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ABSTRACT
Coral reefs are one of the world’s most threatened ecosystems, with global and local

stressors contributing to their decline. Excessive sea-surface temperatures (SSTs) can

cause coral bleaching, resulting in coral death and decreases in coral cover. A SST

threshold of 1 �C over the climatological maximum is widely used to predict coral

bleaching. In this study, we refined thermal indices predicting coral bleaching at

high-spatial resolution (1 km) by statistically optimizing thermal thresholds, as well

as considering other environmental influences on bleaching such as ultraviolet (UV)

radiation, water turbidity, and cooling effects. We used a coral bleaching dataset

derived from the web-based monitoring system Sango Map Project, at scales

appropriate for the local and regional conservation of Japanese coral reefs. We

recorded coral bleaching events in the years 2004–2016 in Japan. We revealed the

influence of multiple factors on the ability to predict coral bleaching, including

selection of thermal indices, statistical optimization of thermal thresholds,

quantification of multiple environmental influences, and use of multiple modeling

methods (generalized linear models and random forests). After optimization,

differences in predictive ability among thermal indices were negligible. Thermal

index, UV radiation, water turbidity, and cooling effects were important predictors

of the occurrence of coral bleaching. Predictions based on the best model revealed

that coral reefs in Japan have experienced recent and widespread bleaching. A

practical method to reduce bleaching frequency by screening UV radiation was also

demonstrated in this paper.
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INTRODUCTION
Biological communities can shift toward alternative stable states in response to changing

climate (Parmesan & Yohe, 2003). Coral reefs are one of the most susceptible ecosystems to

global warming and local environmental stressors (Hoegh-Guldberg, 1999; West & Salm,

2003). Rising sea-surface temperatures (SST) can cause bleaching in reef-building corals,

especially during summer (Hoegh-Guldberg, 1999; Brown et al., 2002;West & Salm, 2003).

How to cite this article Kumagai, Yamano and Sango-Map-Project (2018), High-resolution modeling of thermal thresholds and

environmental influences on coral bleaching for local and regional reef management. PeerJ 6:e4382; DOI 10.7717/peerj.4382

Submitted 6 November 2017
Accepted 29 January 2018
Published 16 February 2018

Corresponding author
Naoki H. Kumagai,

nh.kuma@gmail.com

Academic editor
Ladislav Mucina

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj.4382

Copyright
2018 Kumagai et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.4382
mailto:nh.�kuma@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.4382
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Excessive thermal stress leads to expulsion, digestion, or reduced pigmentation of

symbiotic dinoflagellate algae in coral cells, resulting in the exposure of white coral

skeletons (i.e., bleaching; Hoegh-Guldberg, 1999; Brown et al., 2002). Prolonged warming

trends in sea temperature have been predicted to increase the frequency and severity of

bleaching in the future, leading to mass mortality of corals (Hoegh-Guldberg, 1999;Donner

et al., 2005; Donner, 2009; McClanahan, Maina & Ateweberhan, 2015). Reef management

relies on not only global measures to reduce climate warming but also local measures to

control environmental influences on coral resilience (West & Salm, 2003). Spatial and

temporal predictions of coral bleaching under varying environmental conditions could

therefore provide valuable information to support local management of coral reefs.

The degree heating week (DHW) index of cumulative thermal stress, developed by the

National Oceanic and Atmospheric Administration Coral Reef Watch (NOAA CRW), has

been widely used to predict coral bleaching. DHW is based on SST derived from satellite

images, and is computed as the sum over a period of 12 weeks of thermal stress exceeding

1 �C above historical summer monthly SST (Liu, Strong & Skirving, 2003). DHW over

4 �C weeks indicate severe coral bleaching and constitute a bleaching alert threshold

(Liu, Strong & Skirving, 2003).

Despite its increasing use globally, the predictive performance of DHWmay not be

sufficient for local reef management, as DHWon average detects only 40% of global coral

bleaching events (Donner, 2011). This low predictive performance may be due to the use

of a fixed thermal threshold of 1 �C above baseline SST. Previous studies have suggested

that thermal stress of 1 �C or below can induce coral bleaching (Brown, 1997;McWilliams

et al., 2005; Kleypas, Danabasoglu & Lough, 2008). In addition, historical temperature

variability can affect bleaching and coral resilience (Brown et al., 2002;West & Salm, 2003).

As a consequence, some studies have used modified indices, such as the sum of thermal

stress over 0 �C above baseline SST (Yee, Santavy & Barron, 2008; Kayanne, 2017). Donner

(2011) proposed two-modified DHW indices: an index using historical SST variability as

the bleaching alert threshold, and an index using the mean of the warmest monthly SSTof

each year as the baseline SST.

To evaluate the effects of global and local stressors on corals, a high-performance

predictive model operating at high-spatial resolution is required. Global stressors such as

thermal stress can vary at a local scale (Strong et al., 2002; Liu et al., 2014). Furthermore,

there are potentially interacting environmental stressors such as ultraviolet (UV)

radiation (Hoegh-Guldberg, 1999; West & Salm, 2003; Maina et al., 2008; Yee, Santavy &

Barron, 2008) and variables such as water turbidity (West & Salm, 2003;Oxenford & Vallés,

2016), topography of the sea floor (West & Salm, 2003; Oliver, Berkelmans & Eakin, 2009),

and exposure to winds (West & Salm, 2003) and currents (Nakamura & van Woesik, 2001;

West & Salm, 2003) that can affect coral bleaching. For example, increasing the speed of

surface currents and winds can reduce bleaching risk by increasing mixing in surface

seawater (Nakamura & van Woesik, 2001; Maina et al., 2008).

Modeling coral bleaching at a local scale also requires high-resolution observational

records, as omission of bleaching events can lead to poor predictive power in models

(Oliver, Berkelmans & Eakin, 2009). ReefBase (Tupper et al., 2011) and the Bleaching
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Database V1.0 (Donner, Rickbeil & Heron, 2017) provide high record coverage in some

areas, including in the Great Barrier Reef and the Caribbean (van Hooidonk & Huber,

2009). However, records are still limited for other areas, such as the Pacific islands

(Donner, Rickbeil & Heron, 2017). One possible reason for this data gap is language barrier.

A considerable amount of data in ReefBase (Tupper et al., 2011) have been provided by

nonprofessional (citizen) specialists who are not native English speakers. Few Japanese

records (N � 64) are found in the global databases, despite the large amounts of research

conducted on coral reefs in Japan. To collect and collate observational records of corals

throughout Japan, diverse Japanese stakeholders, including professional scientists,

government officials, and citizens, constructed a web-based monitoring system for

Japanese coral reefs in 2008, the Sango Map Project (Namizaki et al., 2013). Collecting

observational records in a web-based database proved to be effective in Japan, as

internet service is available to the vast majority of the population. In addition, the use of

Japanese language allowed a larger number of stakeholders to contribute, including

stakeholders from populated islands where diving services are available. This project

contributed key data to the International Year of the Reef Year in Review report

(Staub & Chhay, 2009).

In this study, we aimed to improve predictive power in models of coral bleaching at

high-spatial resolution, in order to inform local and regional reef management. We used

observational records of coral bleaching derived from the Sango Map Project, and we

compared the predictive performance of multiple thermal indices and their modifications

in models with multiple explanatory variables. We developed a novel derivation of DHW

(hereafter “filtering threshold”) to compute thermal stress below 1 �C in excess of the

baseline SST, using historical SST variability as a threshold. We optimized the filtering

threshold by statistical estimation of each type of DHW and degree heating month

(DHM) index. To maximize predictive performance, we then optimized the combination

of multiple explanatory variables while optimizing the filtering threshold. Based on the

model with maximum predictive performance, we produced spatial predictions of coral

bleaching in the study area, as well as predictions under reduced local environmental

stresses. Our results provide a reference for local reef management in Japan, although our

methods could be applied for local reef management in other areas.

MATERIALS AND METHODS
Observational records of coral bleaching
We used observations from the Japanese coasts submitted to the Sango Map Project

(http://www.sangomap.jp/) up to March 2017. Observations were composed of the

following information: (1) presence or absence of corals; (2) longitude and latitude of the

location, searchable through the Google Maps API (https://developers.google.com/maps/);

(3) name of the location; (4) date, month, and year of the observation; (5) method of

survey (scuba diving, snorkeling, glass boat, walking, or other); (6) water depth in

meters; (7) observer’s professional background (professional scientist, nonprofit or

nongovernmental organization, tourism, or other); (8) level of severity of coral bleaching

(high, medium, low, nonbleaching, or not available) derived from the bleaching dataset in
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ReefBase. We confirmed or rejected questionable records, such as observations made on

land or in the open ocean and observations of doubtful coral species.

After quality control and exclusion of records lacking information on bleaching,

we obtained 668 independent records between July 2004 and October 2016. Of these

observations, 52 were submitted by professional scientists, 152 by nonprofit or

nongovernmental organizations, and 134 by tourists. Fifty-nine observations were

conducted as part of CoralWatch (http://www.coralwatch.org/) and 63 as part of

ReefCheck Japan (http://www.reefcheck.jp/). The records provided good spatial coverage

of coral reefs in Japan (Fig. 1). Most of the records were obtained in the first three

years following the launch of the Sango Map Project, including 449 records from 2008

to 2010 alone. In addition, 82 and 111 records were reported in 2013 and 2016,

respectively, when mass bleaching events were observed throughout Japan (Kayanne,

2017; Kayanne, Suzuki & Liu, 2017).
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Figure 1 Study area and number of observations in southern Japan. (A, B) Whole study area, with the main study area enclosed by a dashed

square. (C, D) Main study area: Ryukyu Islands. (A, C) Observations of coral bleaching. (B, D) Observations of nonbleaching. Japanese map is

publicly available from the Geospatial Information Authority of Japan (2015) (http://www.gsi.go.jp/ENGLISH/index.html).

Full-size DOI: 10.7717/peerj.4382/fig-1
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Records of bleaching not induced by thermal stress were regarded as nonbleaching

observations for the purpose of this study. We therefore reclassified 107 bleaching

observations as nonbleaching observations (Step 1 in Table 1). Following screening, the

prevalence of records was more biased than prior to screening, with 228 bleaching and

440 nonbleaching observations collated (Fig. 1). However, the risk of biased predictions

was still deemed low (Step 2 in Table 1). Annual and spatial patterns of bleaching

occurrences were consistent with those reported previously in Japan (Kayanne, 2017;

Kayanne, Suzuki & Liu, 2017). We assessed spatial autocorrelation in the residuals of the

prediction model of the NOAA CRW DHW (Step 2 in Table 1), using the spatial

autocorrelation coefficient (Moran’s I). We confirmed that there was no significant

autocorrelation in the residuals, indicating no significant spatial bias in the data

(Dormann et al., 2007).

Thermal indices
To calculate thermal indices, we used daily data at a spatial resolution of 1 km (0.01�) from
the Multi-scale Ultra-high Resolution Sea Surface Temperature (MUR SST) Analysis

version 4.1 (JPL MUR MEaSUREs Project, 2015) (http://dx.doi.org/10.5067/GHGMR-4FJ04).

The MUR SST product is a blend of SST from six satellites and thus provides higher

accuracy than single-satellite products. MUR SST data are only available from 2002 to

May 2017, an insufficient period of time to calculate maximum monthly mean (MMM)

climatology (Table 2). In addition to data from the MUR SST, we also used data for the

years 1985–2002 from the Optimum Interpolation SST (OI SST) version 2 (Reynolds et al.,

2007) (http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html). To

correct the SST bias between MUR SST and OI SST, we added the bias in the 2002–2017

monthly climatology to the OI SST data, after down-scaling to 0.01� using inverse

distance weighting interpolation (Tabor & Williams, 2010; Yara et al., 2011).

Using the monthly mean SST from 1985 to 2015, we obtained two types of MMM

climatologies. The first MMM climatology follows the NOAA CRW version 3 protocol

(Liu et al., 2014, 2017). The temporal midpoint was recentered to that of the heritage

50 km MMM (1985–1990, 1993) using the approach of Heron et al. (2014) as follows:

SSTrecenteredi ¼ SSTi � slopei � T1985�2015 � T1985�1993ð Þ;
where SSTi is the SST climatology as obtained above and SSTrecenteredi is the recentered

SST climatology at cell i. The linear trend of monthly mean SST between the center times

of the two-time durations (T1985–2015, T1985–1993) is represented by slopei at cell i.

The down-scaled and recentered MMM correlated significantly with the CRW MMM

version 3 (Figs. S1 and S2).

The second climatology, known as MMMmax climatology (Donner, 2009, 2011), uses

the mean of the warmest month of each year instead of the mean of the warmest month in

the climatological years in the MMM climatology (Table 2). The warmest month is not

always the same among years and, therefore, MMMmax is larger than MMM (Table 2;

Figs. S3A–S3C) and represents the seasonal peak in SST more accurately than MMM
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Table 1 Flowchart summarizing the three steps in our analysis.

Procedure Approach Reference

Step 1 Control of observation errors

Excluding bleaching events not induced by

thermal stress

Observation records of small bleaching events (e.g.,

those within microatolls, or caused by disease or

predation) and observations made after the small

bleaching event were regarded as nonbleaching if the

1 km resolution DHW value at observation site did

not exceed zero

This study (2018)

Step 2 Assumptions for observed data

Checking equality in observations of occurrence

and absence of bleaching, where higher

prevalence (usually biased to occurrences)

results in larger predicted probabilities

(i.e., biased predictions)

Using an evaluation index that is less dependent on

prevalence (TSS). The evaluation threshold was also

optimized (see Step 4)

Allouche, Tsoar &

Kadmon (2006) and

Liu et al. (2005)

Avoiding spatial autocorrelation in the data,

which can increase false-positive predictions

Evaluating the spatial autocorrelation coefficient

(Moran’s I) of residuals from a prediction model.

If residuals are spatially biased, spatially clustered

data should be filtered

Dormann et al. (2007)

and Boria et al. (2014)

Step 3 Assumptions for environmental variables

Screening correlated environmental variables If correlations between variables are high (jrj > 0.7),

correlated variables should be excluded to reduce

multicollinearity, which can affect both GLM and RF

Dormann et al. (2013)

Step 4 Evaluation and model assessment Multiple performance metrics were used to avoid

Type I and Type II errors. Models using standard

and optimized thresholds were assessed. A statistical

model (GLM) and a machine learning model (RF)

were used

Zuur et al. (2009)

Optimizing combinations of explanatory

variables

Statistical selection of a subset of explanatory variables

from all variables (thermal index and six other

variables) to maximize TSS. The two most influential

variables (DCW and UV-B) were always included

and, therefore, 15 possible combinations of the other

variables were evaluated

Zuur et al. (2009)

Optimizing the evaluation threshold Optimizing the threshold to discriminate occurrence

and absence from the predicted probability of

bleaching. Although statistical models predicting

occurrence or absence typically output results as

probabilities, using a 0.5 (i.e., midpoint) threshold

can yield biased results under unequal class

prevalence. To avoid this problem, TPR–TNR sum

maximization was used to optimize the threshold

(Table 2)

Manel, Williams &

Ormerod (2001) and

Liu et al. (2005)

Optimizing the filtering threshold To optimize DHW and DHM, the filtering threshold

was adjusted by 0.01 �C of precision to maximize

predictive power (i.e., TSS) for each combination of

explanatory variables

This study (2018)

Evaluation using 10-fold cross-validation A randomly selected 30% subset of the data were used

as testing data, and the remaining data were used as

training data. Prediction models were built with the

training data and evaluated against the testing data.

The test was repeated 10 times for each filtering

threshold and combination of explanatory variables

Hijmans et al. (2017)
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climatology. This method is particularly effective in tropical zones with reduced

seasonality (Donner, 2011).

We calculated eight types of thermal and cooling indices for each grid cell and

observation day, including mean weekly and monthly SST, DHM, DHW (MMM + a �C),
DHW (MMM + a �C) using SST variation as the bleaching alert threshold, DHW

(MMMmax + a �C), DHW (MMM + bsm
�C), and degree cooling weeks (DCW) (see

Table 2 for a detailed derivation of the indices). Historical SST variability (sm) (Table 2)

was calculated with the monthly mean SST from 1985 to 2015, and ranged from 0.36 to

0.71 with a median of 0.57 (Fig. S2D). Although DCW is calculated with a similar

algorithm to that used for DHW, DCW was not significantly correlated with DHW. We

therefore included DCW as a covariate in our models. The filtering thresholds (a and b)
were fixed to 1 in the standard thermal indices and optimized in our indices.

Additional environmental variables
Monthly UV-B and PAR data were obtained from the Japan Aerospace eXploration

Agency Satellite Monitoring for Environmental Studies (JASMES; http://kuroshio.eorc.

jaxa.jp/JASMES/; accessed 25 June 2017) and derived from the average of data extracted

from the Aqua and Terra sensors of moderate resolution imaging spectroradiometer

(MODIS; http://modis.gsfc.nasa.gov/data/dataprod/). Although both UV-B and PAR

may affect coral bleaching (Hoegh-Guldberg, 1999), the variables were significantly

correlated (r = 0.79) (Yee, Santavy & Barron, 2008). We excluded PAR from our analysis

(Step 3 in Table 1) as parameters may be misestimated in statistical modelings and

machine learnings under multicollinearity (Dormann et al., 2013).

To quantify the speed of surface currents, we extracted data from the HYCOM+

NCODA Global 1/12� Analysis GLBu0.08 from 1997 to 2017 (https://hycom.org/

dataserver/gofs-3pt0/analysis/; accessed 22 June 2017). We obtained climatological

median from July to September, the months during which most of the recorded bleaching

events occurred. To quantify wind speed, typhoon tracking data were obtained from the

Regional Specialized Meteorological Center Tokyo (http://www.jma.go.jp/jma/jma-eng/

jma-center/rsmc-hp-pub-eg/trackarchives.html; accessed 22 June 2017). We calculated

the wind speed index for each grid cell as the length of time without typhoons, with

Table 1 (continued).

Procedure Approach Reference

Step 5 Coral bleaching prediction

Prediction under observed environmental

conditions

Using the best performing model built in each cross-

validation, the probability of coral bleaching was

predicted for the study area

Hijmans et al. (2017)

Prediction under reduced UV radiation due to

screening effect

Coral bleaching frequency may be reduced by a 40%

reduction in UV radiation and a 40% increase in

water turbidity due to screening

Cacciapaglia & van

Woesik (2016)

Notes:
Steps 1–3: assessment of the validity of assumptions for explanatory variables and data, respectively. Step 4: evaluation of predictive models. Step 5: predictions of coral
bleaching.
DCW, degree cooling week; DHM, degree heating month; DHW, degree heating week; RF, random forest; TNR, true negative rate; TPR, true positive rate; TSS, true skill
statistic; UV, ultraviolet.
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Table 2 Summary of indices and methods used in this study.

Terminology Definition Interpretation Reference

Monthly sea-surface

temperature (SST)

Bleaching alert threshold: >30 �C Simple indices for coral

bleaching

Guinotte, Buddemeier &

Kleypas (2003) and

Yara et al. (2011)

Weekly SST Bleaching alert threshold: 31.5 �C Simple indices for coral

bleaching

Kleypas, McManus &

Meñez (1999)

Maximum of the monthly

mean SST climatology

(MMM)

The warmest of the 12 climatological monthly mean

temperatures, calculated for each location

Historical baseline

temperature (Fig. S3A)

Liu, Strong & Skirving

(2003), Liu et al. (2014,

2017), and Heron et al.

(2014)

Mean of the warmest monthly

mean SST of each year

(MMMmax)

The mean of the warmest monthly mean of each year

during the climatological duration, calculated for

each location

Historical baseline

temperature, better

representing actual warmest

temperature than MMM

(Fig. S3B)

Donner (2009, 2011)

HotSpots (HS)
HSi ¼

�
SSTi �MMM; if SSTi > MMM

0; if SSTi � MMM

(i: time)

Positive only SST anomalies,

index of coral bleaching

hotspot

Liu, Strong & Skirving

(2003) and Liu et al.

(2014, 2017)

Historical SST variability

(sm) (v)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Maxmo:SSTi�Maxmo:SST

n�1

r

Max mo. SSTi:

Maximum monthly SST in year i in n years

Index of interannual

variability in maximum

monthly SST

Donner (2011)

Degree Heating Month: DHM

(MMM + a �C)

P12
i¼1ðHSi; if HSi � a �CÞ (i: month)

Bleaching alert threshold: DHM > a �C;
usually a = 1 �C but the threshold was

optimized in this study

Index of accumulated thermal

stress experienced by corals

Donner et al. (2005)

NOAA CRW degree heating

week: DHW (MMM + a �C);
DHWwith the bleaching alert

of 4 �C

1
7

P84
i¼1ðHSi; if HSi � a �CÞ (i: day)

Bleaching alert threshold: DHW > 4 �C
(Fig. S1B); usually a = 1 �C but the

threshold was optimized in this study

Index of accumulated thermal

stress experienced by corals

Liu, Strong & Skirving

(2003) and Liu et al.

(2014, 2017)

Degree heating week: DHW

(MMM + 1 �C), DHW using

historical SST variability (sm)

as the bleaching alert

1
7

P84
i¼1ðHSi; if HSi � a �CÞ (i: day)

Bleaching alert threshold: DHW > sm/median (sm).

The global value of 1/median (sm) = 2.45 �C–1,

reported by Donner (2011) was used

Index of accumulated thermal

stress experienced by corals,

considering variability of past

SST (Fig. S3D) for bleaching

alert threshold. For models

with multiple explanatory

variables, a model including

SST variability together with

DHW corresponds to this

type of DHW

Donner (2011)

Degree heating week: DHW

(MMMmax + a �C), DHW

using MMMmax as the

baseline climatology

1
7

P84
i¼1ðHSmax i; if HSmax i � a �CÞ (i: day)

Bleaching alert threshold: DHW > 4 �C;
usually a = 1 but optimized in this study

Index of accumulated thermal

stress experienced by corals,

exceeding mean of warmest

monthly SST in each year

Donner (2009, 2011)

Degree heating week: DHW

(MMM + bsm
�C), DHW

using the historical SST

variability (sm) as the

filtering threshold

1
7

P84
i¼1ðHS i; if HS i � bsm

�CÞ (i: day)
Bleaching alert threshold: DHW > 4 �C;
conservatively b = 1 but optimized in

this study

Index of accumulated thermal

stress experienced by corals,

considering variability of

past SST (Fig. S3D) to assess

the filtering threshold

This study (2018)

Degree cooling week: DCW (c) 1
7

P84
i¼1ðCS i; if CS i � 0 �CÞ (i: day)

CSi: Cool spots = MMM-SSTi; (note that a clear
definition is not given in Jones et al., 2017)

Index of accumulated reduced

thermal stress (cooling

effect) experienced by corals

Jones et al. (2017)
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Table 2 (continued).

Terminology Definition Interpretation Reference

Water depth (d) Water depth reported where bleaching

or nonbleaching was observed

Depth can affect coral

bleaching by reducing

thermal stress and light

radiation

Oliver, Berkelmans &

Eakin (2009)

Water turbidity (k) Diffuse attenuation coefficient at 490 nm (K490),

representing the rate at which light is attenuated

with water depth

Turbidity can affect coral

bleaching by reducing light

stress

Oliver, Berkelmans &

Eakin (2009)

UV-B (u) Irradiance of ultraviolet radiation ranging from

280 to 315 nm (Wm-2)

Strong solar irradiance,

particularly from UV, is an

important factor affecting

coral bleaching through

thermal and photochemical

damage

Hoegh-Guldberg (1999),

West & Salm (2003),

andMaina et al. (2008)

Speed of surface current (s) sqrt (longitudinal velocity2 + latitudinal velocity2)

ms-1
Surface current can reduce

bleaching risk by mixing

surface water

Nakamura & van Woesik

(2001)

Overall accuracy (true positives + true negatives)/(total number of

predictions)

Proportion of correct

predictions allowing a

correct prediction with no

prediction skill

Allouche, Tsoar &

Kadmon (2006)

True positive rate (TPR) =

sensitivity

(true positives)/(true positives + false negatives) Accuracy of positive

predictions (cf. 1 - TPR =

false negative rate = rate of

Type II errors)

Liu et al. (2005)

True negative rate (TNR) =

specificity

(true negatives)/(false positives + true negatives) Accuracy of negative

predictions (cf. 1 - TNR =

false positive rate = rate of

Type I errors)

Liu et al. (2005)

True skill statistic (TSS) TPR + TNR - 1 Index representing prediction

power ranging from -1 to 1.

A score of 1 indicates perfect

prediction, while a score of 0

indicates no prediction skill

Allouche, Tsoar &

Kadmon (2006)

TPR–TNR sum maximization Maximizing the sum of TPR and TNR

(equivalent to maximizing TSS)

Considering both positive

and negative predictions

equally, prediction skill is

expected to be maximized

Manel, Williams &

Ormerod (2001) and

Liu et al. (2005)

Generalized linear model of

binomial response (GLM)

A model fitting data using maximum likelihood

that links the response variable (bleaching or

nonbleaching) to a linear model via a converting

function (logit), assuming a binomial distribution

Parameter coefficients of

environmental variables are

estimated, to predict the

probability of coral

bleaching. The optimized

model can be described as a

formula

Hijmans et al. (2017)

Random forest (RF) A machine learning method based on conditional

branches of interactions among explanatory

variables, created by repeatedly selecting random

subsets of the data

The method provides high

predictive performance in

the form of probabilities.

However, predictions

cannot be described as an

easily communicable

formula, but rather are

supplied as electronic data

Breiman (2001) and

Hijmans et al. (2017)
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typhoons defined as wind speeds over 15 ms-1. However, the wind speed index was

strongly correlated with DHW (r = 0.86) and therefore was excluded from the analysis.

We used the diffuse attenuation coefficient (K490) as an index of water turbidity, which

can reduce light radiation stress involved in bleaching (Table 2). A monthly composite of

K490 (4 km, Level-3 binned MODIS AQUA products) was obtained from the NOAA

OceanColor database (https://oceancolor.gsfc.nasa.gov; accessed 8 September 2017) for

the months July–September.

Data on current speed and diffuse attenuation were down-scaled to 1 km using bilinear

interpolation. When environmental variables were not available for coastal cells, we used

inverse distance weighting interpolation to estimate coastal values.

Model evaluation and optimization
We evaluated coral bleaching models based on the accuracy of both positive (bleaching)

and negative (nonbleaching) predictions. Most studies have evaluated models of coral

bleaching based only on overall accuracy, such as the proportion of correct predictions

and AIC (Maina et al., 2008, 2011; McClanahan, Maina & Ateweberhan, 2015; Kayanne,

2017; Welle et al., 2017), whereas a few studies have differentiated the accuracy of positive

and negative predictions (Yee, Santavy & Barron, 2008; van Hooidonk & Huber, 2009;

Donner, 2011). When the number of bleaching and nonbleaching observations is unequal

(i.e., under class imbalance), model predictions can be biased. We therefore used four

evaluation metrics: overall accuracy, true positive rate (TPR), true negative rate (TNR),

and true skill statistic (TSS) (defined in Table 2). TSS quantifies prediction skill as the

index weighs positive and negative predictions equally (Allouche, Tsoar & Kadmon, 2006).

To assess the combined effects of thermal stress and multiple environmental influences

on coral bleaching, we constructed prediction models of bleaching with two approaches:

generalized linear model (GLM) with a binomial error distribution and a logit link

function, and random forests (RFs; Breiman, 2001). Although both models compute

predictions in the form of probabilities, the models are based on different algorithms.

GLM is an extension of regression models, whereas RF is a machine learning method that

uses randomly repeating classifications to capture complex interactions among

explanatory variables (Table 2). Therefore, GLM has an advantage of which fitted model

can be written as a formula that is easy to be used subsequently.

We confirmed that the data met the assumption of binomial GLM (i.e., the residual

deviance per degree of freedomwas less than 1.5; Zuur et al., 2009). GLM was applied with

the “glm” function in base R (R Core Team, 2017), and RF was applied with the

“randomForest” function of the randomForest R package. RF was used under standard

settings to avoid overfitting the training data. However, we followed the recommendation

of Hijmans et al. (2017), by specifying the model as a “regression model,” even though the

response variable was categorical. The relative importance of explanatory variables was

calculated with the “importance” function of the MuMIn package (Barto�n, 2015) for GLM

and of the randomForest package for RF (Liaw & Wiener, 2002).

Predicted probabilities were transformed into bleaching and nonbleaching categories

with the threshold that maximized the sum of TPR and TNR (Liu et al., 2005).
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The midpoint (i.e., 0.5) is often used as a threshold (Fig. S1C), although it is sensitive to

class imbalance in the training data and may, therefore, lead to inaccurate predictions

(Liu et al., 2005). This issue is addressed in studies of species distribution modeling,

although it remains poorly addressed in studies of mass bleaching (van Hooidonk &

Huber, 2009). We used the “evaluation” function of the dismo R package (Hijmans et al.,

2017) for evaluation and optimization of the threshold.

Models were evaluated by 10-fold cross-validations using TSS as the evaluation index.

In each repeat, we separated 30% of the data as testing data and used the remaining 70%

for constructing GLM and RF (Step 4 in Table 1). We optimized the filtering thresholds

(Fig. S1A) for DHM and DHWs by cross-validation, while the filtering thresholds were

fixed at 1.0 �C in the standard indices (Step 4 in Table 1). We selected the optimum

filtering threshold between 0 and 1.5 �C for indices using a constant threshold (a),
whereas we examined the coefficient of sm (b) between 0.1 and 2.5 for indices based on

historical variability (Table 1). We conducted optimizations with 0.01 precision for both

types of indices, i.e., with 151 and 241 submodels, respectively.

For models with multiple explanatory variables, we considered DCW, historical SST

variability, UV-B, water turbidity, water depth, and current speed, in addition to the

thermal index. The two most influential variables (DCWand UV-B) were always included

in models with multiple explanatory variables (Step 4 in Table 1). The optimum set of

explanatory variables was specified through cross-validation. The set of variables that best

explain variation in the testing data was selected among all 15 possible combinations.

In total, we evaluated 22,650 and 36,150 models (10 cross-validations � 15 variable

combinations � 151 or 241 submodels) for each GLM and RF model, respectively.

Finally, we predicted coral bleaching in the warmest month of the main coral habitat in

the study area using the best predictive model (Step 5 in Table 1). We also assessed

reduction in UV-B as a possible adaptive measure by reducing UV-B radiation by 40% and

increasing water turbidity by 40%, thereby simulating the effects of screening with fishnets

(Step 5 in Table 1). These levels of changes were consistent with in situ examination in

Onna Village in the Ryukyu Islands (Okinawa Prefecture, 2017). Predictions were obtained

from each model built in the 10 cross-validations, and subsequently averaged among the

models. Spatial data were obtained from the Global Map Japan version 2.1 Vector data,

provided by the Geospatial Information Authority of Japan (2015).

All analytical codes (available in Supplemental Information 1) were written in

R version 3.4.1 (R Core Team, 2017).

RESULTS
Effects of environmental variables
Predicted probability of bleaching increased with increasing values of thermal indices,

including SST, DHM, DHW, and UV-B (Fig. 2). Predicted probability of bleaching

decreased with DCW, water turbidity, and water depth (Fig. 2). Relationships between

bleaching and historical SST variability and current speed were not significant, with 95%

confidence intervals (CIs) ranging from negative to positive. Relationships between

bleaching and monthly and weekly SSTwere positive, although the widths of the 95% CIs
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suggest these variables are not reliable indices of coral bleaching. Alert thresholds for

predicted bleaching were found to be lower than standard thresholds, except for

DHM (Table 3).

SST variability
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Figure 2 Relationships between environmental variables and observed and predicted coral bleaching, obtained with univariate generalized

linear models. (A) Monthly sea-surface temperature (SST); (B) weekly SST; (C) degree heating month (DHM); (D) NOAA CRW degree heating

week (DHW); (E) DHW using mean of the warmest monthly mean SST of each ear (MMMmax); (F) DHW using historical SST variability (s) as
filtering threshold; (G) degree cooling week (DCW); (H) historical SST variability; (I) UV-B; (J) water turbidity; (K) water depth; (L) current

speed. Values of 1 and 0 represent bleaching and nonbleaching, respectively. Solid lines and gray areas indicate mean model fit and 95% confidence

intervals, respectively. Dotted lines represent thresholds discriminating bleaching and nonbleaching, which were optimized by true positive rate and

true negative rate (TPR–TNR) sum maximization (Table 2). See Table 2 for terminology. Full-size DOI: 10.7717/peerj.4382/fig-2
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Ranking of important variables was similar between GLM and RF (Fig. 3): the best

explanatory variable was DHW (100% in both of GLM and RF), followed by DCW. UV-B,

water turbidity, and historical SST variability also explained substantial variation in coral

bleaching. The explanatory powers of historical SST variability and current speed were

high, despite inconsistent relationships with coral bleaching (Fig. 2). Absolute variable

importance differed between GLM and RF. In GLM, most variables explained more than

Table 3 Univariate prediction models of coral bleaching using thermal indices with optimized

evaluation thresholds.

Model Evaluation threshold

(Bleaching alert threshold �C)
Predicted formula (for GLMs)

Monthly SST (GLM) 0.377 ± 0.010 (28.01 �C) logistic(-17.7 + 0.612·SST)

Monthly SST (RF) 0.346 ± 0.010

Weekly SST (GLM) 0.409 ± 0.012 (28.04 �C) logistic(-19.7 + 0.680·SST)

Weekly SST (RF) 0.309 ± 0.020

DHM (MMM + 1 �C) (GLM) 0.855 ± 0.004 (1.02 �C) logistic(-1.27 + 2.96·DHM)

DHM (MMM + 1 �C) (RF) 0.454 ± 0.015

DHW (MMM + 1 �C) (GLM) 0.208 ± 0.012 (1.33 �C) logistic(-2.56 + 0.891·DHW)

DHW (MMM + 1 �C) (RF) 0.129 ± 0.019

DHW (MMMmax + 1 �C) (GLM) 0.162 ± 0.009 (0.58 �C) logistic(-2.2 + 0.958·DHW)

DHW (MMMmax + 1 �C) (RF) 0.268 ± 0.017

DHW (MMM + sm
�C) (GLM) 0.292 ± 0.022 (2.81 �C) logistic(-3.12 + 0.800·DHW)

DHW (MMM + sm
�C) (RF) 0.196 ± 0.017

Notes:
The optimized evaluation thresholds (mean ± SE) of the predicted probability of coral bleaching are shown with
corresponding bleaching alert thresholds of thermal indices. The optimized formula for the predicted probability of
bleaching is shown for GLM. logistic(x) = 1/(1 + exp(-x)).
SST, sea-surface temperature; DHM, degree heating month; DHW, degree heating week; MMM, maximum of the
monthly mean SST climatology; MMMmax, mean of the warmest monthly mean SST of each year; GLM, generalized
linear model; RF, random forest.

DHW (MMM + 1°C)

Water tubidity

UV-B aradiation

25 50 75 100 25 50 75 100

Water depth

Current speed

Historical SST variability

DCW

Generalized linear model (GLM) Random forest (RF)A B

Relative variable importance (%)

Figure 3 Relative importance of environmental variables. Under (A) generalized linear model (GLM) and (B) random forest (RF). DCW, degree

cooling week; DHW, degree heating week; MMM, maximum monthly mean; SST, sea-surface temperature; UV-B, ultraviolet B.

Full-size DOI: 10.7717/peerj.4382/fig-3
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25% of variation in bleaching each, while in RF, only DHW, DCW, and UV-B explained

more than 25% of variation in bleaching each.

Optimization and assessment of filtering thresholds
Optimization of filtering thresholds improved the predictive performance of DHM and

DHWs, although the improvement was small for GLM (Fig. 4). Improvement by the

optimization was around 0.01 in TSS in GLM, while the improvement of DHWusing the

historical SST variability (sm) as the filtering threshold was 0.02–0.03 in TSS in RF.

We compared the predictive performance of all models including standard and

optimized thermal indices, and the optimized set of explanatory variables (Fig. 5).
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Figure 4 Optimization of filtering thresholds. Model predictive performance (true skill statistic, TSS) with varying filtering thresholds for four

thermal indices under (A–D) a generalized linear model (GLM) and (E–H) a random forest (RF) (Tables 1 and 2). (A, E) DHM (MMM + a �C);
(B, F) DHW (MMM + a �C); (C, G) DHW (MMMmax + a �C); (D, H) DHW (MMM + b sm

�C). Individual gray lines represent each of the

15 combinations of environmental variables. DHM, degree heating month; DHW, degree heating week; MMM, maximum monthly mean. See

Table 2 for terminology. Full-size DOI: 10.7717/peerj.4382/fig-4
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Figure 5 Evaluation of models of coral bleaching. (A) Overall accuracy (ACC); (B) True positive rate (TPR); (C) True negative rate (TNR);

(D) True skill statistic (TSS). The label of a model indicates the index and filtering threshold, if present j abbreviation of statistical model. For

example, DHW (MMM+ b sm
�C j RF) represents the random forest model, including DHWusing MMM+ b sm

�C as the filtering threshold. See

Table 2 for terminology and Tables 3–6 for optimized evaluation thresholds and filtering thresholds, and combinations of explanatory variables.

DHM, degree heating month; DHW, degree heating week; GLM, generalized linear model; MMM, maximum monthly mean; RF, random forest;

SST, sea-surface temperature. Full-size DOI: 10.7717/peerj.4382/fig-5
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In models based only on a thermal index with the standard threshold, TNR was larger

than TPR, indicating that high overall accuracy can result from effective identification of

nonbleaching occurrences, despite ineffective identification of bleaching occurrences. TSS

was indicative of both TPR and TNR. Among thermal indices with the standard threshold,

DHW using historical SST variability (sm) as the bleaching alert threshold and DHW

using sm as the filtering threshold scored the best performances in TSS (0.60 and 0.65,

respectively) (Fig. 5). Weekly SST had no prediction skill (TSS = 0) and the skill of

monthly SSTwas low (0.20). TPR of DHWusing historical SST variability as the bleaching

alert threshold was the highest (0.85) among models, although the false-positive rate

(1–TNR = 0.20) was also the highest. Using historical SST variability as the filtering

threshold for DHWdecreased the false-positive rate (0.09), but also decreased TPR (0.69).

DHW using MMMmax as the baseline climatology showed the lowest predictive

performance (TSS = 0.37) among all DHW indices, with the lowest TPR (0.38).

Predictive performance was improved by optimizing the evaluation threshold (Fig. 5;

Table 4). Under optimized evaluation thresholds, DHW with historical SST variability as

the filtering threshold performed best (TSS = 0.72 for GLM) among the three types of

DHW, although differences were small. Predictive performance of DHM was the lowest

(TSS = 0.40). When both evaluation and filtering thresholds were optimized (Table 5),

improvements in evaluation thresholds were only small. DHW with historical SST

variability as the filtering threshold remained the highest performing index under

optimization (TSS = 0.73 in both GLM and RF). Optimized filtering thresholds were less

than 1 �C in all the models using one thermal index, using the optimized DHM or DHW

other than DHW using historical SST variability (sm) as the filtering threshold (see also

Fig. S3D for the distribution of sm).

The predictive skill of models with multiple explanatory variables was negligibly higher

than that of models including only one thermal index. TSS increased by 0.1 at most in all

Table 4 Univariate prediction models of coral bleaching using thermal indices with optimized

evaluation and filtering thresholds.

Model Evaluation threshold

(Bleaching alert

threshold �C)

Filtering

threshold

Predicted formula

(for GLMs)

DHM (MMM + a �C) (GLM) 0.464 ± 0.024 (0.611 �C) a = 0.23 logistic(-1.65 + 2.48·DHM)

DHM (MMM + a �C) (RF) 0.369 ± 0.010 a = 0.23

DHW (MMM + a �C) (GLM) 0.213 ± 0.010 (2.07 �C) a = 0.68 logistic(-3.00 + 0.803·DHW)

DHW (MMM + a �C) (RF) 0.207 ± 0.019 a = 0.52

DHW (MMMmax + a �C) (GLM) 0.228 ± 0.006 (0.296 �C) a = 0.64 logistic(-2.64 + 0.892·DHW)

DHW (MMMmax + a �C) (RF) 0.174 ± 0.014 a = 0.89

DHW (MMM + b·sm
�C) (GLM) 0.134 ± 0.002 (1.58 �C) b = 2.13 logistic(-2.22 + 1.01·DHW)

DHW (MMM + b·sm
�C) (RF) 0.146 ± 0.014 b = 1.68

Notes:
The optimized evaluation thresholds (mean ± SE) of the predicted probability of coral bleaching are shown with
corresponding bleaching alert thresholds of thermal indices. The optimized formula for predicted probability of
bleaching is shown for GLM. logistic(x) = 1/(1 + exp(-x)).
SST, sea-surface temperature; DHM, degree heating month; DHW, degree heating week; MMM, maximum of the
monthly mean SST climatology; MMMmax, mean of the warmest monthly mean SST of each year; GLM, generalized
linear model; RF, random forest.
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models, except for the DHM model where TSS increased by 0.3 in both GLM and RF.

Increases in predictive performance were mainly due to increases in TNR (i.e., reductions

in false-positive rates; Fig. 5). Models including no thermal indices showed high

prediction skill (TSS = 0.65 in GLM; TSS = 0.72 in RF). In models with multiple

explanatory variables, differences in predictive performance between models with

optimized evaluation thresholds and models with optimized evaluation and filtering

thresholds were smaller than differences between GLM and RF models for most thermal

indices. RF always performed better than GLM, with differences in TSS of 0.04 to 0.05.

Although the TPR of GLM exceeded that of RF in most cases, the TNR of GLM was lower

than those of RF, i.e., the risk of false positives was higher in GLM.

The RF model based on DHW with MMM + 0.97 �C filtering threshold, DCW, UV-B,

water turbidity, historical SST variability, and current speed (Table 6) showed the best

predictive performance (TSS = 0.79; TPR = 0.90; TNR = 0.89). Among the GLM, the

model consisting of DHWwith MMM+ 1.83·sm
�C filtering threshold, DCW, UV-B, and

turbidity showed the best predictive skill.

Table 5 Multivariate prediction models of coral bleaching including thermal indices with optimized

evaluation thresholds.

Model Evaluation

threshold

Optimized explanatory variables/predicted

formula for GLMs

Non thermal (GLM) 0.389 ± 0.011 logistic(-1.37 - 0.112·c - 0.0341·d +

3.77·s + 7.95·u)

Non thermal (RF) 0.333 ± 0.008 c, k, u, v

Monthly SST (GLM) 0.387 ± 0.011 logistic(-12.0 + 0.458·SST - 0.094·c +
4.10·s - 0.722·u)

Monthly SST (RF) 0.311 ± 0.008 SST, c, k, s, u, v

Weekly SST (GLM) 0.348 ± 0.010 logistic(-17.2 + 0.667·SST - 0.084·c +
4.69·s - 3.56·u)

Weekly SST (RF) 0.322 ± 0.005 SST, c, k, u, v

DHM (MMM + 1 �C) (GLM) 0.387 ± 0.010 logistic(1.31 + 3.02·DHM - 0.126·c - 0.026·d +

3.55·s + 2.99·u - 2.69·v)

DHM (MMM + 1 �C) (RF) 0.380 ± 0.009 DHM, c, k, s, u, v

DHW (MMM + 1 �C) (GLM) 0.326 ± 0.005 logistic(-1.85 + 0.723·DHW - 0.053·c - 17.4·k
+2.29·s + 10.1·u - 3.57·v)

DHW (MMM + 1 �C) (RF) 0.365 ± 0.008 DHW, c, k, s, u, v

DHW (MMMmax + 1 �C) (GLM) 0.325 ± 0.006 logistic(-3.75 + 0.805·DHW - 0.065·c - 17.7·k +

1.18·s + 11.2·u)

DHW (MMMmax + 1 �C) (RF) 0.395 ± 0.007 DHW, c, k, u, v

DHW (MMM + sm
�C) (GLM) 0.323 ± 0.010 logistic(-1.99 + 0.688·DHW - 0.031·c - 18.3·k +

7.41·u - 3.11·v)

DHW (MMM + sm
�C) (RF) 0.393 ± 0.008 DHW, c, k, s, u, v

Notes:
c: DCW; d: depth; k: water turbidity; u: UV-B radiation; s: current speed; v: historical SST variability (see Table 2).
The optimized evaluation thresholds (mean ± SE) of the predicted probability of coral bleaching are shown with
corresponding bleaching alert thresholds of thermal indices. The optimized formula for predicted probability
of bleaching is shown for GLM. logistic(x) = 1/(1 + exp(-x)).
SST, sea-surface temperature; DHM, degree heating month; DHW, degree heating week; MMM, maximum of the
monthly mean SST climatology; MMMmax, mean of the warmest monthly mean SST of each year; GLM, generalized
linear model; RF, random forest.
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Table 6 Multivariate prediction models of coral bleaching including thermal indices with optimized evaluation thresholds and filtering

thresholds.

Model Evaluation

threshold

Filtering

threshold

Optimized explanatory variables/predicted formula for GLMs

DHM (MMM + a �C) (GLM) 0.388 ± 0.006 a = 0.73 logistic(1.53 + 2.47·DHM - 0.125·c + 3.47·s + 2.37·u - 3.17·v)

DHM (MMM + a �C) (RF) 0.380 ± 0.009 a = 0.02 DHM, c, k, u, v

DHW (MMM + a �C) (GLM) 0.354 ± 0.007 a = 0.90 logistic(-1.99 + 0.717·DHW - 0.048·c - 17.3·k + 2.39·s + 9.99·u - 3.74·v)

DHW (MMM + a �C) (RF) 0.378 ± 0.010 a = 0.97 DHW, c, k, s, u, v

DHW (MMMmax + a �C) (GLM) 0.320 ± 0.008 a = 0.94 logistic(-3.73 + 0.789·DHW - 0.062·c - 19.0·k + 8.77·u)

DHW (MMMmax + a �C) (RF) 0.400 ± 0.008 a = 0.87 DHW, c, u, v

DHW (MMM + b·sm
�C) (GLM) 0.336 ± 0.005 b = 1.83 logistic(-3.15 + 0.773·DHW - 0.053·c - 19.2·k + 8.77·u)

DHW (MMM + b·sm
�C) (RF) 0.394 ± 0.006 b = 1.67 DHW, c, d, k, s, u, v

Notes:
c: DCW; d: depth; k: water turbidity; u: UV-B radiation; s: current speed; v: historical SST variability (see Table 2). The optimized evaluation thresholds (mean ± SE) of
the predicted probability of coral bleaching are shownwith corresponding bleaching alert thresholds of thermal indices. The optimized formula for predicted probability
of bleaching is shown for GLM. logistic(x) = 1/(1 + exp(-x)).
SST, sea-surface temperature; DHM, degree heating month; DHW, degree heating week; MMM, maximum of the monthly mean SST climatology; MMMmax, mean of
the warmest monthly mean SST of each year; GLM, generalized linear model; RF, random forest.
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Predictions of coral bleaching
We predicted probabilities of coral bleaching in the main coral-habitable areas of Japan

with the optimized best multivariate model of RF using DHW with MMM + 0.97 �C
filtering threshold (Fig. 6). The mean predicted probability of bleaching ranged from 0.46

to 0.74 among areas. Spatial variation in the probability of bleaching was found in both

the eastern (Fig. 6A) and the western (Fig. 6C) Ryukyu Islands. Hotspots with higher

bleaching probabilities were found in the southeastern part of Okinawa Island, the eastern

part of the Kerama Islands (Fig. 6A), and the northern part of Ishigaki Island (Fig. 6C).

This resulted in bleaching in 2.5–5 (44–100%) of five years (2008–2010, 2013, and 2016;

Figs. 6B and 6D).

Under reduced UV-B radiation, coral bleaching decreased in most areas, with

particularly large decreases in bleaching hotspots (Figs. 7A and 7C). Predicted

probabilities of bleaching ranged from 0.34 to 0.63 (Figs. 7A and 7C), and bleaching

frequencies ranged from 28% to 92% (Figs. 7B and 7D). Decreases in probabilities of
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bleaching of up to 0.24 were observed, resulting in a significant decrease in bleaching

frequency of up to 56% (Figs. 7B and 7D). Bleaching in fewer than three out of five years

occurred in most areas.

DISCUSSION
Optimizing coral bleaching models
The ability to predict coral bleaching was improved by optimizing thermal indices,

particularly SST and DHWs. As in a previous study (Donner, 2011), we generally found

lower TPR than TNR, but both TPR and TNR were improved by optimization. The sole

contribution of optimizing the filtering threshold was small. However, optimizing the

filtering threshold and the evaluation threshold while combining multiple environmental

variables achieved large improvements in TPR and TNR (reaching ∼0.9). We also found

that cooling (DCW), UV-B, and screening (water turbidity) were important predictors of

bleaching, particularly in RF models.

Our results are mostly consistent with those of Donner (2011), who showed that DHW

using historical SST variability as bleaching alert threshold had a higher TPR but a higher

false-positive rate than NOAA CRW DHW, and that DHW using MMMmax did not

predict bleaching accurately but was suitable in equatorial zones. Because our study was

conducted at a higher latitude, using MMMmax resulted in lowest performance among the

DHW indices, as expected. We also used historical SST variability as a filtering threshold,

and this method showed the highest prediction skill among the models with only one

thermal index. Historical SST variation (sm) may be a particularly effective predictor of

bleaching in Japan, as variation was larger in our study area (ca. 0.56) than in the study

area (ca. 0.25) of Donner (2011). Indeed, southern islands in Japan are encircled by the

strong Kuroshio boundary current flowing poleward, and tropical waters brought by the

current can cause faster warming than the global average (Wu et al., 2012), leading to high

levels of historical SST variation in the area.

Optimized filtering thresholds were smaller than 1 �C in GLM and RF models using

only one thermal index. Previous studies have suggested that thermal stress not exceeding

1 �C can induce coral bleaching (Brown, 1997; McWilliams et al., 2005; Kleypas,

Danabasoglu & Lough, 2008). Nevertheless, bleaching thresholds had not been statistically

optimized before our study.

Random forest was an excellent method for predicting coral bleaching and could be

used more widely in studies of coral ecology. The use of RF has much increased in

ecological studies in the 10 years since the introduction of Cutler et al. (2007). RF shows

considerable potential for ecological analyses including classification, regression, and

survival, due to its high predictive accuracy and its ability to model complex interactions

among explanatory variables (Cutler et al., 2007).

Models with multiple environmental variables are becoming more popular, and show

high explanatory power when modeling bleaching (Maina et al., 2008; Yee, Santavy &

Barron, 2008; McClanahan, Maina & Ateweberhan, 2015; Welle et al., 2017). We found

UV radiation to be an important explanatory factor for coral bleaching, consistent

with previous studies (Hoegh-Guldberg, 1999; Maina et al., 2008, 2011;
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McClanahan, Maina & Ateweberhan, 2015). Other variables related to cooling (DCW;

Jones et al., 2017) and screening (water turbidity;West & Salm, 2003;Oliver, Berkelmans &

Eakin, 2009; Maina et al., 2011; Oxenford & Vallés, 2016) also explained variation in the

occurrence of coral bleaching. Small-scale topographic variables, including water depth,

are known to reduce thermal stress on corals (West & Salm, 2003; Oliver, Berkelmans &

Eakin, 2009). Strong winds may also reduce bleaching risk (Maina et al., 2008, 2011;

Yee, Santavy & Barron, 2008;McClanahan, Maina & Ateweberhan, 2015;Welle et al., 2017),

but the importance of this variable could not be evaluated in our study due to high

correlations with thermal indices. Our predictions may be negatively affected by

environmental variation at small temporal and spatial scales that has not been adequately

included in our study. For example, small-scale water flow may improve the resistance of

corals to bleaching (Nakamura & van Woesik, 2001), but the 8 km resolution of current

speed in our study is too coarse to represent such effects. The microstructure of the sea

floor at the meter scale may also be related to local water flow or shading of corals (West &

Salm, 2003; Oliver, Berkelmans & Eakin, 2009), but was not incorporated in our study.

Bleaching responses and thermal thresholds vary among coral species (Maynard et al.,

2008; Yee, Santavy & Barron, 2008;Guest et al., 2012;Harii et al., 2014;McClanahan, 2014).

Branching corals of Acropora and Pocillopora spp. are more susceptible to thermal

stress than massive corals such as Porites spp. (Maynard et al., 2008; Yee, Santavy & Barron,

2008; Guest et al., 2012; Harii et al., 2014; McClanahan, 2014). Thermal tolerance

increases with repeated excessive thermal stress (Brown et al., 2002; Maynard et al., 2008;

Guest et al., 2012), highlighting the potential of corals to adapt to thermal stress

(Brown et al., 2002; Maynard et al., 2008; Guest et al., 2012). However, the effects of past

thermal conditions have not been fully explained with historical SST variability in our

analysis or in previous studies (Donner, 2011;McClanahan, Maina & Ateweberhan, 2015).

Variation in thermal tolerance can result from interspecific differences (Maynard et al.,

2008; Guest et al., 2012; Harii et al., 2014; McClanahan, 2014) in acclimation,

genotypes, and epigenetics of host corals and symbiotic algae (Palumbi et al., 2014;

Torda et al., 2017). The effects of such differences remain poorly known and should be

prioritized for further research.

Coral bleaching in Japan and reef management
Four studies in the Japanese region have analyzed coral bleaching occurrences with

temperature anomalies and DHWat coarse resolutions (>50 km; Strong et al., 2002; Harii

et al., 2014; Kayanne, 2017; Kayanne, Suzuki & Liu, 2017). Coarse DHW captures regional

trends in the onset of coral bleaching, although it fails to predict bleaching within smaller

reefs (Strong et al., 2002; Harii et al., 2014). Indeed, our bleaching predictions for the

Ryukyu Islands with DHW at 1 km resolution exhibited a TPR of 0.58, compared to a

value of 0.44 calculated from the tables of Kayanne (2017). However, the improvement

in predictive performance may result from the use of high-resolution temperature data,

or the optimization of thermal thresholds of DHW. Further studies are required to

establish the importance of high-resolution temperature data for predicting coral

bleaching in Japan.
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The high performance of our bleaching model at 1 km resolution has practical

implications for the local and regional management of coral reefs. Our predictions

revealed high frequencies of coral bleaching in many parts of the Ryukyu Islands.

However, predictions of bleaching frequency were based on the lowest levels of bleaching

severity; hence, further analyses may be required to establish full distributions of

bleaching frequencies according to levels of severity.

Practical management to reduce the risk of coral bleaching should include control of

coastal water turbidity (Fabricius, 2005). Increases in water turbidity by terrestrial runoff

may decrease the resistance (Wooldridge & Done, 2009) or resilience (Hongo & Yamano,

2013) of corals to bleaching. Turbid coastal regions may provide refuges from climate

warming due to limited increases in temperature and solar radiation (Cacciapaglia &

van Woesik, 2016). However, coastal turbidity may increase the incidence of coral diseases

and promote the growth of competing algae (Fabricius, 2005). Consequently, coastal

turbidity should be carefully managed.

Reducing UV radiation may reduce bleaching risk and may constitute a powerful

adaptive measure against climate warming. In the Onna Village of the Ryukyu Islands,

in situ reduction of UV radiation with no increase in water turbidity has already been

tested (Okinawa Prefecture, 2017). Reduction of UV radiation by 30–44% with large

fishery nets resulted in a survival rate of 80% in cultured coral colonies in the summer of

2016, when the most severe thermal stress was recorded in the 2004–2016 study period

(Kayanne, Suzuki & Liu, 2017). Reduction in UV radiation was similar to that used in our

study (40%), so our predictions could provide a quantitative basis for future reef

management in this area.

CONCLUSION
Predictive performance of coral bleaching models can be improved by the use of

optimized thresholds, multiple environmental influences, and multiple modeling

methods. Both high-resolution modeling and observational records (i.e., the Sango Map

Project) enabled high performance of bleaching predictions (Oliver, Berkelmans & Eakin,

2009). We provide a template for selecting appropriate indices to predict bleaching, and

our research methods could be applied to coral-habitable areas globally. Our high-

resolution predictions also provide a quantitative basis for the local and regional

management of coral reefs (West & Salm, 2003). Although corals are suffering from high

risks of bleaching globally, our study suggests that reducing UV radiation may be a key

tool to improve coral resilience in the coming decades. Holistic bleaching models

operating at finer spatial resolutions and incorporating variations in intrinsic thermal

tolerance, historical effects of previous thermal impacts, and local environmental

conditions should be the focus of future research. Such models will become indispensable

as the effects of local and global stressors on corals continue to increase.
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