control of heterologous hybridizations
In total, there were eight hybridizations for each species per sampling campaign (Table S1).
Array image data were collected using GenePix software (Version 6; Axon, Downingtown,
PA, USA). Prior to normalization across arrays, features with obvious abnormality and
saturated signal were flagged and excluded from statistical analysis. Two steps were taken
to minimize the probability of mishybridization and sequence divergence between the
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focal species and the model species (Leakey et al., 2009). First, we used stringent criteria
by excluding spots with signal to noise ratios less than 3 or larger than 10 to decrease the
inclusion of cross-hybridization artefacts (Verdnik, Handran & Pickett, 2002). Second, the
cDNA sequences of the maize microarray SAM1.2 (18,862 sequences) were aligned against
the de novo RNA-seq transcriptome data sets of A. gerardii and S. nutans (Hoffman &
Smith, 2017), previously generated using Trinity (version 2.1.1, Haas et al., 2013). We only
included BLASTN (Altschul et al., 1990; Altschul et al., 1997) hits with an e-value cutoff of
1e−10 and alignment length larger than 150 base pairs from the A. gerardii and S. nutans
transcript data sets. After these two steps, 7,964 and 6,035 probe sequences were included
in the analysis, accounting for 61.4% and 56.6% of the maize SAM 1.2 array probes for A.
gerardii and S. nutans respectively. A total of 5,109 features were common to both species.
Because features were screened by both the intensity of hybridization signal and sequence
similarity, the intensity values of the included features were reliable for further expression
analysis. These same techniques have also been validated previously using quantitative
real-time PCR (qPCR) (Smith, Hoffman & Avolio, 2016).

Array data normalization and statistical analysis
An important source of systematic errors in two-color microarray experiments is the
different properties of the dyes used to label the two samples (Tseng et al., 2001; Yang et
al., 2001; Yang et al., 2002) and the hybridization variability from array to array. We used
dye-swap design for the same pair of samples in the hybridizations (Table S1) to account
for the dye effect (Dabney & Storey, 2007). Background signals were removed frommedian
signal intensity and modelled similarly to Travers et al. (2010) to remove the array and dye
effect:

yijk =Ai+Dj+AiDj+εijk,

where y is the median intensity for the k th gene on each array (i) with each dye (j), A is
the array effect for each array (i), D is the dye effect for each dye (j), AD is the array × dye
interaction, and εijk is the stochastic error. Residuals from this model were adjusted by the
minimum value to produce all positive residuals. To examine overall statistical effects, we
used the residuals in the following model:

rklmno= Sl+Wm+Tn+Co+SlWm+SlTn+WmTn+εklmno,

where r is the residual for each gene (k) with each species (l), water treatment (m),
temperature (n), and sampling date (o), S is the species effect, W is the water treatment
effect (plot), T is the temperature effect, and C is the sampling date effect. Residuals were
used to generate log2 expression ratios for the four variables: species (A. gerardii/S. nutans),
water treatment (watered/droughted), temperature (ambient/heated), date (day 4/day 18).
Any genes with missing signals were removed. We plotted the log2 expression ratio against
the log10 intensity for each gene and performed a loess correction to normalize each set
of log2 values (Fig. S3). Then, for each gene without missing values, a linear model was
performed to test each main effect (species, water treatment, temperature, and date) as
well as selected interactions (species × water treatment, species × temperature, and water
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treatment × temperature). Because of the variation in genes present across arrays, each
model was constructed only if appropriate data was present. In other words, to test species
effect, both species had to express the given gene. P-values were adjusted using a Bonferroni
correction to account false discovery across multiple tests. All analyses were performed
using R (version 3.3.2).

Functional annotation, enrichment, and clustering
The functional annotation of transcripts was based on the Trinotate pipeline (version
3.0.1). We matched microarray probe sequences to known sequences using BLAST against
the SwissProt annotated database (Apweiler et al., 2004), identified protein sequence
homology using HMMER and Pfam (Finn, Clements & Eddy, 2011; Finn et al., 2015), and
searched for known annotations within eggNOG and GO databases (The Gene Ontology
Consortium, 2015; Huerta-Cepas et al., 2016). Ontology enrichment was determined using
GOSeq (version 3.4, Young et al., 2010), a statistical package for R which accounts for
multiple testing as well as differing probe lengths. Finally, clustering of gene modules was
performed using the WGCNA package for R (version 1.51, Langfelder & Horvath, 2008)
with a minimum module size of five genes.

RESULTS
Efficacy of the heat wave and drought treatments and impacts on Tleaf
and 9mid
On average, the heated (heat wave) treatment resulted in an 8 ◦C increase in canopy
temperature (Fig. S2A). On average, the drought treatment decreased volumetric soil
water content from 28% to 24% midway through the heat wave (day 9). The high heat
treatment further decreased soil water content by 2% for the watered and 5% for the
drought treatments (Fig. S2B). Overall, the combined effect of drought and heat resulted
in a drop from 29% to 22% volumetric water content. The increase in canopy temperature
with the high heat treatment was reflected in greater leaf temperature (Tleaf) for both
species; A. gerardii and S. nutans had significantly higher Tleaf at both day 4 and 18 of the
heat wave (Fig. S4). water content with the drought and high heat treatment were reflected
in greater water stress in both species (i.e., more negative 9mid, Fig. S4). For A. gerardii, the
high heat treatment caused a large decrease in 9mid, with this decline greatest at day 4 of
the heat wave combined with drought (−0.9 MPa, Fig. S4). The decrease in 9mid with the
high heat treatment was most pronounced in S. nutans after 18 days of heat wave under
drought (−1.7 MPa, Fig. S4).

Environment affects gene regulation in A. gerardii and S. nutans
Overall, 1,131 genes were shared across both species, 1,515 were shared across water
treatment, 1,653 were shared across temperature treatment, and 1,390 were shared across
date. Species (p< 0.001), water treatment (p< 0.001), and their interaction (p< 0.001)
most significantly impacted gene expression. In other words, species gene expression
response strongly depended on the drought environment. Temperature was only a
weakly significant predictor of gene expression (p= 0.048) with no significant species
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Figure 1 Differentially expressed genes in A. gerardii and S. nutans. Differentially expressed genes
have a log2 fold change greater than one, shown as colored points where p < 0.05. Positive values indicate
greater expression in A. gerardii while negative values indicate greater expression in S. nutans. Filled circles
represent genes belonging to selected Gene Ontology groups. Open circles: red, differentially expressed,
gray, not significantly different.

Full-size DOI: 10.7717/peerj.4394/fig-1

by temperature interaction. Gene expression did not vary across sample date/duration of
the heat wave.

Overall differences between A. gerardii and S. nutans
Of 1,131 genes found in both species, 160 differed significantly in their regulation between
species. Genes with greater expression in A. gerardii were enriched in cellular metabolic
process, biological regulation, and protein metabolic process, while genes with greater
expression in S. nutans were enriched in negative regulation of metabolism, biological,
and cellular processes, macromolecule catabolic process, and protein kinase activity
(Fig. 1). Within cellular metabolic process, the most extreme differences were found
in a methyltransferase and other transferases, GTP binding protein, Dihydrouridine
synthase (Dus), as well as several transcription factors (Table 1). Among biological
regulation genes, several transcription factors were strongly upregulated in A. gerardii.
Protein metabolic processes included several ribosomal-related genes as well as fibrillarin
upregulated in A. gerardii. Within genes significantly upregulated in S. nutans, the negative
regulation (inhibition) category consisted of a finger protein as well as several membrane
proteins like CMP-sialic acid transporter homolog (Table 1). Macromolecule catabolism
genes included several proteasomes, 1,2-alpha-mannosidase, and a ubiquitin-conjugating
enzyme. Among genes annotating to the term ‘‘stress’’, 18 were upregulated in S. nutans
versus 31 upregulated in A. gerardii. Genes annotating broadly to ‘‘regulation’’ showed 91
upregulated in A. gerardii versus 74 in S. nutans.

Gene clustering was performed for day 18 samples to detect species differences for both
plots at the end of the heat wave. Similarly regulated modules or groups of genes may lead
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Table 1 Selected differentially expressed genes.

Maize gene Description Log2 fold-change Upregulated in GO category

Regulation between A. gerardii and S. nutans
CB331760 methyltransferase 3.56 A. gerardii Cellular metabolic process
DV621283 GTP binding protein 3.28 A. gerardii Cellular metabolic process
DV490673 Dihydrouridine synthase (Dus) 2.99 A. gerardii Cellular metabolic process
DV491165 transcription factor 2.60 A. gerardii Biological regulation
BM331929 transcription factor 2.56 A. gerardii Biological regulation
CD510408 fibrillarin 2.56 A. gerardii Protein metabolic processes
DV491840 finger protein −2.66 S. nutans Negative regulation
DV491692 CMP-sialic acid transporter homolog −2.64 S. nutans Negative regulation
DV942581 Proteasome −2.37 S. nutans Macromolecule catabolism
DV490558 1,2-alpha-mannosidase −2.13 S. nutans Macromolecule catabolism
DV493085 ubiquitin-conjugating enzyme −1.51 S. nutans Macromolecule catabolism

Regulation within A. gerardii
CB331250 RNA-binding protein −1.01 Drought Osmotic stress
CA989232 ribosomal protein S3 −1.51 Drought Osmotic stress
BM347878 aconitate hydratase −1.17 Drought Osmotic stress
CD651535 histone acetyltransferase −1.33 Drought Chromatin silencing
CB815849 histone acetyltransferase −1.86 Drought Chromatin silencing
DY576254 Hsp70 protein −1.06 Heat wave Protein folding
CD662140 high mobility group-box domain 1.08 Ambient temp. DNA binding

Regulation within S. nutans
DV489871 ERBB-3 binding ribonuleoprotein 1.33 Watered ncRNA metabolism
DV489639 serrate RNA effector molecule 1.24 Watered ncRNA metabolism
DV943322 pseudouridine synthase 1.16 Watered ncRNA metabolism
DV942798 ribosome production factor 2 1.04 Watered ncRNA metabolism
BM073337 polyribonucleotide nucleotidyltransferase 1.02 Watered ncRNA metabolism
CD651136 Cysteinyl-tRNA synthetase 2.14 Watered ncRNA metabolism
BM078961 methionine-tRNA ligase 1.26 Watered ncRNA metabolism
CD651793 valine-tRNA ligase with editing activity 1.24 Watered ncRNA metabolism
DV492155 aquaporin NIP3-1 1.22 Watered Transmembrane activity
BM340348 NEP1-interacting protein 1.19 Watered Methyltransferase activity
DV492743 transcriptional corepressor 1.17 Watered Negative regulation of transcription
CD527890 E3 ubiquitin ligase SUD1 −2.24 Drought Osmotic stress
DV489949 aldo-keto reductase −2.16 Drought Osmotic stress
BM348293 hydrophobic protein LTI6A −1.01 Drought Osmotic stress
DV491692 CMP-sialic acid transporter homolog −2.35 Drought Encapsulating structures
DV492287 phosphatidylinositol kinase −2.12 Drought Encapsulating structures
BM333861 pectin acetylesterase 8 −1.65 Drought Encapsulating structures
DV491662 26S protease −2.40 Drought Catabolism
DV492129 DNA-directed RNA polymerase II Rpb7p −2.35 Drought Catabolism
DV492287 phosphatidylinositol kinase −2.12 Drought Catabolism
DV942393 GDP-mannose 4,6 dehydratase −4.99 Drought Organophosphate metab
DV493244 triosephosphate isomerase −2.47 Drought Organophosphate metab
DV491451 phosphatidylinositol-4-phosphate 5-kinase −2.10 Drought Organophosphate metab
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Figure 2 Gene modules explaining species differences under different water availability.Gene modules
detected explaining species differences in watered (A) and drought (B, C) conditions. Sample names are
presented on the x-axis, where each label applies to two columns of the same description (e.g., Ag. W.H
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ment). Ag, A. gerardii, Sn, S. nutans, W, watered, D, drought, H, heated, A, ambient temperature. No an-
notation found, N.A.

Full-size DOI: 10.7717/peerj.4394/fig-2

to a greater understanding of gene networks contributing to different species responses.
One gene module significantly explained species differences in the watered treatment
(p< 0.001, Fig. 2A) with genes generally expressed more highly in S. nutans. Two gene
modules significantly explained species differences in the drought treatment (p= 0.01,
Fig. 2B and p= 0.02, Fig. 2C respectively). Under drought, genes generally had lower
expression in S. nutans.
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Figure 3 Differentially expressed genes in response to water availability.Differentially expressed genes
in (A) A. gerardii and (B) S. nutans only compared between watered and drought plots (12 and 13). Sig-
nificantly different genes with log2 fold change greater than one are represented by colored points where
p < 0.05. Positive values indicate greater expression in the watered plot while negative values indicate
greater expression in the drought plot. Filled circles represent genes belonging to selected Gene Ontology
groups. Open circles: red, differentially expressed, gray, not significantly different.

Full-size DOI: 10.7717/peerj.4394/fig-3

Genes regulated in A. gerardii
In A. gerardii, 61 genes were significantly regulated in response to drought (5% of 1,148
total genes), with 24 genes upregulated under watered conditions and 37 upregulated
under drought conditions. Few GO categories had strong enrichment (i.e., few genes
per category). The drought treatment showed enrichment in response to osmotic stress,
chromatin silencing, and lysosome. The watered treatment suggested greater abundance
of xylose metabolism, sucrose metabolism, and ion transport (although each group
contained only one gene) (Fig. 3A). Osmotic stress genes included an RNA-binding
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protein, ribosomal protein S3, and aconitate hydratase (Table 1). Within chromatin
silencing genes, two histone acetyltransferases were upregulated under drought. Among
all genes, 24 genes annotating to ‘‘stress’’ were upregulated in the watered treatment,
versus 29 under drought. Only two genes (both within A. gerardii) responded significantly
to temperature. One gene was upregulated in response to higher temperatures (Hsp70
protein); another was downregulated under higher temperatures (high mobility group-box
domain).

Genes regulated in S. nutans
Sorghastrum nutans regulated more genes in response to drought than A. gerardii (23% of
762 genes total). Of these, 92 showed greater expression in the watered treatment while
82 showed greater expression under drought. Genes upregulated in the watered treatment
showed GO enrichment in non-coding RNA (ncRNA) and RNA metabolism and nitrogen
response. Genes upregulated under drought showed enrichment in response to water stress,
external encapsulating structure, organophosphate metabolism, and cellular catabolism
(Fig. 3B). Within the watered treatment ncRNA metabolism genes including ERBB-3
binding ribonuleoprotein, serrate RNA effector molecule, and pseudouridine synthase
were upregulated (Table 1). Sorghastrum nutans in the watered treatment also showed
greater expression of aquaporin NIP3-1, NEP1-interacting protein, and a transcriptional
corepressor.

In contrast, S. nutans under drought showed greater expression of osmotic stress
genes E3 ubiquitin ligase SUD1, 9 aldo-keto reductase, and hydrophobic protein LTI6A
(Table 1). Among encapsulating structures, CMP-sialic acid transporter homolog,
phosphatidylinositol kinase, pectin acetylesterase 8, and two glucuronosyltransferases
(ranged from fold change of−1.47 to−1.71) were upregulated under drought. Catabolism
genes within the drought treatment included 26S protease, DNA-directed RNA polymerase
II Rpb7p, and phosphatidylinositol kinase. Lastly, the drought treatment showed
increased expression of organophosphate metabolism genes including GDP-mannose 4,6
dehydratase, triosephosphate isomerase and phosphatidylinositol-4-phosphate 5-kinase.
Among all genes, 12 (1.5%) genes annotating to ‘‘stress’’ were upregulated in the watered
treatment, versus 20 (2.6%) under drought.

DISCUSSION
Increasingly, ecological studies are using molecular techniques to study gene-level
responses to global change in non-model organisms (Travers et al., 2007; Leakey et al.,
2009; Alvarez, Schrey & Richards, 2015; Smith, Hoffman & Avolio, 2016). Genomic tools
like microarrays have revealed mechanisms behind plant environmental responses in
natural plant populations (Jackson et al., 2002; Travers et al., 2007; Ungerer, Johnson &
Herman, 2008; Leakey et al., 2009; Travers et al., 2010; Smith, Hoffman & Avolio, 2016).
Heterologous hybridization has proven useful for studying non-model organisms
when the proper precautions are taken and stringent criteria are utilized to control
for mishybridizations (Leakey et al., 2009; Travers et al., 2010; Alvarez, Schrey & Richards,
2015). Both environmental (Gong et al., 2005; Hammond et al., 2006; Sharma et al., 2006;
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Travers et al., 2010; Alvarez, Schrey & Richards, 2015) and biotic (Horvath & Llewellyn,
2007; Broz et al., 2008) stress responses have been explored. Our study used heterologous
hybridization to compare transcriptional responses of two non-model grasses under field
conditions. We used stringent criteria to control for mishybridizations, multiple steps to
normalize the array data, and sequence alignment with RNA-seq transcriptomes. One
significant caveat of the microarray technique is the inability of microarray technology to
distinguish between two scenarios: no microarray signal due to true low expression versus
no microarray signal due to probe-to-gene mismatch. In other words, this study is limited
to low versus high expression contrasts while excluding presence/absence analysis, and may
fail to detect larger, significant shifts in gene expression. Moreover, these two species have
almost certainly evolved unique genes to adapt to harsh conditions sometimes experienced
in the tallgrass prairie. These species-specific genes may be the most insightful but are
undetectable using these methods.

We expected that A. gerardii and S. nutans, two closely related and functionally similar
species, would differ in their gene responses to heat-wave and drought. Specifically,
S. nutans would regulate a greater number of genes from different groups compared
with A. gerardii. This expectation was based on past evidence for greater sensitivity of S.
nutans to more moderate water stress (Nippert et al., 2009; Hoover, Knapp & Smith, 2014a;
Smith, Hoffman & Avolio, 2016). Overall, our hypothesis was supported; S. nutans had
greater sensitivity to the imposed drought compared to A. gerardii in the percentage of
regulated transcripts. Despite similar Tleaf and 9mid measurements, A. gerardii appeared
less responsive with a smaller proportion of genes (5%) exhibiting a significant change
under drought. A similar pattern of gene regulation was observed when A. gerardii and S.
nutans were exposed to more moderate changes in water availability in the field (Smith,
Hoffman & Avolio, 2016). Thus, in line with past research, our results suggest that A.
gerardii is more resistant to and/or better able to cope with water stress than S. nutans.
According to gene modules detected using statistical clustering, S. nutans genes tended
toward downregulation on day 18 of the drought compared to A. gerardii (Fig. 2), which
could represent a surpassed stress response threshold. Sorghastrum nutans has also shown
loss of function under stress with respect to net photosynthetic rate and biomass production
(Hoover, Knapp & Smith, 2014a).

Despite strong support for the non-additive effects of water and temperature stress in
some systems (Atkinson & Urwin, 2012; Johnson et al., 2014; Suzuki et al., 2014), the two
did not show a significant interaction. However, previous work comparing these two
species also found no environmental interaction (Hoover, Knapp & Smith, 2014a). In our
study, only two genes within A. gerardii responded to the high heat treatment. Previous
ecophysiological research has shown greater relative temperature sensitivity in A. gerardii
(Nippert et al., 2009). Gene expression did not vary across sampling date, despite evidence
for plasticity in other species (Hayano-Kanashiro et al., 2009;Meyer et al., 2014). However,
it is important to acknowledge that fewer genes overlapped across sample date, and only
these genes were contrasted. Many genes may have been expressed during the first sampling
date but not during the second date and vice versa.
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Over all treatments, A. gerardii tended to have greater expression of metabolic and
regulatory genes compared to S. nutans, suggesting it maintains high levels of metabolic
function in many environmental conditions and may strategize plasticity at the regulatory
level (i.e., utilizes more transcription factors, tRNA enzymes, and ribosomal enzymes). In
other words, gene expression remains fairly constant but may be modified downstream.
Expression of transcription factors has been widely implicated in drought adaptation and
response (Yamaguchi-Shinozaki & Shinozaki, 2006; Yoshida et al., 2015; Kudo et al., 2016;
Gahlaut et al., 2016). On the other hand, greater transcription of negative regulators and
catabolism genes in S. nutans may reflect an ability to respond more rapidly to drought
stress. Over-expression of negatively regulating PHD finger proteins in Arabidopsis inhibits
pathways and leads to enhanced stress tolerance (Wei et al., 2015) and the 26S proteastome
helps modulate ABA response as well as degrade proteins not needed under non-stressed
conditions (Stone, 2014). Both species appear equipped to handle stressful conditions,
though S. nutans seems to focus on rapid response via molecular breakdown and pathway
inhibition whereas A. gerardii maintains higher levels of metabolic process and regulates
transcription via transcription factors. Due to multiple statistical tests performed, only the
most significant genes responding to drought were examined. Only two of these overlapped
in A. gerardii and S. nutans, further highlighting their different drought response strategies.

Andropogon gerardii has previously shown greater ecophysiological response to
temperature (Nippert et al., 2009), but may actually be less sensitive at the gene expression
level to mild temperature stress (Smith, Hoffman & Avolio, 2016). A consensus regarding
temperature response may remain elusive considering only two genes significantly
responded to temperature in A. gerardii. Hsp70 is well known to be upregulated under
stress to assist protein folding (Hayano-Kanashiro et al., 2009;Wang et al., 2015), while high
mobility group (HMG) genes are known to be negatively correlated with stress response
(Kim et al., 2010). The general lack of response may be due to our stringent gene filtering
criteria, but may also reflect presence of unique genes in these species. Non-targeted
methods (such as RNA-seq, Hoffman & Smith, 2017) have been successful in these species
and would likely reveal more comprehensive differences under temperature extremes.

Of osmotic stress-related genes upregulated in A. gerardii in response to drought,
Glycine-rich RNA-binding protein 2 is known to have RNA chaperone activity during
abiotic stress (Kim et al., 2007), 40S ribosomal protein may be upregulated to compensate
for mild osmotic stress (Ma et al., 2016), and aconitate hydratase has been shown to
increase under water and heat stress (Johnson et al., 2014) in a compensatory manner due
to its sensitivity to oxidative damage (Budak et al., 2013). Osmotic stress-related genes were
also upregulated in S. nutans under drought, however their function was quite different.
E3 ubiquitin ligase is understood to play a role in regulating response to ABA (Doblas et al.,
2013; Zhao et al., 2014), aldo-keto reductase 4C9 is involved in scavenging toxins produced
under stress (Simpson et al., 2009), and hydrophobic LTI6A is a transmembrane protein
which responds to low temperature stress, drought, and ABA (Wang et al., 2016). These
focal genes tied to osmotic stress response suggest that while both species are responding to
drought, their strategies differ. In this case, S. nutans not only regulates a greater percentage
of genes but also focuses on ABA response, whereas A. gerardii appears to upregulate genes
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to compensate for lost function. Among its many roles, ABA may help with stomatal
closure and drought avoidance (Jones & Mansfield, 1970).

Within S. nutans, ncRNAs (transcriptional regulators) declined under drought, which
have been shown to downregulate in response to drought (Hackenberg et al., 2015). In this
study, many of these genes mapped to transcription factors or RNA binding, which are
typically upregulated under drought (Yamaguchi-Shinozaki & Shinozaki, 2006; Yoshida et
al., 2015; Kudo et al., 2016; Gahlaut et al., 2016; but see Baldoni, Genga & Cominelli, 2015).
This could indicate that S. nutans experienced mechanistic loss of function under drought
conditions. Catabolism related genes upregulated under drought may indicate salvaging of
important functions. For example, phosphatidylinositol-4-phosphate 5-kinase is known
to modulate ABA response as well as prevent breakdown of proline, an important ROS
scavenger (Leprince et al., 2014). The 26S protease regulatory subunit lends additional
breakdown of molecules potentially involved in signaling (Stone, 2014). Similarly, RNA
polymerase subunit Rpb7p is thought to help degrade mRNAs as a counteractive measure
(Shalem et al., 2011). Of the genes not involved in cellular catabolism, some were tied to cell
wall integrity (e.g., pectin acetylesterase) and may serve as a last resort for survival under
extreme stress (Houston et al., 2016). Meanwhile, few genes suggested loss of function or
disassembly role in A. gerardii, which further emphasizes S. nutans’ greater sensitivity to
drought stress. Of note is A. gerardii’s more consistent regulation of stress transcripts: this
species shifted from 2.1% to 2.5% ‘‘stress’’ annotations following drought, while S. nutans
shifted from 1.6% to 2.6% ‘‘stress’’ annotations. This could mean that A. gerardii tolerates
stress and avoids sensitivity by constitutively expressing some stress responses. This makes
sense considering the broad array of stressors A. gerardii is likely to experience (Hulbert,
1988; Turner & Knapp, 1996; Silletti, Knapp & Blair, 2004; Swemmer, Knapp & Smith,
2006; Koerner et al., 2014). Overall, these results suggest that S. nutans’ ecophysiological
sensitivity may be mechanistically tied to downregulation of genes under stress coupled
with rapid avoidance strategies, such as the regulation of ABA. Andropogon gerardii’s
apparent lack of sensitivity may result from upregulation of stress sensitive transcripts
coupled with maintenance of cellular processes despite extreme stress.

CONCLUSIONS
Our results suggest that A. gerardii is more resistant to extremes in water stress and does
not downregulate as many processes as S. nutans. Surprisingly, response to the heat wave
was minimal. While A. gerardii contributes proportionally more aboveground biomass
(Smith & Knapp, 2003) and is an important mediator of species diversity in the tallgrass
prairie ecosystem (Collins, 2000; Smith et al., 2004), S. nutans is able to attain greater
photosynthetic rates that could be linked to carbon storage (Hoover, Knapp & Smith,
2014a). Differences in sensitivity and stress response mechanisms could ultimately alter
community structure and ecosystem function in the tallgrass prairie ecosystem.
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