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ABSTRACT
The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006

was heralded as a major breakthrough of the decade in stem cell research. The ability

to reprogram human somatic cells to a pluripotent embryonic stem cell-like state

through the ectopic expression of a combination of embryonic transcription factors

was greeted with great excitement by scientists and bioethicists. The reprogramming

technology offers the opportunity to generate patient-specific stem cells for

modeling human diseases, drug development and screening, and individualized

regenerative cell therapy. However, fundamental questions have been raised

regarding the molecular mechanism of iPSCs generation, a process still poorly

understood by scientists. The efficiency of reprogramming of iPSCs remains low due

to the effect of various barriers to reprogramming. There is also the risk of

chromosomal instability and oncogenic transformation associated with the use of

viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming

transcription factors by integration in the host cell genome. These challenges can

hinder the therapeutic prospects and promise of iPSCs and their clinical

applications. Consequently, extensive studies have been done to elucidate the

molecular mechanism of reprogramming and novel strategies have been identified

which help to improve the efficiency of reprogramming methods and overcome the

safety concerns linked with iPSC generation. Distinct barriers and enhancers of

reprogramming have been elucidated, and non-integrating reprogramming methods

have been reported. Here, we summarize the progress and the recent advances that

have been made over the last 10 years in the iPSC field, with emphasis on the

molecular mechanism of reprogramming, strategies to improve the efficiency of

reprogramming, characteristics and limitations of iPSCs, and the progress made in

the applications of iPSCs in the field of disease modelling, drug discovery and

regenerative medicine. Additionally, this study appraises the role of genomic editing

technology in the generation of healthy iPSCs.
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INTRODUCTION
The development of induced pluripotent stem cells (iPSCs) in 2006 by Shinya Yamanaka

was a remarkable breakthrough that was made possible by many research findings by past

and current scientists in related fields. In 1962, Sir John Gurdon achieved the first example

of cellular reprogramming by reporting the generation of tadpoles from enucleated

unfertilized frog egg cells that had been transplanted with the nucleus from intestinal

epithelial somatic cells of tadpoles (Gurdon, 1962). This remarkable method of

reprogramming somatic cells to the pluripotent embryonic state with the same genetic

makeup was termed somatic cell nuclear transfer (SCNT). This discovery led to the birth

of cloning. Thirty-five years later, Sir Ian Wilmut and his team used the same SCNT

strategy of cellular reprogramming in the cloning of Dolly the sheep, the first mammalian

to be generated by somatic cloning (Wilmut et al., 1997). These two scientific

breakthroughs in somatic cloning proved that the nuclei of differentiated somatic cells

contain all the necessary genetic information to generate a whole organism and that the

egg cell contains the necessary factors to bring about such reprogramming. In 2001,

Tada et al. (2001) further lent credence to the somatic cloning hypothesis through another

novel strategy of reprogramming termed cell fusion. The cell fusion of somatic cells

with embryonic stem cells (ESCs) to generate cells capable of expressing pluripotency-

related genes showed that ESCs do contain some factors that can reprogram somatic

cells (Tada et al., 2001). There are two other important landmarks—the generation of

mouse ESCs cell lines in 1981 by Sir Martin Evans, Matthew Kaufman and Gail R. Martin

and the subsequent generation of human ESCs in 1998 by James Thomson (Evans &

Kaufman, 1981; Martin, 1981; Thomson et al., 1998). The ESCs are developed from pre-

implantation embryos and are capable of generating any cell type in the body; an inherent

characteristic termed pluripotency. Their discoveries shed light on the appropriate

culture conditions and transcription factors necessary for the maintenance of

pluripotency. The merging of all these essential historical landmarks led to the

discovery of iPSCs (Fig. 1).

But why the need for iPSCs since they are pluripotent just like ESCs? Firstly, the use of

ESCs is fraught with strong ethical concerns related to embryo destruction, and this has

hindered its clinical application. Secondly, there are the safety concerns related to the

immune rejection of the ESCs. Finally, due to its source from the embryo, ESCs are

limited in supply, and this will limit broader therapeutic application. Hence, there was an

urgent need for another substitute for ESCs that bypasses these important drawbacks.

Indeed, the iPSCs serve as an alternative source of pluripotent stem cells with the same

differentiation potential as ESCs while avoiding the ethical issues associated with

the latter.

Shinya Yamanaka and Kazutoshi Takahashi developed the mouse iPSCs in 2006

through a different method of reprogramming: the use of a retrovirus to deliver into a

somatic cell (mouse fibroblast), a combination of four reprogramming transcription

factors, including Oct 3/4 (Octamer-binding transcription factor-3/4), Sox2

(Sex-determining region Y)-box 2, Klf4 (Kruppel Like Factor-4), and c-Myc nicknamed
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the “OSKM factors” (Takahashi & Yamanaka, 2006). A year later in 2007, Yamanaka

and his team applied the same reprogramming method for adult human fibroblast to

generate human iPSCs (hiPSCs) and James Thomson’s group reported the generation of

the same hiPSCs though using a different delivery system, the lentivirus and a different set

of four factors: Oct 3/4, Sox2, Nanog, and Lin 28 (Takahashi et al., 2007; Yu et al., 2007).

For their remarkable revolutionary discoveries, Shinya Yamanaka and John B. Gurdon

were awarded the 2012 Nobel prize in Physiology or Medicine (Gurdon & Yamanaka,

2012). Like ESCs, the iPSCs have a self-renewal capability in culture and can differentiate

into cell types from all three germ cell layers (ectoderm, mesoderm, and endoderm).

The iPSC technology holds great promise for personalized cell-based therapy, human

disease modeling, and drug development and screening. However, this technology is by no

means free of its challenges. The reprogramming efficiency is low and tedious, and there is

associated risk of chromosomal instability and tumorigenesis from insertional

mutagenesis due to the viral vector delivery method (Takahashi & Yamanaka, 2006;

Takahashi et al., 2007; Yu et al., 2007). These drawbacks will have a significant impact on

the clinical application of iPSCs.

Much progress has since been made to improve the efficiency of reprogramming and

to reduce the risk associated with the technology. Novel strategies already employed to

improve reprogramming include the inhibition of barriers to reprogramming, use of

non-integrative delivery methods, overexpression of enhancing genes and the use

Figure 1 Historical timeline showing events that led to the development of iPSCs.

Full-size DOI: 10.7717/peerj.4370/fig-1
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of certain small molecules which enhanced reprogramming. Factors that influence the

reprogramming process have been studied, namely, the choice of the somatic cell

source, reprogramming transcription factors, delivery methods and culture conditions.

Extensive research on the molecular mechanisms of reprogramming has significantly

improved its efficiency.

In this review, we provide an overview of the progress made in iPSC technology in the

last decade. First, we briefly define iPSCs by providing a summary of Yamanaka’s key

findings and the characterization of iPSCs and then summarize the current knowledge on

the molecular mechanism of reprogramming, the limitations and the various strategies

employed to address the drawbacks of this technology. We will then briefly discuss the

potential application of iPSCs in the field of disease modeling, drug development, and

regenerative medicine.

METHODS
The data for this review were obtained fromMedline on OvidSP, which includes PubMed,

Embase by the US National Library of Medicine as well as a search through the University

of Bristol Library services.

Search strategy
A thorough search was carried out by signing into Ovid, Wolters, and Kluwer portal

and “All Resources” was selected. Three separate keywords were used for the search. The

first search with the keyword “induced pluripotent stem cells” yielded a total number of

5,975 publications. The second search with the keyword “cellular reprogramming” gave a

total number of 3,002 publications. The third search with the keyword “transcription

factors” gave a total number of 299,870 publications.

A combination of the search for “induced pluripotent stem cells” using the Boolean

operator “AND” with “cellular reprogramming” and “transcription factor” yielded a total

number of 200 publications. We next hand screened these 200 publications to see

those that fit into the inclusion criteria for this study, and we arrived at a total of

114 publications.

Furthermore, other data were included in this review, and these were obtained from

the University of Bristol Library services using the search phrase “induced pluripotent

stem cells,” “cellular reprogramming” and “transcription factors.” The publications

generated were hand screened to fit the inclusion criteria, and 61 publications were

selected. Also included were relevant references from previously selected publications as

well as many other recommended publications. A total of 228 articles were reviewed.

Inclusion criteria
The publications selected were thoroughly analyzed to ensure they focused on the

study objectives which are on the molecular mechanism of cellular reprogramming of

somatic cells into iPSCs using transcription factors and other small molecules. We

included studies that focused on the barriers and enhancers of cellular reprogramming

and those that emphasized the various novel strategies for enhancing the kinetics and
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efficiency of the process. Also considered were articles on the limitations and potential of

iPSCs and the progress made to address such limitations. Publications that included the

role of genomic editing technology in the generation of iPSCs were also considered.

GENERATION OF iPSCs: A BRIEF OVERVIEW
Briefly, iPSCs can be defined as “embryonic stem cell-like” cells derived from the

reprogramming of adult somatic cells by the introduction of specific pluripotent-

associated genes. Prior to the discovery of iPSCs, ESCs which are derived from the inner

cell mass (ICM) of a blastocyst of pre-implantation stage embryo, was the most well-

known pluripotent stem cells. Just like ESCs, iPSCs can proliferate extensively in culture

and can give rise to the three germ cell layers, namely, endoderm, mesoderm, and

ectoderm.

Takahashi and Yamanaka set out to identify the genes that help in the maintenance of

pluripotency in mouse ES cells. Their search led to a list of 24 candidate-reprogramming

factors chosen for their links to ES-cell pluripotency. A screening method was developed

to test a pool of 24 pluripotency-associated candidate factors for the ability to induce

pluripotency. These genes were transduced into mouse embryonic fibroblasts (MEFs)

using a retroviral delivery system. The mouse fibroblast was generated by the fusion of

the mouse F-box only protein 15 (Fbxo15) gene locus with a b-galactosidase (b-geo)

cassette. The expression of b-geo is used as a reporter of Fbxo15 expression and activity,

as cells expressing b-geo are resistant to the selection marker geneticin (G418). The

ESC-specific Fbxo-15 locus is not expressed in normal somatic cells which are not

resistant to G418 treatment. The Fbxo15-b-geo MEFs were used to screen the pool of 24

transcription factors by transducing different combinations of the candidate genes and

assessing the capability of the MEFs to survive in G418 treatment (Fig. 2). Consecutive

rounds of elimination of each factor then led to the identification of a minimal core

set of four genes, comprising Oct3/4, Sox2, Klf4, and c-Myc (OSKM cocktail/factors)

(Takahashi & Yamanaka, 2006). These factors were already shown to be important in early

embryonic development and vital for ES cell identity (Avilion et al., 2003; Cartwright et al.,

2005; Li et al., 2005; Niwa, Miyazaki & Smith, 2000). The reprogrammed cell colonies,

which were named as iPSCs, demonstrated ES cell-like morphology, express major ES cell

marker genes like SSEA-1 and Nanog and formed teratomas upon injection into

immunocompromised mice (Takahashi & Yamanaka, 2006) (Table 1).

Takahashi and Yamanaka demonstrated that ectopic expression of defined

transcription factors was able to reprogram mouse fibroblasts back to a pluripotent state

thus circumventing the ethical concerns surrounding the use of ESCs. However, these

“first generation” iPSCs demonstrated a lower level of key ES pluripotency gene

expression and failed to generate adult chimeras or contribute to the germline (Takahashi &

Yamanaka, 2006). These latter characteristics suggest that the iPSCs were only partially

reprogrammed. In 2007, Yamanaka and other laboratories modified the induction

protocols to generate fully reprogrammed iPSCs that are competent for adult chimera and

germline transmission (Wernig et al., 2007; Okita, Ichisaka & Yamanaka, 2007; Maherali

et al., 2007). The technology has also been successfully translated to human fibroblasts
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(Takahashi et al., 2007; Yu et al., 2007; Park et al., 2008a) and then to other somatic

cell types, such as pancreatic b cells (Stadtfeld, Brennand & Hochedlinger, 2008), neural

stem cells (Eminli et al., 2008; Kim et al., 2008), stomach and liver cells (Aoi et al., 2008),

mature B lymphocytes (Hanna et al., 2008), melanocytes (Utikal et al., 2009a), adipose

stem cells (Sun et al., 2009) and keratinocytes (Maherali et al., 2008), demonstrating the

universality of cellular reprogramming. The advantages of iPSC technology are its

reproducibility and simplicity, thus encouraging many laboratories to modify and

improve upon the reprogramming technique. Consequently, remarkable progress has

been made in the last decade in the field of iPSC technology.

TECHNICAL ADVANCES AND PROGRESS IN iPSC
GENERATION
If iPSCs are to fulfill their promise (that they are viable and possibly superior substitutes

for ESCs in disease modeling, drug discovery, and regenerative medicine), limitations

and obstacles on the road to their clinical application need to be overcome. The initial

reports of iPSC generation were inefficient (∼0.001–1%) (Takahashi & Yamanaka, 2006;

Takahashi et al., 2007;Okita, Ichisaka & Yamanaka, 2007; Lowry et al., 2008;Huangfu et al.,

2008b), that is, on average only one out of 10,000 somatic cells formed iPSCs. The

overexpression of oncogenes such as c-Myc and Klf4 during the generation of iPSCs raises

safety concerns. Indeed, in the original report of germline-competent iPSCs, ∼20% of

the offspring developed tumors attributable to the reactivation of the c-Myc transgene

(Okita, Ichisaka & Yamanaka, 2007). Furthermore, there is the risk of insertional

mutagenesis due to virus-based delivery methods (Takahashi & Yamanaka, 2006;

Takahashi et al., 2007; Yu et al., 2007). Much progress has been made in the past decade to

address these limitations and to improve the reprogramming technique. New methods for

Figure 2 Generation of iPSCs from MEF cultures via 24 factors by Yamanaka.

Full-size DOI: 10.7717/peerj.4370/fig-2
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induced reprogramming have been developed. The following sections present an overview

of the advancement made to improve the reprogramming technique, with emphasis on

the reprogramming factors and the delivery systems for iPSC generation.

Reprogramming factors
The conventional OSKM cocktail by Yamanaka’s group has been used extensively by

researchers on a wide range of human somatic cells and delivery systems (Gonzalez, Boue &

Izpisua Belmonte, 2011). Thomson’s group provided an alternative combination of four

factors: Oct 3/4, Sox2, Nanog, and Lin 28 (OSNL) (Yu et al., 2007). The generation of

iPSCs by Yamanaka’s and Thomson’s groups using different cocktails of transcription

factors may suggest that different transcription factors activate the same reprogramming

pathway by reinforcing each other’s synthesis. The OSKM and OSNL reprogramming

cocktails have proved efficient on a wide range of delivery systems, albeit at a variably

low-efficiency rate (Gonzalez, Boue & Izpisua Belmonte, 2011; Yakubov et al., 2010).

Consequently, researchers have sought to discover new molecules that will enhance the

reprogramming technique and improve its efficiency (Table 2). We will refer to these

molecules as reprogramming “enhancers.” Some other molecules discovered are “barriers”

of reprogramming technique. So the strategy employed to increase the efficiency of

reprogramming includes the inhibition of such barriers and the overexpression and

administration of the enhancers.

Pluripotency-associated transcription factors

Many of the transcription factors used for reprogramming somatic cells are part of a core

pluripotency circuitry. These factors are pluripotency-associated genes expressed early

during embryonic development and are involved in the maintenance of pluripotency and

self-renewal. The expression of other pluripotency-associated genes along with the

minimal pluripotency factors (OSKM) can enhance the reprogramming efficiency or even

Table 1 The characterization of iPSCs.

Morphology Flat, cobblestone-like cells, ES like morphology

Tightly packed colonies with sharp edges

Pluripotency markers Alkaline phosphatase assay (as a live marker)

Increase levels of pluripotency proteins such as Oct4, Nanog, SSEA3/4,

TRA-1-60, and TRA-1-81

Differentiation potential Teratoma formation—can form ectoderm, mesoderm, and endoderm,

the three germ layers

Embryoid body formation—can form ectoderm, mesoderm, and

endoderm, the three germ layers

Genetic analyses Diploid karyotype

Transgene silencing after reprogramming

Epigenetic analyses DNA methylation of lineage-committed genes

DNA demethylation of key pluripotency genes like Oct4, Sox2, Nanog

Note:
Adapted from Brouwer, Zhou & Nadif Kasri (2016).
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Table 2 Reprogramming factors capable of reprogramming human cells.

Reprogramming

factors

Function Affected pathway Effect on

pluripotency

References

Oct4 Maintenance of pluripotency

and self-renewal

Core transcriptional

circuitry

+ Takahashi et al. (2007)

Sox2 Maintenance of pluripotency

and self-renewal

Core transcriptional

circuitry

+ Takahashi et al. (2007)

Klf4 Maintenance of pluripotency

and self-renewal

Core transcriptional

circuitry

+ Dang, Pevsner & Yang (2000),

Nakatake et al. (2006) and

Guo et al. (2009)

c-Myc Maintenance of pluripotency

and self-renewal

Core transcriptional

circuitry

+ Takahashi et al. (2007)

Lin28 Maintenance of pluripotency,

translational enhancer,

inhibits let7

Core transcriptional

circuitry

+ Yu et al. (2007) and Buganim et al.

(2012)

Nanog Maintenance of pluripotency

and self-renewal

Core transcriptional

circuitry

+ Yu et al. (2007) and Buganim et al.

(2012)

Sall4 Maintenance of pluripotency

and self-renewal

Core transcriptional

circuitry

+ Tsubooka et al. (2009) and Buganim

et al. (2012)

Utf1 Maintenance of pluripotency Core transcriptional

circuitry

+ Zhao et al. (2008) and Buganim et al.

(2012)

p53 Induces senescence, tumor

suppressor

Apoptosis/cell cycle - Kawamura et al. (2009), Marion et al.

(2009), Utikal et al. (2009b),

Hong et al. (2009) and Banito et al.

(2009)

p21 Induces senescence, tumor

suppressor

Apoptosis/cell cycle + Hong et al. (2009), Banito et al. (2009)

and Li et al. (2009a)

MDM2 p53 inhibitor Apoptosis/cell cycle + Hong et al. (2009)

REM2 p53 inhibitor Apoptosis/cell cycle + Edel et al. (2010)

Cyclin D1 Stimulates E2F/G1-S cell cycle

transition

Apoptosis/cell cycle + Edel et al. (2010)

SV40 large T antigen Inhibits p53 tumor

suppression

Apoptosis/cell cycle + Mali et al. (2008)

DOT1L Histone H3K79

methyltransferase

Chromatin remodeling - Onder et al. (2012)

MBD3 Histone deacetylation,

chromatin remodeling

Chromatin remodeling - Rais et al. (2013)

Sirt6 Chromatin remodeling/

telomere maintenance

Chromatin remodeling + Sharma et al. (2013)

RCOR2 Facilitates histone

demethylation

Chromatin remodeling + Yang et al. (2011)

Non-coding RNA

miR367 Inhibits EMT TGFb + Anokye-Danso et al. (2011)

LincRNA-ROR Regulates expression of core

transcriptional factors

Core transcriptional

circuitry

+ Loewer et al. (2010), Wang et al.

(2013), Melton, Judson & Blelloch

(2010) and Worringer et al. (2014)

miR302 Inhibits EMT/stimulates oct4

expression

TGFb; Core
transcriptional circuitry;

apoptosis

+ Anokye-Danso et al. (2011), Lin et al.

(2010, 2011) and Subramanyam

et al. (2011)
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replace some of the reprogramming factors. For example, the expression of

undifferentiated embryonic cell transcription factor 1 (UTF1) or sal-like protein 4

(SALL4) with OSKM/OSK, improved the reprogramming efficiency (Zhao et al., 2008;

Tsubooka et al., 2009). Non-coding RNA’s like LincRoR and Let7 are involved in the

regulation of expression of core transcriptional factors. LincRoR is a reprogramming

enhancer while Let7 acts as a barrier by blocking the activation of pluripotency factors

c-Myc, Lin 28, and SALL4. Thus, Let7 inhibition and the expression of LincRoR both

enhance reprogramming efficiency (Loewer et al., 2010;Wang et al., 2013;Melton, Judson &

Blelloch, 2010; Worringer et al., 2014). Nanog and Lin 28 can replace Klf4 and c-Myc

respectively, and estrogen-related receptor beta (ESRRb) can replace Klf4 (Yu et al., 2007;

Feng et al., 2009). A recent single-cell gene expression study of partially reprogrammed

cells showed that SALL4, ESRRb, Nanog and Lin 28 (rather than OSKM) was enough for

reprogramming fibroblasts into iPSCs, albeit with low efficiency (Buganim et al., 2012).

These observations suggest that most of these enhancer genes are possibly part of the

reprogramming circuitry network activated by OSKM. Consequently, a detailed analysis

of the downstream targets of OSKM may help us understand the molecular mechanisms

of reprogramming, thus opening the way to increasing its efficiency.

Cell cycle-regulating genes
As they move toward pluripotency, somatic cells also gain the ability to proliferate

indefinitely. Not surprisingly, two of the minimal pluripotency factors, c-Myc, and Klf4,

Table 2 (continued).

Reprogramming

factors

Function Affected pathway Effect on

pluripotency

References

miR766 Inhibits Sirt6 Chromatin remodeling - Sharma et al. (2013)

miR200c Inhibits EMT/TGFb pathway TGFb + Miyoshi et al. (2011)

miR369 Inhibits EMT/TGFb pathway TGFb + Miyoshi et al. (2011)

miR372 Inhibits EMT/TGFb pathway TGFb + Subramanyam et al. (2011)

Let7 Regulates expression of core

transcriptional factors and

prodifferentiaion genes

Core transcriptional

circuitry/TGFb
- Loewer et al. (2010), Wang et al.

(2013), Melton, Judson & Blelloch

(2010) and Worringer et al. (2014)

Small molecules

Vitamin C Alleviates cell senescence/

antioxidant

Hypoxia response + Wang et al. (2011), Esteban et al.

(2010) and Chung et al. (2010)

Valproic acid Inhibits histone deacetylases Chromatin remodeling + Huangfu et al. (2008a)

CHIR99021 GSK3-inhibitor PI3k; Wnt/b-catenin + Li et al. (2009b)

Parnate Lysine-specific demethylase 1

inhibitor

Chromatin remodeling + Li et al. (2009b)

BIX-01294 Methyltransferase G9a

inhibitor

Chromatin remodeling + Feldman et al. (2006) and

Shi et al. (2008)

5-Azacytidine DNA methyltransferase

inhibitor

Chromatin remodeling + Huangfu et al. (2008a)

Trichostatin A Inhibits histone deacetylases Chromatin remodeling + Huangfu et al. (2008a)

Note:
Adapted from Brouwer, Zhou & Nadif Kasri (2016).
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are oncogenes that enhance cellular proliferation. Apparently, there will be other

regulators in this cell cycle pathway. The p53 tumor suppressor protein promotes

senescence and inhibits growth, thus having an inhibitory effect on iPSCs generation

(Kawamura et al., 2009; Marion et al., 2009; Utikal et al., 2009b; Hong et al., 2009; Banito

et al., 2009). Many studies have shown that p53 inhibition can greatly enhance

reprogramming efficiency (Kawamura et al., 2009;Marion et al., 2009; Utikal et al., 2009b;

Hong et al., 2009; Banito et al., 2009). Cell cycle-dependent kinase inhibitors like INK4A

and ARF (which are linked to the p53–p21 pathway) can block iPSC reprogramming

(Li et al., 2009a). Conversely, overexpression of p53 inhibitor proteins (such as SV40

large T antigen, REM2, and MDM2), increased the efficiency of reprogramming (up to

23-fold compared to OSKM alone) (Park et al., 2008a; Hong et al., 2009; Mali et al., 2008;

Edel et al., 2010). So researchers have used the strategy of overexpressing reprogramming

enhancers to eliminate the barriers on the road toward pluripotency.

Epigenetic modifiers
The reprogramming of somatic cells into iPSCs is characterized by epigenetic changes,

fromDNAmethylation to histone modifications. Chromatin remodeling is a rate-limiting

step in the reprogramming process, and thus researchers have studied chemical

compounds that modify the epigenetic process (Huangfu et al., 2008a). For example,

DNA methyltransferase inhibitor 5-azacytidine and histone deacetylase (HDAC)

inhibitors (like suberoylanilide hydroxamic acid (SAHA), trichostatin A (TSA) and

valproic acid (VPA)) enhanced reprogramming efficiency in MEFs (Huangfu et al.,

2008a). VPA also promotes somatic cell reprogramming with Oct4 and Sox2 alone

(Huangfu et al., 2008b). The combination of CHIR99021 (a GSK3 inhibitor) with Parnate

(a lysine-specific demethylase one inhibitor) causes the reprogramming of human

keratinocytes with only Oct4 and Klf4 (Li et al., 2009b). Similarly, G9a histone

methyltransferase promotes epigenetic repression of Oct4 during embryonic development

(Feldman et al., 2006), which is why a G9a inhibitor (BIX-01294) enhances MEF

reprogramming with only Oct4 and Klf4 (Shi et al., 2008). Disruptor of telomeric

silencing 1-like (DOT1L) (Onder et al., 2012), methyl-CpG binding domain protein 3

(MBD3) (Rais et al., 2013), rest corepressor 1 (RCOR2) (Yang et al., 2011), sirtuin 6

(Sirt6), and miR766 (a Sirt6 inhibitor) (Sharma et al., 2013) are all involved in chromatin

remodeling, thus affecting the efficiency of reprogramming when inhibited or

overexpressed. Vitamin C improves cellular reprogramming efficiency, in part by

promoting the activity of histone demethylases JHDM1A (KDM2A) and JHDM1B

(KDM2B) (Wang et al., 2011), alleviating cell senescence (Esteban et al., 2010) and

inducing DNA demethylation (Chung et al., 2010).

In conclusion, microRNA (miRNA) have been used to increase reprogramming

efficiency. The miRNA’s mostly work by inhibiting the TGFb signaling pathway, thereby

inhibiting the epithelial to mesenchymal transition (EMT). The combination of

miR-291-3p, miR-294, and miR-295 with OSK cocktail promotes iPSC generation

(Judson et al., 2009). More recently, miR302, miR367, miR369, miR372, and miR200c

have been used either alone or in combinations to enhance the reprogramming process in
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humans by replacing the traditional OSKM nuclear factors (Anokye-Danso et al., 2011;

Lin et al., 2010, 2011; Miyoshi et al., 2011; Subramanyam et al., 2011). The miRNAs can

specifically target multiple pathways thus reducing the need and amount of transcription

factors for reprogramming (Subramanyam et al., 2011). In the near future, miRNA-based

reprogramming may provide a more effective way of cellular reprogramming than

traditional nuclear factor (OSKM) methods.

Delivery methods
A number of different delivery methods have been used to introduce reprogramming

factors into somatic cells (Fig. 3). The reprogramming methods can be grouped into

two categories—integrative systems (involving the integration of exogenous genetic

material into the host genome) and non-integrative systems (involving no integration of

genetic material into the host genome). The integrative delivery methods include the use

of viral vectors (retrovirus, lentivirus, and inducible lentivirus) and non-viral vectors

(linear/plasmid DNA fragments and transposons). Similarly, the non-integrative delivery

methods include the use of viral vectors (adenovirus and Sendai virus) and non-viral

vectors (episomal DNA vectors, mRNA, and proteins). This section is focused on the

reprogramming methods currently available.

Integrative delivery systems

Viral integrative vectors

Retroviruses were used for the delivery of transcription factors in the original studies on

iPSC generation (Takahashi & Yamanaka, 2006; Takahashi et al., 2007;Wernig et al., 2007;

Okita, Ichisaka & Yamanaka, 2007; Maherali et al., 2007). Retroviruses are an efficient

and relatively easy form of the delivery system. They require an actively dividing somatic

cell to integrate well in the genome. iPSC is considered to be fully reprogrammed only

after the upregulation of endogenous pluripotency genes and the downregulation or

silencing of the integrated transgene expression. Though retroviral vectors are usually

silenced in ESCs (Jahner et al., 1982; Stewart et al., 1982) and iPSCs (Park et al., 2008a;

Nakagawa et al., 2008), the silencing is not always efficient, and the silenced transgenes

may be reactivated later on. They can integrate randomly into the host genome leading

to an increased risk of insertional mutagenesis. Certainly, in the original report of

germline-competent iPSCs, ∼20% of the offspring developed tumor attributable to the

reactivation of c-Myc transgene (Okita, Ichisaka & Yamanaka, 2007).

Lentivirus has also been successfully used for the introduction of transgenes during

cellular reprogramming (Yu et al., 2007; Blelloch et al., 2007). Like retroviral vectors,

lentivirus integrates into the host genome with the risk of insertional mutagenesis, and

inefficient silencing and transgene reactivation are possible. Unlike retroviruses, they can

integrate into both dividing and non-dividing cells. Thus iPSCs can be generated from

most somatic cell types. The original studies on iPSC generation by Yamanaka involved

the use of different types of retroviruses, each delivering only one type of transcription

factor (Takahashi et al., 2007). This can create many uncontrollable integration events

with increased risks of transgene reactivation, inefficient transgene silencing and
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diminished efficiency of reprogramming. The creation of polycistronic viral vectors (for

retrovirus (Rodriguez-Piza et al., 2010) and lentivirus (Carey et al., 2009; Sommer et al.,

2009)) allowed the expression of all reprogramming factors driven by a single promoter,

with the genes separated by self-cleaving peptide sequences. This method remarkably

reduces the number of genomic insertions thus improving the safety and efficiency of the

reprogramming process. Moreover, the introduction of both the excisable (Cre/loxP)

vector system (Soldner et al., 2009; Chang et al., 2009) and inducible (tetracycline/

doxycycline-inducible) vector system (Maherali et al., 2008; Hockemeyer et al., 2008;

Wernig et al., 2008a; Staerk et al., 2010) has allowed for a better control of transgene

expression thus reducing the effects of inefficient silencing and transgene reactivation.

Non-viral integrative vectors

An alternative to viral vectors is the transfection of DNA (plasmid/linear) into cells using

liposomes or electroporation. Using this method, the transduction efficiency is much

lower with only a few cells capturing the full set of reprogramming factors. However, the

use of polycistronic vectors to express all cDNAs from a single promoter has helped to

improve the reprogramming efficiency. Kaji et al. (2009) successfully generated iPSCs

from mouse fibroblasts with a non-viral polycistronic vector combined with an excisable

Cre/loxP system for deleting the reprogramming construct.

Transposons. Kaji et al. (2009) and Woltjen et al. (2009) applied the non-viral single

vector system for the generation of human iPSCs using a piggybac (PB) transposon-based

delivery system. The PB is a mobile genetic element which includes an enzyme PB

transposase (that mediates gene transfer by insertion and excision). Co-transfection

of a donor plasmid (transposon) with a helper plasmid expressing the transposase

enzyme leads to the efficient integration of the transposon (Gonzalez, Boue & Izpisua

Figure 3 Schematic representation of various delivery methods of iPSC induction.

Full-size DOI: 10.7717/peerj.4370/fig-3
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Belmonte, 2011). Once the reprogramming is achieved, the enzyme can precisely delete

the transgenes without any genetic damage thus avoiding the risk of insertional

mutagenesis. Drawbacks to the use of PB systems include the risks of integrating back

into the genome, and the potential that the human genome contains endogenous PB

transposon elements which may be acted upon by the transposase enzyme essential for

the transgene excision (Newman et al., 2008; Feschotte, 2006; Grabundzija et al., 2010;

Brouwer, Zhou & Nadif Kasri, 2016). The recent introduction of another transposon,

sleeping beauty (SB), has helped to overcome many of the limitations of the PB

transposon (Grabundzija et al., 2013; Davis et al., 2013). SB integrates less compared to

the PB, and there are no SB-like elements in the human genome. However, the

reprogramming efficiency of transposons is low compared to viral vectors, and their

use involves multiple rounds of excision, thus increasing the risk of re-integration.

Overall, integrative delivery systems come with a risk of integration into the genome

leading to insertional mutagenesis. This lack of safety may limit their therapeutic

application. Non-integrative delivery systems will later address this major limitation.

Non-integrative delivery systems

Non-integrative viral vectors

Stadtfeld et al. (2008a) reported the generation of the first integration-free iPSCs from

adult mouse hepatocytes using nonintegrating adenovirus. Transgene-free iPSCs were

later generated from human fibroblasts by Zhou & Freed (2009) using similar

adenoviral vectors. However, the reprogramming process requires multiple viral

infections, and the production of adenovirus is very labor-intensive. Most importantly,

the reprogramming efficiency using adenoviruses is several orders of magnitude lower

compared to lenti- or retroviruses.

Another non-integrating viral vector that has been successfully used for iPSC

generation is the Sendai virus (SeV) (Fusaki et al., 2009; Seki et al., 2010; Ban et al., 2011;

Nishishita et al., 2012;Ono et al., 2012; Seki, Yuasa & Fukuda, 2012;Macarthur et al., 2012).

These are very efficient in transferring genes (in the form of negative-strand single-

stranded RNA) into a wide range of somatic cells (Li et al., 2000; Tokusumi et al., 2002;

Inoue et al., 2003; Nakanishi & Otsu, 2012). Although they are very effective, the viral

vector’s RNA replicase is very sensitive to the transgene sequence content. Additionally,

because they constitutively replicate, these vectors may be difficult to eliminate from the

somatic cells (Fusaki et al., 2009). A new improved Sendai virus (SeV dp) has since been

developed (Nishimura et al., 2011; Kawagoe et al., 2013).

Non-integrative non-viral delivery

Episomal vectors provide another alternative to the integrative–defective viruses.

Episomes are extrachromosomal DNAs capable of replicating within a cell independently

of the chromosomal DNA. The reprogramming factors can be directly and transiently

transfected into the somatic cells using episomal vectors as plasmids (Okita et al., 2008,

2010, 2011; Yu et al., 2009; Gonzalez et al., 2009; Cheng et al., 2012;Montserrat et al., 2011;
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Si-Tayeb et al., 2010) or as minicircle DNA (Jia et al., 2010; Narsinh et al., 2011). Unlike

retro- and lentiviruses, this technique is relatively simple and easy to use and does not

involve integration into the host genome. However, since episomal vector expression is

only transient, they require multiple transfections. In general, their reprogramming

efficiency is low, although when compared to its plasmids, the minicircle DNA has a

higher transfection efficiency (probably due to it is smaller size) and a longer ectopic

expression of the transgenes (due to lowered silencing mechanisms) (Chen et al., 2003;

Chen, He & Kay, 2005).

RNA delivery. iPSCs have been generated by the direct delivery of synthetic mRNA into

somatic cells (Warren et al., 2010, 2012). This method has the highest reprogramming

efficiency when compared with other non-integrative delivery systems. RNA has short

half-lives. Thus repeated transfection is required to sustain the reprogramming process.

RNA-based methods are also highly immunogenic (Brouwer, Zhou & Nadif Kasri, 2016).

Protein delivery. Reprogramming factors can be directly delivered as recombinant

proteins into somatic cells for iPSC generation (Kim et al., 2009; Zhou et al., 2009).

The reprogramming efficiency is low and repeated transfection is also required to

maintain the intracellular protein level for reprogramming.

Overall, integrative delivery methods have a higher reprogramming efficiency than

non-integrating methods, but they are less safe due to the risk of insertional mutagenesis.

Therefore, the use of non-integrating methods will appeal more for iPSC generation and

use in a clinical setting.

MOLECULAR MECHANISM OF INDUCED PLURIPOTENCY
The reprogramming of somatic cells into iPSCs is a long and complex process involving

the activation of ES-cell-specific transcription network, combinatorial overexpression of

multiple transcription factors and epigenetic modifications. Understanding the molecular

mechanisms of cellular reprogramming is critical for the generation of safe and high-

quality iPSCs for therapeutic applications. This section reviews the molecular

mechanisms leading to induced pluripotency.

The fantastic four (OSKM)
Takahashi and Yamanaka showed that four exogenous reprogramming factors, Oct4,

Sox2, Klf4, and c-Myc, all have key roles in iPSC generation (Takahashi & Yamanaka,

2006). They discovered Oct4, Sox2, Klf4, and c-Myc were essential for iPSC generation

while Nanog was dispensable (Takahashi & Yamanaka, 2006). Though exogenous Nanog

(not part of the “fantastic four”) is not an essential factor and is not required to initiate

the reprogramming process, it is possible that exogenous Oct 4, Sox2, and other

reprogramming factors induce expression of endogenous Nanog to levels adequate to

achieve full reprogramming (Jaenisch & Young, 2008; Scheper & Copray, 2009).

Genetic studies have shown that Oct4, Sox2, and Nanog (OSN) are key regulators

of embryonic development and they are critical for pluripotency maintenance

(Masui et al., 2007; Chambers et al., 2003, 2007; Avilion et al., 2003; Nichols et al., 1998;
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Mitsui et al., 2003). These factors are expressed both in pluripotent ESCs and in

the ICM of blastocysts. Oct 3/4, Sox2, and Nanog knockout embryos die at the blastocyst

stage and when cultured in vitro, their ESCs lose pluripotency and differentiate

(Avilion et al., 2003; Nichols et al., 1998; Mitsui et al., 2003; Chambers et al., 2007). Klf4

plays key roles in cellular processes, like development, proliferation, differentiation, and

apoptosis (Dang, Pevsner & Yang, 2000). It is expressed in ESCs and can interact with

Oct4–Sox2 complexes to activate certain ESCs genes (Nakatake et al., 2006). Klf4 can

revert epiblast-derived stem cells to the ESC state (Guo et al., 2009). Its interaction

with Oct4–Sox2 complexes and its tumor suppressor activity are thought to be important

in iPSCs generation. c-Myc is a potent oncogene associated with apoptosis, cell

proliferation, and cell cycle regulation (Dang et al., 2006; Lebofsky & Walter, 2007;

Patel et al., 2004). Though iPSCs can be generated without Klf4 and c-Myc, the

marked reduction in the efficiency of the process greatly emphasizes their importance

in cellular reprogramming.

Autoregulatory loops driving pluripotency
Experimental studies using chromatin immunoprecipitation and genome-wide

localization analysis in human and murine ESCs to identify genes occupied by Oct4, Sox2,

and Nanog have provided a better understanding of how these transcription factors

contribute to pluripotency (Boyer et al., 2005; Loh et al., 2006). The studies reveal that

Oct4, Sox2, and Nanog bind together to activate the promoters of both their genes and

those of each other, hence forming an autoregulatory loop. The three factors function

cooperatively to maintain their expression, thus enhancing the stability of pluripotency

gene expression. Since the initial hypothesis, several other studies have provided strong

verifiable evidence for the existence of the autoregulatory circuitry (Masui et al., 2007;

Chew et al., 2005; Kuroda et al., 2005; Okumura-Nakanishi et al., 2005; Rodda et al., 2005).

Transcriptional regulatory network
The experimental studies also demonstrated that Oct4, Sox2, and Nanog target several

hundred other ESC genes, collectively co-occupying these genes cooperatively to maintain

the transcriptional regulatory network required for pluripotency (Boyer et al., 2005;

Loh et al., 2006). This may explain why efficient iPSC generation seems to require the

combinatorial overexpression of multiple transcription factors. The cascades of genes

targeted were found to be both transcriptionally active and inactive genes (Table 3). The

actively transcribed genes all have a key role in the maintenance of ESC pluripotency and

self-renewal. They include various ESC transcription factors, chromatin modifying

enzymes, and ESC-signal transduction genes. Conversely, the inactive genes are essentially

developmental transcription factors that are silent in ESCs, whose expression is associated

with cellular differentiation and lineage commitment (Boyer et al., 2005; Loh et al., 2006).

Altogether, Oct4, Sox2, and Nanog appear to be master regulators of induced

pluripotency by enhancing transcription of pluripotency genes, while at the same time

silencing genes related to development and differentiation. Therefore, to achieve
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pluripotency, the autoregulatory loops and the transcriptional regulatory network need

to be resuscitated in reprogrammed somatic cells.

Epigenetic changes during iPSC reprogramming
Induced pluripotent stem cells have a unique epigenetic signature that distinguishes them

from differentiated somatic cells. Pluripotent stem cells have open, active chromatin

conformations, with activating histone H3 lysine-4 trimethylation marks (H3K4me3),

histone acetylation and hypomethylated DNA around the pluripotency genes. In contrast,

lineage-commitment leads to the silencing of these pluripotency genes, with repressive

H3K27me3 and H3K9me3 histone marks, hypermethylated DNA and a closed

heterochromatin conformation. During the reprogramming process, the epigenetic

signature of the somatic cell must be erased to adopt a stem cell-like epigenome. These

epigenetic changes include chromatin remodeling, DNA demethylation of promoter

regions of pluripotency genes, reactivation of the somatically silenced X chromosome and

histone post-translational modifications (Takahashi et al., 2007; Wernig et al., 2007;

Maherali et al., 2007; Fussner et al., 2011; Buganim, Faddah & Jaenisch, 2013; Gonzalez &

Huangfu, 2016).

DNA methylation in iPSC reprogramming
DNA methylation is an epigenetic barrier of iPSC generation (Nishino et al., 2011;

Doege et al., 2012; Gao et al., 2013). The methylation occurs at the C5 position of cytosine

on the target gene promoters in mammalian somatic cells (Gonzalez & Huangfu, 2016).

Promoter DNA methylation is inversely associated with gene expression (Bird, 2002).

The epigenome of iPSCs are transcriptionally active and are characterized by

demethylation at the promoter regions of key pluripotency genes, like Oct4, Sox2,

and Nanog. These genes are silenced by de novo DNA methylation during

lineage commitment and differentiation. The methylation is established by de

novo methyltransferases Dnmt3a and Dmnt3b and preserved by the maintenance

methyltransferase Dnmt1 (Smith & Meissner, 2013). During reprogramming,

the methylation marks are removed from these endogenous pluripotency genes to

allow for their transcription, and tissue-specific genes are hypermethylated (Gladych et al.,

2015; Berdasco & Estellar, 2011). Indeed, manipulation of the DNA and chromatin

Table 3 The Oct4, Sox2 and Nanog trio contributes to ES cell pluripotency by repressing genes linked to lineage commitment and activating

genes involved in pluripotency.

Transcriptionally active genes Transcriptionally inactive genes

Genes Role of activated genes Genes Role of inactivated genes

Oct4, Sox2, Nanog Key pluripotency genes Pax6, Meis1, Hoxb1, Lhx5, Otx1, Neurog1 Ectoderm development

Stat3, Hesx1, Zic3, Esrrb ES cell transcriptions factors Hand1, Dlx5, Myf5, Onecut1 Mesoderm development

Tcf3, Fgf2, Lefty2, Skil ES cell signaling Isl1, Atbf1 Endoderm development

Smarcad1, Myst3, Setdb1, Jarid2 Epigenetic regulators Esx1l Extra-embryonic development

Rest Inhibitor of neurogenesis

Rif1 Telomere-associated protein
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modifications by certain small molecules can significantly improve iPSC formation

(Huangfu et al., 2008a, 2008b; Li et al., 2009b; Feldman et al., 2006) (see reprogramming

factors–epigenetic modifiers). Likewise, mice lacking DNA methyltransferases remain

non-viable or die within weeks (Li, Bestor & Jaenisch, 1992; Okano et al., 1999). These

observations show that epigenetic modifications are key to cellular differentiation, and it

is reasonable to conclude that these same events have to be reversed during induced

reprogramming.

Histone modifications in iPSC reprogramming
Histone modification patterns differ between pluripotent stem cells and differentiated

somatic cells. The silencing of developmental genes in pluripotent stem cells is controlled

remarkably. The differentiation-related genes carry “bivalent” domains (i.e., repressive

histone H3 lysine-27 trimethylation marks (H3K27me3) and activating histone H3

lysine-4 trimethylation marks (H3K4me3)) in their genome loci (Bernstein et al., 2006).

The H3K4me3 marks of the bivalent domains allow for transcription initiation of the

developmental genes. Transcription of these genes is repressed by the action of Polycomb

group, a family of proteins that regulate developmental gene expression through gene

silencing by binding to repressive H3K27me3 marks. Thus, lineage-commitment genes

with bivalent domains can have their expression quickly turned on or switched off via

erasure of H3K27me3 or H3K4me3, respectively. The bivalent domains are almost

exclusively found in pluripotent stem cells, and their restoration represents a vital step

in the reprogramming process. During reprogramming, repressive H3K9me3 marks

present on the endogenous pluripotency genes (Oct4, Sox2, and Nanog) are gradually

replaced by the transcriptionally active H3K4me3 (Gladych et al., 2015). The loss of the

H3K9me3 marks allows access of OSKM transgenes to their target regions thus activating

the autoregulatory loop.

Role of microRNAs in iPSC reprogramming
microRNA are small non-coding RNA molecules that bind to protein-coding messenger

RNA (mRNA) to regulate their degradation or translation. They regulate gene expression

by post-transcriptional gene silencing (Bartel, 2004). Some miRNA promote iPSC

reprogramming (see reprogramming factors–epigenetic modifiers), while others are

barriers to iPSC reprogramming. Let-7 miRNAs are expressed in somatic cells and

upregulated in ES cell differentiation (Roush & Slack, 2008). Lin 28 (one of the factors

used by Thomson et al. (1998) to substitute for c-Myc and Klf4) (Yu et al., 2007), promotes

reprogramming by inhibiting let-7 miRNAs (Viswanathan, Daley & Gregory, 2008).

The role of reprogramming factors in iPSC reprogramming
Following the introduction of exogenous OSKM factors into the somatic cells, exogenous

Oct4 and Sox2 may directly induce the expression of endogenous Oct4, Sox2, and Nanog

via the autoregulatory circuitry, through which they continue to maintain their

expression. After that, these factors activate the pluripotent transcriptional network.

Hence, the autoregulatory loop and the transcriptional network that are repressed in

somatic cells, are now “resuscitated” during the reprogramming process.
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c-Myc is a vital component of active chromatin and associates with histone

acetyltransferase (HAT) complexes. Thus, it facilitates an open chromatin conformation

through global histone acetylation, thereby allowing Oct4 and Sox2 to target their

genomic loci (Kim et al., 2008; Scheper & Copray, 2009; Knoepfler, Zhang & Cheng, 2006).

As a well-known oncogene, c-Myc facilitates the cancer-like transformation of somatic

cells, conferring immortality and rapid proliferative potential on the pluripotent

stem cells (Yamanaka, 2007). Thus, cellular division driven by c-Myc may provide somatic

cells an opportunity to reset their epigenome, thereby enhancing their reprogramming

(Jaenisch & Young, 2008). As was mentioned in reprogramming factors–cell cycle

regulating genes, p53 tumor suppressor proteins have inhibitory effects on iPSC

generation by promoting senescence, apoptosis and cell cycle inhibition (Kawamura et al.,

2009; Marion et al., 2009; Utikal et al., 2009b; Hong et al., 2009; Banito et al., 2009).

Hyperexpression of c-Myc can lead to increases in p53 levels, and Klf4 can block the

resulting apoptotic effect of c-Myc by suppressing p53 levels (Rowland, Bernards & Peeper,

2005). Furthermore, Klf4 can suppress proliferation by activating p21 (a cyclin-dependent

kinase inhibitor), and c-Myc can inhibit this anti-proliferative effect of Klf4 by

suppressing p21 (Zhang et al., 2000; Seoane, Le & Massague, 2002). Thus, we can conclude

that c-Myc and Klf4 are mutually complementary and a balance between their expression

is necessary for successful reprogramming (Scheper & Copray, 2009; Yamanaka, 2007). The

overall summary of the roles of reprogramming factors is shown in Fig. 4.

Two-phase model of induced reprogramming: a gradual,
stochastic process
Several studies have shown exactly how the ectopic expression of OSKM in somatic cells

induces the transition to a pluripotent state (Yamanaka, 2007; Brambrink et al., 2008; Stadtfeld

et al., 2008b; Polo et al., 2012; Hansson et al., 2012; Buganim et al., 2012). Based on these

studies, we now know the order of events in the reprogramming process, and we can posit

that the reprogramming process consists of two broad phases: An initial, stochastic early

phase (phase 1) and a more deterministic and hierarchical late phase (phase 2) (Table 4).

Phase 1
The earliest event in phase 1 is the downregulation of lineage-specific genes. This may be

due to the direct repression effect of OSKM on these developmental genes or indirectly

through the restoration of bivalent histone marks on the same genes (Scheper & Copray,

2009). The next event is the upregulation of a subset of ESC-specific genes, such as

alkaline phosphatase (AP), Fbx15, and SSEA1. These two events may produce a partially

reprogrammed iPSC with ESC-like morphology, but can quickly revert to the

differentiated state once the transgene expression is terminated. The next step is the global

chromatin remodeling of the full array of pluripotency genes. This event involves the

gradual unfolding of condensed heterochromatin to form an open euchromatin

conformation and the removal of repressive H3K9me3 histone marks. The latter event is

brought on by the effect of c-Myc, Klf4, histones modification enzymes (acetyltransferases

and demethylases) and other small molecules. The removal of the repressive histone
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marks requires multiple rounds of cell division and explains why reactivation of

endogenous Oct4, Sox2, and Nanog occurs late in the reprogramming process.

Phase 2
After the completion of global chromatin remodeling, exogenous Oct4 and Sox2 are now

able to target and activate the loci of endogenous Oct4, Sox2, and Nanog genes leading to

the resuscitation of the autoregulatory loop. The completion of chromatin remodeling

at other pluripotency genes further leads to the gradual restoration of the full ESC

transcription network. This leads to the establishment of full-blown pluripotency,

characterized by reactivation of telomerase, inactivated X chromosome and ESC signaling

cascades. As the autoregulatory loops continue to self-maintain the expression of the

endogenous pluripotency genes, the transgene silencing previously initiated in phase 1

comes to completion. The pluripotent state is now completely dependent on the

endogenous autoregulatory circuitry.

iPSC reprogramming—an inefficient process
As mentioned above in technical advances and progress in iPSC generation, low

reprogramming efficiency is one of the limitations of induced reprogramming (Takahashi &

Figure 4 The roles of OSKM factors in the induction of iPSCs. Pluripotent stem cells are immortal

with open and active chromatin structure. It is probable that c-Myc induce these two properties by

binding to several sites on the genome and by the recruitment of multiple histone acetylase complexes.

However, c-Myc also induces apoptosis and senescence and this effect may be antagonized by Klf4. Oct3/4

probably changes the cell fate from tumor cells to ES-like cells while Sox2 helps to drive pluripotency.

Adapted from Yamanaka (2007). Full-size DOI: 10.7717/peerj.4370/fig-4
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Yamanaka, 2006; Takahashi et al., 2007; Okita, Ichisaka & Yamanaka, 2007; Lowry et al.,

2008; Huangfu et al., 2008b). The elite, stochastic and deterministic models have been

posited to explain the reason why only a small part of the transduced cells become

pluripotent.

Elite model. This model postulates that only a few, rare, “elite” somatic cells (with stem

cells characteristics) present within the somatic cell population, can be induced towards

pluripotency (Yamanaka, 2009; Takahashi & Yamanaka, 2016). In contrast to these

“special” cells, differentiated cells within the population are resistant to OSKM-mediated

induction (Fig. 5A). Although somatic cell populations are heterogeneous and contain

stem cells (Goodell, Nguyen & Shroyer, 2015), we now know that fully differentiated

cells can be reprogrammed, thus disproving the elite model (Stadtfeld, Brennand &

Hochedlinger, 2008; Aoi et al., 2008; Hanna et al., 2008). Most of the somatic cells initiate

the reprogramming process, but the majority never complete it.

Stochastic and deterministic models. Assuming all somatic cells are transduced by the

OSKM, the next path to pluripotency could occur by two mechanisms: a “stochastic”

manner in which iPSCs appear at different, random, unpredictable periods; or a

“deterministic” manner in which iPSCs appear at a fixed, predictable period (Figs. 5B and

5C). Both types of mechanism might be involved in the reprogramming process.

The generation of iPSCs requires a precise, limited-level expression of the transduced

factors and the process involve tightly regulated levels of pluripotency genes. The specific

stoichiometric balance of the OSKM factors is fundamental to successful reprogramming

(Tiemann et al., 2011; Yamaguchi et al., 2011). Thus, maintaining this delicate balance

appropriately can be a difficult, even rare event. Additionally, somatic cells have to

overcome many barriers on the road to pluripotency (see two-phase model of induced

reprogramming: a gradual, stochastic process). Furthermore, random transgene

integration can result in heterogeneous transgene expression that is achieved by very few

cells. The lower chance of completing these stochastic reprogramming events and the need

to overcome reprogramming barriers altogether contribute to the low efficiency of

reprogramming.

There are other variables that can affect the efficiency of induced reprogramming such

as the choice of; reprogramming factors, delivery methods, donor cell types and culture

conditions (Gonzalez, Boue & Izpisua Belmonte, 2011; Brouwer, Zhou & Nadif Kasri, 2016).

We have already considered the effects of reprogramming factors and delivery methods

Table 4 Two-phase model of induced reprogramming.

Order of events Phase 1 Phase 2

Step 1 Downregulation of lineage genes by direct

repression and restoration of bivalent domains

Resuscitation of autoregulatory loop

Step 2 Activation of specific ES cell genes such as AP,

Fbx15, and SSEA1

Full reactivation of ES cell transcriptional network by

reactivation of telomerase and ES cell signal cascades

Step 3 Chromatin remodeling at pluripotency genes by

the unfolding of condensed chromatin and the

removal of repressive chromatin marks

Completion of transgene silencing
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earlier in this review. Under the same culture conditions, keratinocytes reprogramme

100 times more efficiently and two times faster than fibroblasts (Aasen et al., 2008).

Haematopoetic stem cells generate iPSC colonies 300 times more than B and T cells,

suggesting that the differentiation status of the donor cell type is important (Eminli et al.,

2009). Hypoxic culture conditions (5% O2) greatly enhances reprogramming efficiency in

mouse and human cells (Yoshida et al., 2009). Taken together, donor cell types and culture

conditions can modulate reprogramming efficiencies.

iPSCs VERSUS ESCs
Are iPSCs different from ESCs? Some recent comprehensive studies reveal only a few

differences in global gene expression and DNA methylation patterns, which were more

obvious in early passages of iPSCs (Bock et al., 2011; Guenther et al., 2010; Newman &

Cooper, 2010). However, comparison studies with relatively smaller cell clones of iPSCs

and ESCs revealed more significant differences in either gene expression or DNA

methylation patterns (Chin et al., 2009;Marchetto et al., 2009; Lister et al., 2011). Some of

the differences were attributed to differential activation of promoters by pluripotency

Figure 5 Mechanistic insights into transcription factor-mediated reprogramming. (A) The elite model, (B) the deterministic model, and (C) the

stochastic model. Adapted from Takahashi & Yamanaka (2016). Full-size DOI: 10.7717/peerj.4370/fig-5
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factors and variables such as the exogenous factor combinations, culture conditions, and

delivery methods. Altogether, these studies have conflicting conclusions. Thus the answer

to the question raised above is not straightforward. One study revealed a similarity in

DNAmethylation patterns between the iPSCs and the donor somatic cells, suggesting that

iPSCs have a residual epigenetic “memory” marks (Kim et al., 2010a, 2010b). Even among

ESC populations, there exist epigenetic heterogeneity and variable differentiation

potential (Martinez et al., 2012; Osafune et al., 2008). Thus, the current consensus is that

iPSCs and ESCs are neither identical or distinct, but are overlapping cell populations with

genetic and epigenetic differences that reflect their origins. Further experiments are

essential to ascertain if these noticeable differences have any impact on the potential

therapeutic utility of iPSCs.

Though iPSCs offer many advantages when compared with ESCs, there are some

limitations associated with iPSCs as well. Table 5 shows the advantages and limitations of

the iPSC technology when compared to ESCs.

POTENTIAL APPLICATIONS OF iPSCs
The iPSC technology offers the opportunity to generate disease-specific and patient-

specific iPSCs for modeling human diseases, drug development and screening, and

individualized regenerative cell therapy. These three concepts are illustrated in Fig. 6

and are discussed in this section.

Table 5 Advantages and limitations of iPSCs technology.

Advantages Limitations

Eliminates ethical issues and religious

concerns associated with ESCs use

Efficiency of reprogramming is generally low

(Takahashi & Yamanaka, 2006; Takahashi et al.,

2007; Lowry et al., 2008; Huangfu et al., 2008b)

Risk of immune rejection is reduced

(Guha et al., 2013)

Tumorigenesis (Okita, Ichisaka & Yamanaka, 2007)

Donor cell is easily and non-invasively

obtained, no embryo destruction

Risk of insertional mutagenesis from virus based

delivery methods (Takahashi & Yamanaka, 2006;

Takahashi et al., 2007; Yu et al., 2007; Okita,

Ichisaka & Yamanaka, 2007)

Accessible to large number of patients,

unlike ESCs limited by ethical concerns

Increased chances of development of diseases due to

factors used (Hochedlinger et al., 2005; Park et al.,

2008b; Ghaleb et al., 2005; Kuttler & Mai, 2006)

Personalization of treatment with

patient-specific stem cells and drugs

(Chun, Byun & Lee, 2011)

Very early days in this field, more basic research

are needed

Use for disease modelling-they carry the

same disease-causing factor as the patient

Complex and polygenic diseases are difficult to

be modeled

High-throughput screening for drugs and

toxicity prediction (Wobus & Loser, 2011;

Choi et al., 2013)

High costs associated with production and

characterization of each cell line

Allows for gene targeting and gene

editing technology to correct mutations

(Choi et al., 2013)

Suboptimal standardization (Pappas & Yang, 2008).

Stringent protocols are still needed
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Disease modeling
Genetically matched iPSC lines can be generated in unlimited quantities from patients

afflicted with diseases of known or unknown causes. These cells can be differentiated in

vitro into the affected cell types, thus recapitulating the “disease in a Petri dish” model.

The differentiated, specialized cells or disease models offer the opportunity to gain

mechanistic insights into the disease and to use the cells to identify novel disease-specific

drugs to treat the disorder; for example, drugs to prevent the death of medium spiny

neurons in patients suffering from Huntington’s disease (Fig. 6). The ability of iPSCs to

proliferate extensively in culture and differentiate into all types of cells in the human body

ensures that they can be used as disease models to study many diseases. Certainly, many

studies have demonstrated the generation of iPSC lines from patients with various

genetically inherited and sporadic diseases (Table 6) (Wu & Hochedlinger, 2011). These in

vitro studies give the first proof of principle that disease modeling using iPSC technology

Figure 6 A schematic showing the potential applications of human iPSC technology for disease

modelling, drug discovery and cell therapy using Huntington’s disease (HD) as an example. In HD

patients, there is progressive loss of striatal GABAergic medium spiny neurons (MSNs). HD-specific iPSCs

generated by cellular reprogramming can be differentiated into striatal MSNs in order to establish an in

vitro model of the disease, and potential drugs can be screened leading to discovery of novel drugs that will

prevent the degenerative process. Alternatively, if known, the disease-causing mutation (i.e., mutant HTT

gene) could be repaired in iPSCs by gene targeting prior to their differentiation into healthy MSNs,

followed by transplantation into the patient’s brain. Full-size DOI: 10.7717/peerj.4370/fig-6
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is a viable option. However, the aim of disease modeling is to understand the molecular

mechanism of diseases, with the ultimate goal of developing drugs for their treatment.

Drug development and cytotoxicity studies
Lee et al. (2009) utilized iPSCs to show disease modeling and drug screening for familial

dysautonomia, a rare genetic disorder of the peripheral nervous system (Table 6). The

generated familial dysautonomia-iPSCs were screened with multiple compounds, and

the authors revealed that a plant hormone, kinetin, can partly normalize the disease

phenotype (Lee et al., 2009). Loss of neurons following in vitro differentiation of spinal

muscular atrophy-iPSCs was ameliorated by exposure to experimental drugs (Ebert et al.,

2009). These studies and many others (see Table 6) show that iPSCs can facilitate drug

screening and discovery. Indeed, several clinical drug candidates have been derived from

iPSC studies and are currently in clinical trials (Bright et al., 2015; Naryshkin et al., 2014;

Mullard, 2015; McNeish et al., 2015). iPSCs are also used for testing for the toxic and

non-toxic effect of therapeutic drugs. Itzhaki and colleagues used long QT 2 syndrome

cardiomyocytes-iPSCs to test the potency and efficacy of existing and new

pharmacological drugs and to assess the cardiotoxic effects and safe dose levels of drugs

(Itzhaki et al., 2011). As a powerful tool for disease models, drug discovery and

cytotoxicity studies, iPSCs offer more advantages over animal models and clinical testing.

Animal models do not perfectly mirror the true human disease phenotype, and iPSCs

toxicity models are less expensive and save time when compared with conventional testing

systems. Additionally, a different response to drug toxicity in animals, due to species

differences, could prevent the recapitulation of the full human disease phenotype.

Regenerative medicine
The iPSC technology offers an exciting opportunity for generating patient-specific stem

cells for autologous transplantation. In regenerative medicine, the stem cells are used to

promote endogenous regenerative repair or to replace injured tissues after cellular

transplantation. The clinical translation of iPSC-based cell therapy is no longer futuristic,

as the dream has now been realized. Two ground-breaking preclinical studies provided

a proof-of-concept that led to the realization of this dream. In 2007, Jaenisch and

colleagues used homologous recombination (gene targeting method) to repair the

disease-causing mutations in iPSCs generated from a humanized mouse model of

sickle cell anemia (SCA) (Hanna et al., 2007). The repaired SCA-iPSCs were differentiated

into hematopoietic progenitor cells and subsequently transplanted into the affected

transgenic mice. This resulted in the rescue and correction of the disease phenotype.

The following year, Wernig et al. (2008b) (from Jaenisch’s research group) reported an

improvement in the dopaminergic function and behavioral symptoms in a rat model of

Parkinson’s disease, after the transplantation of iPSC-derived dopaminergic neurons.

These two successful iPSC-based cell therapies spurred the stem cell research community

into exploring iPSCs therapy in humans. The first clinical trial using human iPSC was

initiated in 2014 by transplanting human iPSC-derived retinal pigment epithelial (RPE)

cells to treat macular degeneration (Kimbrel & Lanza, 2015). The progression of the
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macular degeneration was halted in the first patient, with improved vision (Scudellari,

2016). However, the trial was placed on hold due to the discovery of mutations in the

iPSCs of the second patient (Kimbrel & Lanza, 2015). The researchers at RIKEN institute

are hoping to resume the study using HLA-matched allogeneic iPSCs (Trounson &

DeWitt, 2016; Cell Stem Cell Editorial Team, 2016).

The recent advances in genome editing technology now allow for the introduction of

genetic changes into iPSCs in a site-specific manner. We can now repair disease-causing

gene mutations in patient-derived iPSCs, thus generating genetically healthy human

iPSCs lines for iPSC-based cell therapy (see Fig. 6). Similarly, we can also introduce

specific mutations into non-diseased iPSCs, and generate genetically matched isogenic

iPSC lines that mimic the true pathology of the disease of interest, to be used for human

iPSC-based disease models. Gene editing technologies like zinc-finger nucleases (ZFN)

(Hockemeyer et al., 2009; Zou et al., 2009), transcription activator-like effector nucleases

(TALENS) (Christian et al., 2010; Hockemeyer et al., 2011; Sanjana et al., 2012), and

CRISPR-Cas9 (Cong et al., 2013; Perez-Pinera et al., 2013; Shalem et al., 2014; Jinek et al.,

2012) technology have greatly improved the efficiency of gene editing in both human

ESCs and iPSCs via DNA double-stranded breaks at the site of gene alteration. The

combination of human iPSC platform with gene editing technologies can make

iPSC-based cell therapy a more powerful and viable stem cell therapy option. The

following section presents an in-depth analysis regarding gene editing technology in

iPSCs generation.

GENOME EDITING TECHNOLOGY IN iPSCs GENERATION
Induced pluripotent stem cells have been indisputably proven to be a discovery that

will transform medicine with respect to understanding the genetic etiology of diseases

while equally providing the much needed genetic therapies. Its current combination

with genome editing has further enhanced the diagnostic and therapeutic power of the

iPSCs (Hotta & Yamanaka, 2015). Several methods have been used in the past to

genetically target pluripotent stem cells. The process of gene targeting means modifying a

specific genomic locus on a host DNA, and the locus is replaced with an exogenous

sequence by supplementation with a targeting vector. The technique of gene targeting has

availed scientists with the ability to control cellular genomes (Hotta & Yamanaka, 2015).

Gene targeting has however been shown to be way more challenging in human

pluripotent stem cells than in mouse ES cells (Hotta & Yamanaka, 2015) and this has been

attributed to differences in developmental stages rather than species-related differences

(Shi et al., 2017). Conventional gene targeting has recorded only a limited amount of

success (Nichols & Smith, 2009) hence the drive towards developing better methods

of gene targeting.

Gene editing technologies have remarkably improved over the years with the

recent technologies able to introduce genetic changes in a site-specific manner in

iPSCs (Urbach, Schuldiner & Benvenisty, 2004). The more recent technologies induce

double-stranded DNA breaks in the region of gene modification (Urbach, Schuldiner &

Benvenisty, 2004). These programmable site-specific nucleases have evolved from
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ZFN (Hockemeyer et al., 2009; Zou et al., 2009) to TALENs (Hockemeyer et al., 2011;

Sanjana et al., 2012) and the RNA guided engineered nucleases (RGEN) gotten from the

bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas

(CRISPR-associated) nine system (Perez-Pinera et al., 2013; Shalem et al., 2014). These

technologies can easily correct pathology-causing genetic mutations derived from

diseased patients and similarly can be used to induce specific mutations in disease-free

wild-type iPSCs (Urbach, Schuldiner & Benvenisty, 2004). Thus with this approach,

genetically matched isogenic iPSCs can be generated while ensuring that true pathologies

are reliably identified and not confused with genetic background variations or

epiphenomena associated with line-to-line disparities (Urbach, Schuldiner & Benvenisty,

2004). In as much as the three nucleases possess a similar mechanism of action which is

the cleavage of chromosomal DNA in a location-specific manner, each of the nucleases

still has its unique characteristics (Kim & Kim, 2014). The well-documented study done by

Kim & Kim (2014) on the nucleases has been briefly summarized in Table 7. Of the three

nucleases, the CRISPR-Cas9 system has however gained wide acceptance and usage in the

editing of human iPSC because it is simple to design and use (Urbach, Schuldiner &

Benvenisty, 2004), thus necessitating a little more review below.

Cas9 is a large multifunctional protein having two putative nuclease domains, the

HNH and RuvC-like (Doudna & Charpentier, 2014). The HNH and the RuvC-like

domains cleave the complementary 20-nucleotide sequence of the crRNA and the DNA

strand opposite the complementary strand respectively (Doudna & Charpentier, 2014).

Several variants of the CRISPR-Cas9 system exists and hence the subtle diversity to their

modes of action: (1) The original CRISPR-Cas9 system functions by inducing DNA

double-stranded breaks which are triggered by the wild-type Cas9 nuclease directed by a

single RNA (Urbach, Schuldiner & Benvenisty, 2004). However, its major challenge is the

possibility of off-target effects (Urbach, Schuldiner & Benvenisty, 2004). (2) The nickase

variant of Cas9(D10A mutant) which is generated by the mutation of either the Cas9

HNH or the RuvC-like domain (Li et al., 2011; Christian et al., 2010) is directed by paired

guide RNAs. (3) Engineered nuclease variant of Cas9 with enhanced specificity (eSpCas9)

(Xiao et al., 2013; Gupta et al., 2013). The nickase (D10A mutant) and the eSpCas9

variants have both been shown to substantially reduce off-target effects while still

maintaining their meticulous on-target cleavage (Xiao et al., 2013; Gupta et al., 2013).

(4) Catalytically dead Cas9 (dCas9) variant is generated by mutating both domains

(HNH and RUvC-like) (Li et al., 2011; Christian et al., 2010). dCas9, when merged with a

transcriptional suppressor or activator can be used to modify transcription of endogenous

genes (CRISPRa or CRISPRi) or when fused with fluorescent protein can be used to image

genomic loci (Xiao et al., 2013; Gupta et al., 2013; Cho et al., 2014). (5) A modified

CRISPR-Cas9 variant has been used to efficiently introduce DNA sequences in an exact

monoallelic or biallelic manner (Gaj, Gersbach & Barbas, 2013), and (6) CRISPR-Cas9

fused with cytidine deaminase, results in a variant which induces the direct conversion of

cytidine to uridine, hence circumventing the DNA double-stranded break (Segal &

Meckler, 2013).
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Hotta and Yamanaka have extensively reviewed how these nucleases have been used to

mediate gene editing in pluripotent stem cells (Hotta & Yamanaka, 2015). Thus it is

anticipated that the combination of these two technologies (gene editing and iPSCs)

might be the dawn of a new phase of gene therapy.

FUTURE PERSPECTIVE
The promise that iPSCs are viable and possibly superior substitutes for ESCs in disease

modeling, drug discovery and regenerative medicine has not yet been fulfilled. Despite

great success in animal models, there are still many obstacles on the road to the clinical

application of iPSCs. A major limitation is the heterogeneous nature of the cell population

and differentiation potential of iPSCs. Hopefully, the CRISPR-Cas9 system can be used to

address this limitation since the technology can improve the disease phenotype of

differentiated cells (Hotta & Yamanaka, 2015; Deleidi & Yu, 2016). Another major

limitation is the lack of robust lineage-specific differentiation protocols to generate large

quantities of purified and matured iPSC-differentiated cells. More basic research on

reprogramming technology is critical for the development of novel protocols for the

generation of standardized human iPSC. A more current biotechnology, the microRNA

switch (Miki et al., 2015), is expected to facilitate the maturation and purification of iPSC-

differentiated cells and to reduce clonal variation.

While we wait for these limitations to be addressed, it will be wise to bank iPSCs

from patients with specific diseases. Doing so will allow us the time to guarantee the

quality of these cells thus saving time and cost when they are made available for

transplantation.

CONCLUSION
The discovery of iPSCs by Takahashi and Yamanaka is truly a breakthrough of the decade

in stem cell science. The year 2016 marked the 10th anniversary of this landmark

discovery. The last decade has witnessed remarkable advancement in our understanding of

the molecular mechanisms of induced pluripotency, and we moved from the “bench to

the bedside” in 2014. The more recent long-term study involving the application of

human iPSC-derived dopaminergic neurons in primate Parkinson’s disease (PD) models

at the Center for iPS Cell Research and Application, Kyoto University, Japan, reveals that

human iPSCs are clinically applicable for the treatment of patients with PD (Kikuchi et al.,

2017). The iPSC-based cell therapy is still at its infant stage. The remaining barriers

blocking the path to successful translation of this technology into clinical therapy have to

be overcome. We believe many of these challenges are only technical and with time “this

too shall pass away.” The combination of the human iPSC technology with genome-

editing technologies may trigger a new era of gene therapy utilizing iPSCs.
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