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ABSTRACT
Photoperiod is an important factor in stimulating broiler performance in commercial
poultry practice. However, the mechanism by which photoperiod affects the per-
formance of broiler chickens has not been adequately explored. The current study
evaluated the effects of three different photoperiod regimes (short day (LD)= 8 h light,
control (CTR) = 12.5 h light, and long day (SD) = 16 h light) on the cecal microbiota
of broiler roosters by sequencing bacterial 16S rRNA genes. At the phylum level, the
dominant bacteria were Firmicutes (CTR: 68%, SD: 69%, LD: 67%) and Bacteroidetes
(CTR: 25%, SD: 26%, and LD: 28%). There was a greater abundance of Proteobacteria
(p < 0.01) and Cyanobacteria (p < 0.05) in chickens in the LD group than in those
in the CTR group. A significantly greater abundance of Actinobacteria was observed in
CTR chickens than in SD and LD chickens (p< 0.01). The abundance ofDeferribacteres
was significantly higher in LD chickens than in SD chickens (p< 0.01). Fusobacteria
and Proteobacteria were more abundant in SD chickens than in CTR and LD chickens.
The predicted functional properties indicate that cellular processes may be influenced
by photoperiod. Conversely, carbohydrate metabolism was enhanced in CTR chickens
as compared to that in SD and LD chickens. The current results indicate that different
photoperiod regimesmay influence the abundance of specific bacterial populations and
then contribute to differences in the functional properties of gut microbiota of broiler
roosters.

Subjects Agricultural Science, Animal Behavior, Microbiology
Keywords Photoperiod, Rooster, Cecal microbiota, 16S rRNA gene

INTRODUCTION
Photoperiod is defined as the relative amount of light per day to which an organism is
exposed (Lee, Park & Lee, 2017). This period of exposure to light can influence different
aspects of physiology in avian as well asmammalian species, such as reproduction, behavior,
and immune functions, to different magnitudes (Pittendrigh & Daan, 1976;Walton, Weil &
Nelson, 2011). Following photoperiod, animals tend to undergo a suite of adaptive responses
by altering their physiology and reproductive state for survival (Walton, Weil & Nelson,
2011). An increased photoperiod length has been reported to result in lower incidence
of skeletal diseases and increase in weight gain with slower growth in broiler chickens
(Classen, Riddell & Robinson, 1991). Decreasing or increasing photoperiod can also be used
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to reduce the early growth rate of broilers but allow them to compensate as they approach
market age (Downs et al., 2006). Photoperiod was also found to affect the physiology of
chickens; birds exposed to short days had a higher expression of gonadotropin-inhibitory
hormone expression compared to birds exposed to long days (Dixit, Singh & Byrsat, 2017).
Furthermore, it was reported that long photoperiods promote the development of the
gonads in poultry (Kang & Kuenzel, 2015), although the exact mechanism underlying this
effect is still unclear. Given the many roles that photoperiod plays in various aspects of
the physiology of avian and mammalian species, it is of scientific interest to evaluate its
role in other inadequately explored aspects, such as the bacterial structure and functional
properties of the gut microbiota.

Gut bacteria, which form part of the gut microbiota, have been shown to play important
roles in digestion, metabolism, and health in avian species (Waite & Taylor, 2014; Waite
& Taylor, 2015). Gut microbiota have been widely reported to be affected by factors such
as diet and age (Waite & Taylor, 2014; Zhao et al., 2017; Zhu et al., 2017). However, other
factors that may affect the structure and functional properties of chicken gut microbiota,
such as photoperiod, have yet to be evaluated. Photoperiod may play a significant role
in determining most physiological functions by altering the gut microbiota. At present,
there is a gap in the knowledge on the role of photoperiod in gut microbiota structure
and function. The present study evaluated the effect of photoperiod on the abundance,
diversity, and predicted functional properties of cecal microbiota in broiler roosters by
sequencing the 16S rRNA gene.

MATERIALS AND METHODS
Ethical approval for the present study was obtained from the Ethical Committee of the Jilin
Agricultural University, China.

Photoperiod treatments
One hundred and twenty AA+ Broilers (20 weeks of age, average weight: 2,806 g) were
randomly divided into three groups (n= 40) and subjected to different photoperiodic
regimes for five weeks. Group I was designated the Control group (CTR; 12.5 h Light:11.5 h
Dark, i.e., lights on at 08:00 a.m. and lights off at 08:30 p.m.), Group II the Long-day
photoperiod group (SD; 16 h Light:8 h Dark, i.e., lights on at 04:00 p.m. and lights off at
08:00 a.m.), and Group III the Short-day photoperiod group (LD; 8 h Light:16 h Dark,
i.e., lights on at 08:00 a.m. and lights off at 04:00 p.m.). A 60 W incandescent lamp with
an illuminating intensity of 30 lux was used as the source for artificial illumination and
was positioned at the height of the head of standing birds. All the broiler roosters were
maintained in cages of equal size. Each rooster was fed 115 g of commercial broiler diet
per day for 20 weeks via restricted feeding before the experiment, and then the amount of
feed was increased by 5 g every week. In order to ensure that each rooster was fed the same
amount of diet, each rooster was kept in an individual cage. Water was provided ad libitum
during the whole experimental period.
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Sample collection
All the roosters were slaughtered at about 25 weeks of age. Luminal cecum contents
were collected from seven randomly selected broilers from each group. All samples were
harvested within 30 min after slaughter and immediately frozen in liquid nitrogen. The
frozen luminal samples were stored in a freezer at −80 ◦C; until further use.

DNA extraction and 16S rRNA amplification
Samples were allowed to thaw at room temperature before DNA extraction. Total genomic
DNA was extracted using the Fast DNA SPIN extraction kits (MP Biomedicals, Santa Ana,
CA, USA), following the manufacturer’s instructions. DNA concentration was evaluated
by measuring optical density using Nano-Drop 2000 (Thermo Electron Corporation,
Waltham, MA, USA) at wavelengths of 260 and 280 nm. The integrity of the DNA extracts
was assessed by electrophoresis on 1.0% agarose gels. The V4–V5 regions of the bacterial
16S rRNA gene were amplified from the total microbial genomic DNA via PCR using
the forward primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and the reverse primer
907R (5′-CCGTCAATTCMTTTRAGTTT-3′) . The amplification was carried out in 25 µL
reactions containing 5 µL of Q5 reaction buffer (5×), 5 µL of Q5 High-Fidelity GC
buffer (5×), 0.25 µL of Q5 High-Fidelity DNA Polymerase (5 U/ µL), 2 µL of dNTPs
(2.5 mM), 1 µL each of the forward and reverse primer (10 uM), 2 µL of DNA template,
and 8.75 µL of ddH2O. PCR conditions were as follows: initial denaturation at 98 ◦C for
2 min; followed by 25 cycles of denaturation at 98 ◦C for 15 s, annealing at 55 ◦C for 30 s,
and extension at 72 ◦C for 30 s; and then a final extension at 72 ◦C for 5 min. The PCR
products were separated on 2% agarose gels and subsequently extracted from the gels.
Samples with a bright band with a size between 200–450 bp were chosen for downstream
experiments. PCR products were purified using a GeneJET Gel Extraction Kit (Thermo
Scientific, Waltham, MA, USA). Products were quantified using a PicoGreen dsDNA Assay
Kit (Invitrogen, Carlsbad, CA, USA). After quantification, the amplicons were pooled in
equal amounts, and pair-end 2 × 300-bp sequencing was performed using the Illlumina
MiSeq platform and aMiSeq Reagent Kit v3 at Shanghai Biotechnology Co., Ltd (Shanghai,
China).

Bioinformatics and statistical analysis
The quality control and analysis of the sequences were performed using the software
Quantitative Insights into Microbial Ecology (QIIME, v1.8.0) (Caporaso et al., 2010). The
paired-end reads from the DNA fragments were merged using FLASH (Magoc & Salzberg,
2011). The UCLUST (Edgar, 2010) clustering method was used to cluster operational
taxonomic units (OTUs) with ≥97% sequence identity. OTU classification was conducted
by running a BLAST search against the Greengenes Database (DeSantis et al., 2006) using
the representative sequence set as a query (Altschul et al., 1997). To minimize the difference
in sequencing depth across samples, an averaged, rounded, and rarefied OTU table was
generated by averaging 100 evenly re-sampledOTU subsets under the 90% of theminimum
sequencing depth. These were then used for further analysis.

Bioinformatics and statistical analyses were performed using the QIIME and R
packages (v3.2.0). The alpha-diversity indices (Chao1, ACE metric, Shannon diversity

Wang et al. (2018), PeerJ, DOI 10.7717/peerj.4390 3/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.4390


Table 1 The average alpha-diversity indexes (chao1, Simpson and Shannon index) of the data distri-
bution.

Group Chao1 Simpson Shannon

Mean STD Mean STD Mean STD

CTR 1,799.593* 256.3406 0.972857 0.00488 7.411429 0.281569
SD 1,461.779* 310.5823 0.977143 0.00488 7.525714 0.227146
LD 1,729.097 224.2392 0.975714 0.007868 7.607143 0.223958

Notes.
*Numbers with asterisks are significantly different (p value < 0.05).

index, and Simpson index) were calculated using the QIIME software to establish the
abundance and diversity of the sequences. Beta-diversity was determined using unweighted
UniFrac distance metrics to evaluate the structure and distribution of the microbial
genetic communities among the samples (Lozupone & Knight, 2005; Lozupone et al., 2007).
Differences in theUnifrac distances for pairwise comparisons among groupswere calculated
using Student’s t -test and the Monte Carlo permutation test with 1,000 permutations.
Significance was assigned when p< 0.05 and p< 0.01. The differences and similarities
between the compared groups were evaluated using ANOSIM (analysis of similarities) in
the R package ‘‘vegan’’ (Oksanen et al., 2017). A Venn diagram was generated using the
R package ‘‘VennDiagram’’ to visualize the shared and unique OTUs among samples or
groups. Functional genes were predicted using PICRUSt (phylogenetic investigation of
communities by reconstruction of unobserved states) using high-quality sequences as the
input (Langille et al., 2013).

RESULTS
Sequencing overview
A total of 21 samples were obtained from three groups (n= 7 per group) of broiler
roosters and subsequently sequenced to generate V4–V5 16S rRNA gene profiles. A total of
398,445, 328,235, and 375,402 sequences were obtained for the CTR, SD, and LD groups,
respectively. There was an average of 56,920, 46,890, and 53,628 reads per sample in the
CTR, SD, and LD groups, respectively.

Validation and structure determination of the sequences
The variation in data distribution between the groups was analyzed using ANOSIM, which
indicated a significant difference (p< 0.01) between the three groups under unweighted
Unifrac. The alpha-diversity indices (chao1, Simpson and Shannon index) are reported in
Table 1, there was a significant difference between CTR and SD groups when comparing
a chao1 indices mean. The results of the beta diversity analysis and the PLS-discriminant
analysis are shown in Figs. 1 and 2, respectively. Samples from LD and SD indicated
to be clustered similar where the CTR samples were different in NMDS analysis. The
PLS-discriminant analysis indicated that the two groups are different with the exception of
one sample from LD which was clustered with SD.
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Figure 1 The beta diversity results of NMDS indicating the data distribution between the groups. LD
refers to the 8 h light group samples, CTR refers to the 12.5 h light and SD refers to the 16 h light group
samples respectively.

Full-size DOI: 10.7717/peerj.4390/fig-1

Abundance and significant difference between the three groups at the
phylum level
The most abundant bacteria at the phylum level were Firmicutes, with abundances of 68%,
69%, and 67% in the CTR, SD, and LD groups, respectively, followed by Bacteroidetes with
abundances at 25%, 26%, and 28% in theCTR, SD, and LD groups, respectively (Fig. 3). The
other bacterial phyla had abundances lower than 3% in all groups at varyingmagnitudes. As
shown in Fig. 2,Proteobacteria (p< 0.01) andCyanobacteria (p< 0.05)weremore abundant
in LD chickens than in CTR chickens, while Actinobacteria was more abundant in chicken
from the CTR group than in those from the LD group (p< 0.01). Between the CTR and
SD groups, there was a significant difference in the abundance of Actinobacteria, which was
more abundant in the CTR group than in the SD group (p< 0.01).Deferribactereswasmore
abundant in LD roosters than in SD roosters (p< 0.05). Fusobacteria and Proteobacteria
were significantly more abundant (p< 0.01) in chickens from the SD group than in those
from the CTR and LD groups, as indicated in Fig. 4.
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Figure 2 The PLS-discriminant analysis. LD refers to the 8 h light group samples, CTR refers to the
12.5 h light and SD refers to the 16 h light group samples respectively.

Full-size DOI: 10.7717/peerj.4390/fig-2

Figure 3 Taxonomic profiles of the microbial communities at the phylum level. LD refers to the 8 h
light group, CTR refers to the 12.5 h light and SD refers to the 16 h light group. Samples are presented
along with the horizontal axis and relative abundance at the vertical axis.

Full-size DOI: 10.7717/peerj.4390/fig-3
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Figure 4 Taxonomic profiles of the notable significant different bacterium at the phylum level.
(A) Actinobacteria, (B) Cyanobacteria, (C) Deferribacteres, (D) Fusobacteria, (E) Proteobacteria.
Samples/groups are as previously explained. Different uppercase and lowercase letters indicate significance
of difference at p< 0.01 and p< 0.05, respectively. Same letters indicate no significant difference.

Full-size DOI: 10.7717/peerj.4390/fig-4

Abundance and significance difference between the three groups at
the genus level
The most abundant bacteria at the genus level were Bacteroides, with 15%, 13%, and
15% abundances in the CTR, SD, and LD groups, respectively. This was followed by
unclassified Ruminococcaceae at 13%, 14%, and 14% abundances in the CTR, SD, and
LD groups, respectively (Fig. 5). Other abundant genera included Ruminococcus (CTR:
14%, SD: 9%, LD: 10%), unclassified Clostridiales (CTR: 9%, SD: 11%, LD: 12%), and
Faecalibacterium (CTR: 8%, SD: 10%, LD: 8%). Ten genera were significantly (p< 0.01)
different in abundance between the CTR and SD groups, 7 between the CTR and LD
groups, and 5 between the SD and LD groups. Also importantly the genus Aeriscardovia
was significantly more abundant ( p< 0.01) in the LD than in the SD and CTR groups
(Fig. 6). Interestingly, Megamonas, Ochrobactrum, and Selenomonas were significantly
more abundant (p< 0.01) in the CTR group than in the other two groups. Aeriscardovia,
Delftia, and Rikenella were significantly more abundant (p< 0.01) in the LD group than in
the CTR and SD groups. Lactococcus and Fusobacterium were significantly more abundant
(p< 0.01) in the SD group than in the other two groups (Fig. 6). A heat map indicating
significantly expressed genera is shown in Fig. 7.
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Figure 5 Taxonomic profiles of the microbial communities at the genus level. Samples/groups are as
previously explained.

Full-size DOI: 10.7717/peerj.4390/fig-5

Figure 6 Taxonomic profiles of the notable significant different bacterium at the genus level.
(A) Aeriscardovia, (B) Anaerofustis, (C) Bifidobacterium, (D) Bilophila, (E) Clostridium, (F) Delftia, (G)
Fusobacterium, (H) Holdemania, (I) Lactobacillus, (J) Lactococcus, (K) Megamonas, (L) Mucispirillum,
(M) Ochrobactrum, (N) Peptococcus, (O) Prevotella, (P) Rikenella, (Q) Selenomonas, (R) Slackia.
Samples/groups are as previously explained. Different uppercase and lowercase letters indicate significance
of difference at p< 0.01 and p< 0.05, respectively. Same letters indicate no significant difference.

Full-size DOI: 10.7717/peerj.4390/fig-6
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Figure 7 Heatmap showing the genera with significant differences of relative abundances amongst the
three groups.Heatmap is color-coded based on the scale of−4 to 4.

Full-size DOI: 10.7717/peerj.4390/fig-7

Differences in predicted functional properties between the
three groups
The differences in the effect of photoperiod on the functional properties across the three
groups were further evaluated. Moderate differences were observed in cellular processes,
particularly, in cellmotility (Fig. 8). Cellmotility was relatively low in samples from theCTR
group compared to the motility in samples from the SD and LD groups. However, there
were no notable differences in other functions such as transport and catabolism, cell growth
and death, and cell communication across the groups. Analysis of the metabolism of the
samples showed that carbohydrate metabolism was enhanced in CTR samples as compared
to those in the SD and LD samples. Other functions did not exhibit any differences across
the three tested groups (Fig. 9). Similar results were observed in other functional processes,
such as genetic information processes and environmental information processes (results
not shown).
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Figure 8 Representing the functional differences at the cellular processes. Samples/groups are as previ-
ously explained.

Full-size DOI: 10.7717/peerj.4390/fig-8

DISCUSSION
Photoperiodismprovides animals with the ability to changemany physiological aspects and,
consequently, adapting their body to the environment depending on the duration of light
exposure (Bailey et al., 2010). The current study evaluated the structure and functional
properties of the cecal microbiota of roosters that were subjected to three different
photoperiodic regimes. Our data indicates that the length of time of light exposure may
affect the abundance of specific bacteria in the cecum, leading to possible changes in
functional properties. These changes may range across a variety of aspects the underlying
mechanism of which has not been sufficiently explored.

To the best of our knowledge, there are few reports on the effects of photoperiod on gut
microbiota in chickens and even in other species. Recently, a study demonstrated the role of
photoperiod in changing gut microbiota. It indicated that different photoperiodic regimes
(8 h dark/16 h light, 12 h dark/12 h light, and 16 h dark/8 h light cycles) could shape the gut
microbiota of mice and thereby affect host radio sensitivity (Cui et al., 2016). The results of
the present study are in general agreement with the findings of previous studies. Previously,
it was reported that Firmicutes and Bacteroidetes dominate the broiler gut microbiota (Cui
et al., 2017; Oh et al., 2017; Zhou et al., 2017), although effects of photoperiod on their
abundances were not demonstrated. It was noted that Megamonas was significantly more
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Figure 9 Representing the functional differences at the metabolism level between the three groups.
Samples/groups are as previously explained.

Full-size DOI: 10.7717/peerj.4390/fig-9

abundant in CTR group as compared to LD and SD groups. It is of interest to note that
Megamonashas been previously reported to play a significant role in fermenting glucose into
acetate and propionate, which is pivotal for health benefits in a few species such as humans
and ducks (Chevrot et al., 2008; Sakon et al., 2008; Zhang et al., 2013). These findings may
indicate a new platform for manipulating acetate and propionate in broiler roosters by
varying photoperiod regimes. Short term (LD) exposure to light has also been indicated
to significantly increase the abundance of the novel genus Aeriscardovia (Simpson et al.,
2004) and of the gram-negative bacteria Delftia, which has been reported to be associated
with infectious diseases (Bilgin et al., 2015; Calzada et al., 2015). Long term (SD) exposure
to light significantly increases the abundance of gram-positive Lactococcus, which has been
reported to have potential for use in preventing infectious diseases (Hanniffy et al., 2007).
The gram-negative genus Fusobacterium, which has been reported to be associated with
infections in humans (Kostic et al., 2013), was also significantly more abundant under an
SD regime. Our results seem to indicate that short term (LD) photoperiod (8 h light) could
increase the abundance of bacterial genera associated with infectious diseases in the rooster
gut, while long term photoperiod (16 h light) could increase the abundance of bacterial
genera associated with preventing infectious diseases. However, this deduction needs to
be verified by more extensive scientific investigation. These results are of importance to
prompt more studies on the role that photoperiod may play with regards to physiology in
animals. It is of note that different results may arise due to differences in time of exposure,
light intensity, animal and growth stages, and other factors employed in the study.
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The effect on several functional properties of the roosters may be attributed to increases
in the abundance of specific bacteria caused by light exposure duration. Analysis of
predicted functional properties in the present study indicated that metabolism may be
influenced by photoperiod. Carbohydrate metabolism was enhanced in the CTR group,
as compared to the SD and LD groups. Previous studies have demonstrated that gut
microbiota plays an important role in the life activities of chickens (Waite & Taylor, 2014).
The present study is limited by the fact that the change in gut microbiota was not correlated
with performance (e.g., testis development or body weight). Further studies are suggested
to investigate the effects of photoperiod on gut microbiota and their relationship with
growth or reproduction performance.

CONCLUSIONS
Our results indicate that photoperiod may affect the abundance of specific bacteria in the
gut and thereby contribute to differences in the functional properties of the gut microbiota
in broiler roosters.
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