
Catchment land use predicts benthic vegetation in small

estuaries

Perran L. M. Cook Corresp.,   1  ,  Fiona Y Warry  2  ,  Paul Reich  2  ,  Ralph MacNally  3  ,  Ryan J Woodland  4 

1 School of Chemistry, Monash University

2 Department of Environment, Land, Water and Planning, Melbourne, Victoria, Australia

3 Institute of Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia

4 Chesapeake Bay Biological Laboratory, University of Maryland, Centre for Environmental Science, Solomons, Maryland, United States of America

Corresponding Author: Perran L. M. Cook

Email address: perran.cook@monash.edu

Many estuaries are becoming increasingly eutrophic from human activities within their

catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but

such data are expensive and time consuming to obtain. We compared the percent of

fertilized land within a catchment, dissolved inorganic nitrogen loads, catchment to

estuary area ratio and flushing time as predictors of the proportion of macroalgae to total

vegetation within 14 estuaries in south-eastern Australia. The percent of fertilized land

within the catchment was the best predictor of the proportion of macroalgae within the

estuaries studied. There was a transition to a dominance of macroalgae once the

proportion of fertilized land in the catchment exceeded 24%, highlighting the sensitivity of

estuaries to catchment land use.
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21 Abstract

22
23 Many estuaries are becoming increasingly eutrophic from human activities within their 

24 catchments. Nutrient loads often are used to assess risk of eutrophication to estuaries, but such 

25 data are expensive and time consuming to obtain. We compared the percent of fertilized land 

26 within a catchment, dissolved inorganic nitrogen loads, catchment to estuary area ratio and 

27 flushing time as predictors of the proportion of macroalgae to total vegetation within 14 estuaries 

28 in south-eastern Australia. The percent of fertilized land within the catchment was the best 

29 predictor of the proportion of macroalgae within the estuaries studied. There was a dominance of 

30 macroalgae once the proportion of fertilized land in the catchment exceeded 24%, highlighting 

31 the sensitivity of estuaries to catchment land use. 

32
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33 Introduction

34 Estuaries are well recognized for their ecological and economic value, by supporting diverse 

35 natural communities, highly productive fisheries, and recreational amenity (McLusky & Elliott 

36 2004). Being at the terminus of drainage basins, estuaries are impacted by increased nutrient 

37 loads delivered to the coastal zone. Intensive monitoring of both catchments and estuaries has 

38 clearly and consistently implicated nutrient loads, in particular nitrogen, as the drivers of 

39 multiple adverse ecological responses, including initiation of algal blooms, hypoxia and 

40 alteration of secondary production (Hauxwell & Valiela 2004, Conley et al. 2009). 

41 Unfortunately, detailed time-series of nutrient-loading data are not readily available for most 

42 estuaries around the world, and a widely applicable and pragmatic approach is required to assess 

43 ecological risk and guide land use planning and management targets more generally.

44 Given that much of the change in nutrient loads is related to human land-use intensity, an 

45 alternative approach is to assess ecological risk in estuaries from land-use data, which typically 

46 are more readily available than nutrient data (Brinson et al. 2013).  The effectiveness of land use 

47 data at acting as a proxy for risk to estuaries will depend on the level of detail of classification.  

48 Ideally land use should be classified into types of agriculture which have a wide range of nutrient 

49 emissions.  In practice however, this level of detail is rarely available, and more broad 

50 classifications such as forest, urban areas and agriculture are more typically available. In addition 

51 to land use, it is important to consider other interacting variables such as estuary flushing time 

52 and catchment to estuary area ratio.  Estuaries with a fast flushing rate are likely to be less 

53 impacted by activities in their catchment than ones with a low flushing rate.  Similarly, large 

54 estuaries receiving inputs from a small catchment are less likely to be impacted than small 

55 estuaries receiving inputs from a larger catchment area.  
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56 To link land use to estuary ecological status requires an ecological indicator that is 

57 responsive to eutrophication and the identification of a plausible link between that indicator and 

58 measureable land-use characteristics. This indicator needs to be both sensitive to changes in 

59 nutrient loads and preferably easy to measure. Chlorophyll a (as a proxy for phytoplankton 

60 biomass) is a widely used measure of eutrophication that is relatively easy to obtain and strongly 

61 related to catchment land use (Meeuwig 1999). Despite this, phytoplankton dynamics are much 

62 influenced by local conditions within estuaries and the often pulsed nature of inputs, resulting in 

63 great spatial and temporal variability of chlorophyll a measurements (e.g., Cook et al. (2010)). 

64 Therefore, spatially and temporally intensive sampling in an estuary is required for 

65 representative and reliable quantification of chlorophyll a. Remote sensing may allow the 

66 integration of chlorophyll a concentrations both temporally and spatially, but the complex optical 

67 properties of coastal waters has hindered this approach, leading to limited success in relating 

68 remotely sensed estimates of chlorophyll a to land use (Le et al. 2015). 

69 An alternative to chlorophyll a that is more stable over short times scales is the ratio of 

70 macroalgae area to seagrass area (or macroalgae to total vegetation, MA:TV ratio), which has 

71 been shown to increase globally with increased nutrient loading as fast growing macroalgae 

72 overgrow seagrass (Hauxwell & Valiela 2004, Woodland et al. 2015). The generality of the 

73 MA:TV ratio, which can be effectively monitored using ground-truthed aerial photographs, 

74 suggests that this ratio could provide a suitable proxy for relating remotely sensed land-use 

75 characteristics to estuarine eutrophication in shallow estuaries that is easier to obtain and more 

76 spatially representative than chlorophyll a.

77 The aim of this study was to investigate whether land use data available within a national 

78 Australian database (Stein et al. 2014) could be used to predict the ecological condition of 
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79 estuaries.  Such information can provide land management agencies with a cost effective and 

80 rapid approach to assessing ecological risk to estuaries to enable better prioritization of resources 

81 for monitoring and restoration. To do this, we combined previously published data on nutrient 

82 loading and estuarine responses with land-use characteristics to compare the efficacy of nutrient 

83 load estimates, catchment to estuary area ratio, estuary flushing time and land use as predictors 

84 of eutrophication as indicated by the ratio of macroalgae to total vegetation (MA:TV ratio) and 

85 chlorophyll a within southern Australian estuaries. 

86

87 Materials and Methods

88 The macroalgae to total vegetation (MA:TV) ratio and chlorophyll a data for 14 estuaries in the 

89 southeastern Australian state of Victoria are from Woodland et al. (2015). Methods describing 

90 field collections, data processing and calculations are described in detail there, so we only briefly 

91 outline them here. The estuaries were selected to represent a gradient across land use and nutrient 

92 loading, and be geographically representative of the Victorian coastline.  Estuary selection also 

93 included considerations of total area and geomorphology to avoid scaling-effects arising from 

94 large-scale differences in hydrological conditions among estuaries.  The MA:TV data represent 

95 snapshots in time based on areal photographs taken between January and February 2012 that 

96 were validated by underwater video footage.  Video data were reviewed in the laboratory and 

97 bottom cover at each drop site was assigned to one or more of the following four primary habitat 

98 types: seagrass, macroalgae, bare sediment/unvegetated rocky reef, or channel habitat (>2 m 

99 depth). Seagrass and macroalgae habitats were further classified as having sparse–medium (< 

100 50%) or dense (50–100%) vegetation coverage. In the case of seagrass habitats with conspicuous 

101 epiphytic or intermingled macroalgae, the site was assigned to both habitat categories and each 
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102 category was assigned a density classification. Spatial mapping was carried out in ArcGIS by 

103 constructing habitat raster maps (cell size = 2 m2) based on visual reconciliation of site specific 

104 habitat classifications and photographic information from composite aerial images. Vegetated 

105 habitat areas were weighted by coverage classifications such that map cells assigned sparse or 

106 medium coverage were considered to contain 50% vegetation and dense coverage =100% 

107 vegetation. For example, a 10 m2 patch of medium seagrass was designated as having 5 m2 of 

108 seagrass habitat and 5 m2 of bare sediment. Total areas of each estuary and each coverage 

109 weighted habitat class were calculated and exported for further analysis. Seagrass species were 

110 primarily composed of Zostera spp. (includes Z. muelleri and Z. nigracaulis) or Ruppia spp. 

111 Macroalgal communities included several genera (e.g., Ulva, Enteromorpha, Hypnea, 

112 Gracilaria) associated with eutrophication (McGlathery 2001). 

113 Surface (c. 0.2–0.5m depth) chlorophyll concentrations (g L-1) were monitored on two 

114 successive outgoing tidal cycles on three separate occasions in a subset of n = 8 estuaries.  

115 Sampling occurred once for each estuary during the spring (September–October), early summer 

116 (November–December) and late summer (January–February) of 2011– 2012. Chlorophyll 

117 measurements were taken adjacent to the main channel of the estuary with a calibrated Hydrolab 

118 water quality sonde (model DSX5). Concentration values were averaged for each occasion (n = 3–

119 16 observations) and across each of the three seasons to yield an integrated mean chlorophyll 

120 concentration in the surface waters of each estuary.

121 For each estuary and upstream river catchment, potential predictors of variation in the 

122 MA:TV ratios were obtained from the National Environmental Stream Attributes database (Stein 

123 et al. (2014); v1.1.5, Geoscience Australia website: www.ga.gov.au). These predictors included 

124 four summaries of upstream river catchment land use: proportion modified by human 
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125 development, proportion with population density ≥ 1 person km-2, proportion urbanized, and 

126 proportion receiving or generating fertilizers (predominantly residential areas, grazing pasture, 

127 horticulture). We included several covariates that might affect the relationships between the 

128 responses and predictors: (1) estuary flushing time (days); (2) the measured areal loading rate of 

129 dissolved inorganic nitrogen (DIN) to each estuary (tonnes DIN km-2 of estuary yr-1) (Woodland 

130 et al. (2015); and (3) the catchment area to estuary area ratio (C:E). Nitrogen loads were 

131 measured based on stream flow and nutrient concentrations measured close to the head of the 

132 estuary (salinity = 0), and encompassed >90% of the catchment.  River flow (ML d-1) from 

133 gauging stations and nutrient and concentration data (mg L-1) for each river system over the 13-

134 yr interval from 2000 to 2012 were obtained by downloading archived data from the Department 

135 of Environment, Land, Water and Planning Water Measurement Information System website 

136 (data.water.vic.gov.au/monitoring.htm) or provided by Melbourne Water 

137 (melbournewater.com.au). We focused our analysis on total nitrogen (TN), oxidized dissolved 

138 forms of nitrogen (NO3
- and NO2

- , hereafter simply DIN).  River flow was measured daily; 

139 whereas, nutrient sampling intervals ranged from approximately biweekly (n = 23) to quarterly (n = 

140 3–4) with an average of n = 12 samples per river system per year (i.e., monthly sampling). Data 

141 were assigned to a 01 June–31 May hydrologic year rather than a calendar year to reflect the 

142 annual flow–nutrient cycle responsible for primary production dynamics in Victorian estuaries 

143 during the austral summer (Cook & Holland 2012). Annual loads (Mg yr-1) of TN, DIN, TP and 

144 TSS were estimated from measured river flow and concentration data using a flow-stratified 

145 Kendall Ratio (Kendall et al. 1983) approach within a Monte-Carlo simulation-based spreadsheet 

146 routine (Tan et al. 2005).  This method has previously been shown to give the same results as 

147 those independently published by the Victorian EPA (Cook & Holland 2012).
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148 There were no sewage treatment plant inputs below the gauging station and atmospheric 

149 deposition in this region is negligible (<10%) compared to total loads in these small estuaries. 

150 The C:E ratio was included to account for small estuaries fed by a large catchment which would 

151 inflate areal nutrient loads and estuary flushing time was included to account for the well-known 

152 effect of residence time in modulating eutrophication. To place the gradient of catchment land 

153 use intensity within the broader context of the literature, we calculated nutrient export rates from 

154 upper and lower quartiles of fertilized catchments (corresponding to >85% and <10% 

155 fertilization, respectively) by dividing the total load from the catchment by the total land area of 

156 the catchments. 

157 Statistical analysis

158 We first screened predictors for high collinearity. If there were sets of predictors with pair-wise 

159 correlations > 0.7, we eliminated all predictors bar one. The retained predictor was the one with 

160 the lowest sum of correlations with predictors other than those in the inter-correlated set. Land 

161 use and riverine DIN concentrations were highly correlated (r = 0.84), so DIN concentration was 

162 excluded from the analysis because it is dependent upon land use. We scrutinized the 

163 distributions of the retained predictors. Several were extremely right-skewed, so these were log-

164 transformed (designated by † in Table 1). Once the distributions were near normally or near 

165 uniformly distributed, we standardized (mean = 0, standard deviation = 1) the predictors to make 

166 the ranges of all predictors comparable and to assist in model convergence.

167 We used two approaches to identify the potentially important predictors and to identify 

168 the relative importance of these predictor variables. First, we used Bayesian variable selection 

169 using stochastic search (O'Hara & Sillanpää 2009). This method identifies those predictors that 

170 had high posterior probabilities of being included in the best models for explaining variation in 
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171 the MA:TV ratio. We used the posterior odds ratio framework to assess predictor importance 

172 (Kass & Raftery 1995). A predictor is assigned an uninformative prior for being included in the 

173 best model (a predictor is equally likely to be selected as not), which corresponds to a prior odds 

174 ratio of 0.5 (included):0.5 (not included) = 1. If the posterior probability of inclusion, after 

175 calculations, is (or exceeds) 0.75, then the posterior odds are 0.75 (included):0.25 (not included) 

176 = 3. The ratio of the posterior odds to the prior odds is the posterior odds ratio (here 0.75:0.25 / 

177 0.5:0.5 = 3), with values exceeding 3 being indicative of probable importance of a predictor in 

178 explaining variation in the response variable (here MA:TV ratio). Models were calculated using 

179 JAGS (Plummer 2003).

180 Second, we used hierarchical partitioning (HP) on the predictor variables to calculate the 

181 relative proportions independently explained by each predictor. We used the hier.part (Walsh & 

182 Mac Nally 2004) package in R (R Development Core Team 2011). HP complements Bayesian 

183 model selection by quantifying the relative amounts of variation independently explained by 

184 each predictor (Mac Nally 1996).

185 The %fertilized predictor proved to be important (Table 1) but we were concerned that its 

186 effect might be moderated by the catchment to estuary (C:E) ratio or residence time of the 

187 estuary (Tf).  Therefore, we used Bayesian model selection and HP analyses for a full interaction 

188 model involving these three predictors, notwithstanding that the C:E ratio and Tf were not 

189 important from the analyses in Table 1. The full interaction model included the three predictors, 

190 each pair of interactions, and the three-way interaction (see Table 2).

191 We fitted a change-point model for the relationship between MA:TV and %catchment 

192 fertilization (F). The model was:

193
𝑀𝐴:𝑇𝑉𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖,𝜎),𝜇𝑖 = 𝛼 ∗ 𝛿(𝐹𝑖 ‒ 𝛾) + 𝛽1 ∗ 𝛿(𝛾 ‒ 𝐹𝑖) ∗ 𝐹𝑖 + 𝛽2 ∗ 𝛿(𝐹𝑖 ‒ 𝛾) ∗ 𝐹𝑖;
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194 where:  is unity if the argument is non-negative and zero otherwise and  is the change-point. 𝛿 𝛾
195 The priors were: . The program JAGS 𝛼,𝛽𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0,𝜎 = 2), and 𝛾~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,100)
196 (Plummer 2003), which uses a Gibbs sampler, was used to fit the relationship; there were 12,000 

197 iterations and 5000 ‘burns-in’ samples. We checked convergence using Gelman-Rubin methods 

198 (convergence of multiple independent chains).

199

200
201 Results 

202
203 The proportion of fertilization within a catchment was the only important predictor of the 

204 MA:TV ratio within our set of estuaries (Table 1). There was little evidence that interactions 

205 between the proportion of fertilization and residence time or the ratio of the catchment area to 

206 estuary area were important (Table 2). Macroalgal dominance in estuaries was positively 

207 associated with an increasing proportion of the catchment receiving fertilizers (Fig. 1), with 

208 macroalgal cover dominating benthic vegetation in estuaries with catchments that had >20% of 

209 the catchment with fertilization. The change point model was a good fit to the data, with R2 = 

210 0.93 (Fig. 1). The change-point  was estimated to be 24.3 ± 9.9 SD (% catchment fertilization). 𝛾
211 The intercept, , was 0.675 for points above the change-point and 0 otherwise. The slopes were: 𝛼
212  = 0.024 (slope for points below the change-point) and  = 0.002 (points above the change-𝛽1 𝛽2

213 point). There was little evidence for a relationship between chlorophyll a and % catchment 

214 fertilization (linear regression, R2 = 0.14, P > 0.05), although all estuaries with catchments > 

215 20% fertilized land had average chlorophyll a concentrations > 6 g/L during the late spring to 

216 late summer growth period. Similarly, there was little evidence for a relationship between the 

217 proportion of the estuary area covered by benthic vegetation and proportion of the catchment 

218 receiving fertilizers (R2 = 0.17, P > 0.05). Total nitrogen (N) and dissolved inorganic nitrogen 
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219 (DIN) exports were 0.22 – 1.7 and 0.063 – 0.74 kg ha-1yr-1 respectively for the catchments in the 

220 lower quartile of fertilization (<10% area fertilized) and 1.9 – 6 and 0.7 – 3.1 kg ha-1yr-1 for the 

221 catchments in the upper quartile of fertilization (>80% area fertilized). 

222
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223 Discussion

224 Land use as a predictor of shallow benthic vegetation

225 The results show that land use is a strong predictor of the proportion of macroalgae to total 

226 vegetation within south-eastern Australian estuaries. Although the current analysis shows that 

227 land use is a stronger predictor than nitrogen loads, we do not interpret this to mean that nitrogen 

228 inputs to estuaries are not the key driver of changes to estuarine benthic vegetation. Rather we 

229 use these findings to shed light on the possible mechanisms through which nutrients drive change 

230 within estuaries and how catchment land use integrates this change.

231 The proportion of the catchment receiving fertilization was a better predictor of the 

232 MA:TV ratio than was areal dissolved inorganic nitrogen (DIN) load, which we have previously 

233 suggested to be a better predictor of MA:TV in these estuaries than total nitrogen (TN) or total 

234 phosphorous (TP) loads (Woodland et al. 2015). This outcome arose because there was a 

235 relatively weak relationship between measured loads (both total and normalized to the estuary 

236 area) and the total area fertilized (km2) within catchments (R2 = 0.33). The lack of such a 

237 relationship is consistent with previous studies that have shown nitrogen attenuation factors can 

238 be highly variable (Elwan et al. 2015).  Therefore, the relationship between land use and 

239 estuarine response is not just driven by a land-use–load relationship, as we had expected.

240 There was a strong non-linear relationship between DIN concentration in the rivers and 

241 the MA:TV ratio (R2 = 0.78, when DIN concentration is log transformed) arising from the 

242 relationship between land use and DIN concentrations within the rivers (Woodland et al. 2015). 

243 However, we do not believe that the nutrient concentrations observed within the rivers are the 

244 primary driver of changes in the MA:TV ratio because these rivers drain into estuaries of greatly 

245 different sizes and hence dilution. Moreover, there was no relationship between DIN and the 
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246 MA:TV ratio when the nutrient concentration was normalized to estuary area. These results 

247 suggest that catchment land-use metrics ‘integrate’ factors affecting the amount and availability 

248 of nutrients within the estuary that control the MA:TV ratio, which are missed by instantaneous 

249 measurements of load. Catchment land-use metrics may incorporate: (1) the historical sequence 

250 of delivery of nitrogen (N) and total suspended solids that are trapped and recycled or re-

251 suspended within the estuary; (2) increased bioavailability of particulate and dissolved organic N 

252 delivered to estuaries as fertilization increases (Seitzinger et al. 2002, Petrone et al. 2009); and 

253 (3) local groundwater inputs of N directly to tidal areas (Wong et al. 2014).

254 Our results suggest that estuarine vegetation structure can be substantially altered when 

255 agricultural land use constitutes as little as 24% of the catchment. Therefore, it is instructive to 

256 compare the nutrient loading and export rates measured here with previous studies to place the 

257 land-use intensity in this study in a wider context. The areal loading rates of N in these estuaries 

258 span the range reported globally for estuaries, ranging 102-105 mmol N m-2 yr-1 as total N 

259 (Woodland et al. 2015). The rates of N generation from the catchments in the lowest quartile of 

260 % fertilization averaged 0.9 and 0.25 kg ha-1 yr-1 for TN and DIN respectively (Table 3), which 

261 are at the lower end of DIN exports of 0 to 10 kg ha-1 yr-1 reported in forested catchments 

262 (Bernal et al. 2005, Brookshire et al. 2012). Our undisturbed catchments have lower exports than 

263 forested catchments elsewhere in the world, highlighting the relatively oligotrophic state of 

264 estuaries fed by pristine catchments in Australia. For the most fertilized catchments (>80% 

265 fertilization), we saw average N generation rates of ~4.5 and 1.9 kg ha-1 yr-1 for TN and DIN 

266 respectively, which are comparable with reported nutrient generation rates for mixed 

267 farming/rural land use in southeastern Australia (Drewry et al. 2006). Our N generation rates are 

268 at the lower end of reported nutrient generation rates of 4-14 kg ha-1 yr-1 for TN in European and 
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269 North American systems (Howarth et al. 1996), highlighting that even small amounts of 

270 relatively low-intensity agriculture can lead to large changes in benthic vegetation in these 

271 naturally oligotrophic estuaries. Studies from other locations are needed to investigate whether 

272 the patterns observed here are globally applicable.

273

274 The use of the macroalgae to total vegetation ratio as an indicator of estuarine condition

275 It is virtually impossible to select an ecological indicator that represents all critical aspects of 

276 ecosystem function. Our choice of MA:TV was based on the requirement that we could easily 

277 obtain relevant data for large areas of the estuary. In shallow estuaries, such as those studied 

278 here, macroalgae is widely considered an indicator of eutrophication (Valiela et al. 1997). There 

279 are cascading ecological consequences from the increasing dominance of macroalgal biomass to 

280 food webs, from changes in consumer biodiversity, productivity and trophic relationships (e.g., 

281 omnivory) to biogeochemical cycling and dissolved-oxygen dynamics (Sogard & Able 1991, 

282 Valiela et al. 1997). Consistent with this, we also saw that once catchment fertilization exceeded 

283 20%, and alongside a transition to macroalgal dominance of demersal vegetation, all chlorophyll 

284 a measurements were > 6 g/L, which typically is regarded as eutrophic (Hakanson et al. 2007). 

285 The ability to reliably predict MA:TV ratio using just one variable differs from previous 

286 studies that have shown that multiple predictors are needed to explain >50% of the variation of 

287 other response variables (Li et al. 2007, Greene et al. 2015). One of the strongest relationships 

288 from previous reports has been between chlorophyll a and the area of agriculture land use in a 

289 catchment and estuary volume (R2 of 0.68) in 14 Canadian estuaries (Meeuwig 1999). This is not 

290 unexpected because a certain nutrient load will be diluted to different extents depending on 

291 estuary volume. Similarly, one would expect phytoplankton concentration to be sensitive to 
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292 estuarine residence time, which will lead to different wash-out rates (Nixon et al. 2001). We saw 

293 no clear relationship between chlorophyll a and percent fertilization in our data set, which was 

294 consistent with the need for other variables to describe the response of this parameter.

295 We found no important relationship between seagrass or total vegetation areal extent and 

296 land use. Elsewhere, a combination of land-use and physical factors, such as tidal range and 

297 mean wave height, were needed to describe seagrass areal extent (Li et al. 2007), illustrating the 

298 interplay of factors other than eutrophication in controlling seagrass distribution. By 

299 standardizing macroalgal extent as a proportion of total vegetation, our analysis reduces the 

300 influence of physical factors, such as sediment movement and hydrodynamics, that often limit 

301 the growth of benthic vegetation. The MA:TV measure also accounts for estuaries with different 

302 hypsometric profiles because the MA:TV ratio is functionally constrained to those areas where 

303 light penetration can support benthic vegetation.  Change point analysis showed that the MA:TV 

304 ratio increased at a lower rate above a catchment fertilization of 24%. This probably suggests 

305 that any increase in biomass above this point may have manifested itself as increased thickness 

306 (as opposed to area).  Alternatively, macroalgae became growth limited at high biomass due to 

307 limitation by other factors such as light and/or space.  Therefore, a disadvantage of this approach 

308 is that it does not sensitively distinguish between moderate and high levels of disturbance.

309 The interaction model showed that estuary flushing time did not contribute much to 

310 explaining variation in the MA:TV response. The residence times used in our study are relatively 

311 short (0.6–4.2 days compared to months to years for lagoons), which may partially explain the 

312 lack of importance of residence time. However, macroalgae can assimilate N in several hours 

313 and, given the subsequent relatively slow turnover of N, residence time may not significantly 

314 affect the macroalgal response (Nixon et al. 2001). Lagoon systems, with much longer residence 

PeerJ reviewing PDF | (2017:11:21690:2:1:NEW 24 Jan 2018)

Manuscript to be reviewed



315 times, are likely to respond differently to our estuaries because phytoplankton are more dominant 

316 in systems where water residence time exceeds phytoplankton turnover time (Hauxwell & 

317 Valiela 2004). As the catchment-estuary area ratio (C:E ratio) increased, we expected that 

318 nutrient inputs would be distributed over a smaller estuarine area and may render estuaries more 

319 sensitive to the proportion of fertilizing land uses in the catchment. The results of the interaction 

320 model, which included C:E ratio (Table 2), suggested that there was little evidence of an 

321 interaction of the C:E ratio with the proportion of fertilizing land uses in the catchment. As the 

322 C:E ratio increased, the transit time of loads delivered to the estuary decreased, leading to lower 

323 retention and exposure to nutrients within the system compared to estuaries with lower C:E 

324 ratios. Systems with low C:E ratios have the load spread over a larger area, but with a longer 

325 transit time, leading to higher retention and exposure to nutrients. Our results suggest that these 

326 opposing effects may largely cancel each other out, leading to the C:E ratio having no 

327 perceptible effect on MA:TV.

328

329 Application to management

330 Although nutrient loads are a critical management tool for receiving waters, the expense and 

331 long time frame required to collect and meaningfully interpret these data mean that such data are 

332 not always available. However, land-use information typically is much more readily available, 

333 and as has been illustrated here and previously (Meeuwig 1999, Meeuwig et al. 2000), can 

334 provide a good indicator of likely risk to estuaries. Once estuaries at risk have been identified, 

335 there should be a further assessment of ecological impact. The MA:TV ratio provides a relatively 

336 rapid and spatially representative indication of ecological response and condition. By way of an 

337 example case study, an Index of Estuary Condition (IEC) is being used to assist the prioritization 
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338 of estuary management investment thereby supporting the Victorian Waterway Management 

339 Program, Australia (DEPI 2013). Indicators that have demonstrated relationships with processes 

340 threatening estuaries (e.g. nutrient loading and land-use change) are essential if broad scale 

341 resource condition assessments are to be interpretable, ecologically meaningful and useful for 

342 management (Barbour et al. 2000, Stoddard et al. 2008). For these reasons the MA:TV index is 

343 being incorporated into the Victorian IEC.

344

345 Conclusion

346 The proportion of catchment fertilization is a strong predictor of the proportion of macroalgae 

347 relative to seagrass in small south-eastern Australian estuaries. Our results suggest that estuaries 

348 are sensitive to land-use change, and that conversion of as little as 20% of a catchment to 

349 fertilized land uses can substantially shift the dominance of benthic primary produces from 

350 seagrass to macroalgae. The use of simple land-use measures may provide a strong indicator of 

351 risk of estuarine eutrophication where other data are absent. Further studies across a wider 

352 geographic and climatic spread are required to investigate relationships between catchment land 

353 use and estuarine vegetation globally.

354
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Figure 1

Plot of MA:TV vs % of catchment fertilised

The ratio of macroalgae to total vegetation (MA:TV) versus the % of the catchment receiving

fertilizer inputs. Scatterplots show observed (open circles) and fitted (solid circles) for the

change-point analysis, with the estimated position of the change-point shown by a dashed

vertical line.
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Table 1(on next page)

Results of Bayesian variable selection and hierarchical partitioning

Results of Bayesian variable selection and hierarchical partitioning, which show the predictor

variables for the macroalgae to total vegetation (MA:TV) ratio, the posterior probability of

inclusion predictor Pr(Inc), the regression coefficient (β), the standard deviation of beta SD(β)

and the % of the variability independently explained by each variable. Predictors are

abbreviated as follows: C:E ratio is the catchment area to estuary area ratio, Tf is the estuary

flushing time, Pop_Prop_1 is the proportion of the catchment with a human population >1

km-2, % Modified is the proportion of the catchment modified by human development, %

urbanized is the proportion of the catchment urbanized, % Fertilized the proportion of

catchment likely to receive fertilizer inputs, and the Areal.DIN.load is the load of inorganic

nitrogen to each estuary normalized to surface area.
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Predictor Variabce Pr(Inco* β SD(βo %indep.

†C:E ratio 0.04 0.01 0.03 6

Tf 0.02 <0.01 0.03 6

Pop_Prop_1 0.02 <0.01 0.02 8

% Modified 0.02 <0.01 0.02 5

†% Urbanized 0.03 <0.01 0.02 13

†% Ferticized 1.0 0.30 0.04 46

†Areac.DIN.coad 0.03 <0.01 0.02 15

 Vacues > 0.75 are deemed to be statisticaccy important

 †Ln-transformed
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Table 2(on next page)

Results of Bayesian variable selection for potential interaction terms

Results of Bayesian variable selection for potential interaction terms showing the posterior

probability of inclusion predictor Pr(Inc), the regression coefficient (β), the standard deviation

of beta SD(β) and the % of the variability independently explained by each variable (as for

Table 1) computed using hierarchical partitioning.
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Interaction terms Pr(Inc) β SD(β) % indep.

†C:E ratio 0.067 0.016 0.026 12

Tf 0.025 -0.004 0.019 6

†% Fertilized 1.0 0.294 0.042 52

†C:E ratio × Tf 0.016 0.002 0.016 3

†C:E ratio × †

% Fertilized

0.068 -0.013 0.034 14

Tf × †% Fertilized 0.023 0.006 0.018 4

Tf × †C:E ratio × †

% Fertilized

0.030

-0.008 0.019 9

 Values > 0.75 are deemed statistically important

 †Ln-transformed
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Table 3(on next page)

Nutrient export rates for total nitrogen (TN) and NOx for the catchments in this study

Comparisons for exports from forest and mixed farming are given for SE Australia. %

Fertilized exports from catchments are all given in kg ha-1 y-1. Published export rates for

Australian forest and mixed farming/rural land uses are from Drewry et al. (2006) .
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System %_Fertilimed NOx TN 

Wingan River 0.49 0.06 1.7

Cann River 2.0 0.08 0.22

Genoa River 4.7 0.11 0.62

Aire River 13 0.74 1.0

Gellibrand River 25 1.3 3.1

Merriman Creek 35 0.38 1.1

Tarra River 38 1.6 2.5

Werribee River 56 0.11 0.35

Patterson River 57 0.33 1.2

Glenelg River 63 0.24 0.65

Kororoit Creek 82 0.28 0.56

Tarwin River 85 3.1 6.1

Curdies River 86 0.70 2.4

Bass River 92 3.1 7.7

Moyne River 98 0.79 1.9

Forest - - 0.9-2

Mixed farming/rural - 4 0.5-4.5
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