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ABSTRACT
Digital photographs taken under controlled conditions were used to examine the
incidence of linear enamel hypoplasia defects (LEHs) in burials from the Buckeye Knoll
archaeological site (41VT98 Victoria county, Texas), which spans the Early to Late
Archaic Period (ca. 2,500–6,500 BP uncorrected radiocarbon). The majority (68 of 74
burials) date to the Texas Early Archaic, including one extremely early burial dated to
8,500 BP. The photogrammetric data collection method also results in an archive for
Buckeye Knoll, a significant rare Archaic period collection that has been repatriated and
reinterred.We analyzed the incidence and developmental timing of LEHs in permanent
canines. Fifty-nine percent of permanent canines (n= 54) had at least one defect. There
were no significant differences in LEH frequency between themaxillary andmandibular
canines (U = 640.5, n1= 37, n2= 43, p= .110). The sample studied (n= 92 permanent
canines) had an overall mean of 0.93 LEH defect per tooth, with a median of one defect,
and a mode of zero defects. Average age at first insult was 3.92 (median = 4.00, range
= 2.5–5.4) and the mean age of all insults per individual was 4.18 years old (range =
2.5–5.67). Age at first insult is consistent with onset of weaning stress—the weaning
age range for hunter-gatherer societies is 1–4.5. Having an earlier age of first insult was
associated with having more LEHs (n= 54, rho = −0.381, p= 0.005).
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INTRODUCTION
The Buckeye Knoll site (41VT98) contains a prolonged record of short-term continuous
site use over a period of 8,000 years (8,500–500 BP) with evidence of resource caching
for future occupations. We know very little about Archaic life history and Buckeye Knoll
constitutes one of the largest populations available for testing hypotheses regarding health
and disease in this early period of North American prehistory. Excavation uncovered 75
discrete burial loci and recovered a minimum number of 116 individuals that were dated
to 8,500–3,500 BP using tooth and bone collagen samples. Buckeye Knoll was exhumed
and reburied in compliance with the Native American Graves Protection and Repatriation
Act (NAGPRA), so any future data collection or analysis must come from the digital
photographs collected for archival purposes (Ricklis, Weinstein & Wells, 2012c).
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Dental enamel hypoplasia defects represent an interruption in the growth process
of teeth and can be attributed to genetics (Brook, 2009; Hart et al., 2002; Zilberman et
al., 2004), trauma (Brook, 2009), and insult (Goodman, 1988; Sarnat & Schour, 1942;
Sarnat & Schour, 1941). Those linked to external biological insult (e.g., foreign disease
pathogen, injury) develop when resources normally directed to growth and development
are rerouted to defending the body or are only insufficient to sustain maintenance activities
(e.g., malnourishment, diarrhea) (Sarnat & Schour, 1942; Sarnat & Schour, 1941). Enamel
hypoplastic defects occur on the buccal and labial surfaces of teeth and mostly commonly
manifest as transverse grooves, or linear enamel hypoplasia (LEH), but also can appear
as pits or grooves (Hillson & Bond, 1997). Because teeth do not remodel, defects captured
during growth and development are permanent and have been used to infer early life health
in a number of populations (e.g., Berbesque & Doran, 2008; Guatelli-Steinberg, Larsen &
Hutchinson, 2004; Hoover & Matsumura, 2008; Lieverse et al., 2007; Temple, 2010). Of
particular note are the associations between weaning stress (e.g., Herring, Saunders &
Katzenberg, 1998; Katzenberg, Herring & Saunders, 1996; Moggi-Cecchi, Pacciani & Pinto-
Cisternas, 1994) and earlier age at death (DeWitte & Stojanowski, 2015; Walter & DeWitte,
2017; Yaussy, DeWitte & Redfern, 2016).

A major shift in dietary pattern and environmental adaptations occurred in the southern
United States during the transition from early to mid-Holocene. This period was a time of
dramatic worldwide changes in temperature, sea level, and coastal ‘configuration’. Buckeye
Knoll may have been in a period of climatic transition, the severity of which is unknown.
The climate reconstruction of Buckeye Knoll was primarily from palynology. Two cores
were taken from the Guadalupe River Flood Plain adjacent to the Buckeye Knoll Site for
palynological analysis. These cores enable a regional vegetation reconstruction extending
back to 9,500 cal. B. P. until present. During this period, there were marked changes in
climate reflected in the pollen taxa represented, particularly circa 6,000 BP when climate
change resulted in enough increases in upland-prairie biomass that it may have caused
a shift in subsistence strategy (Ricklis, Weinstein & Wells, 2012a). This might be a factor
in the overall levels of systemic stress in populations of this time period, such as Buckeye
Knoll. Here, we aim to infer nonspecific nutritional and developmental stresses via the
developmental timing and frequency of linear enamel hypoplasia defects (LEH) in the
canines using photogrammetric methods.

METHODS
Study site description
The first evidence for human activity at Buckeye Knoll dates to the Paleo-Indian period
and consists of scattered artifacts, specifically stone darts. Prolonged occupation of the
site begins in the Archaic period, which is marked by a variety of human activities linked
to repeated short-term occupation. Primary artifacts include debitage, projectiles, tools,
beads, bone, shell, and hearths. More recent artifacts include indigenous ceramics. The
site record contains evidence for a prolonged record of short-term continuous use for
a period of 8,000 years (8,500–500 BP). Of particular interest are large pits which may
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have been used to store food which suggests longer occupations of up to a few months;
even more interesting is evidence for material caching which suggests intentional regular
re-occupation (Ricklis, Weinstein & Wells, 2012c).

Faunal remains recovered from the site are abundant—74,000 identifiable fragments
representing a minimum of 126 vertebrate taxa including fish (mostly gar), small mammals
(often rodents), some large mammals (e.g., deer), and rarely birds. The pattern of resource
exploitation evidenced by faunal analysis suggests that opportunistic hunting of larger
game was gradually replaced by increased emphasis on net-fishing (evidenced by a shift
from larger to smaller fish body sizes) and wider exploitation of other taxa; this may be
attributable to increased population demands over time (Ricklis, Weinstein & Wells, 2012c)
or the previously noted climate change that resulted in changes to the local environment
and possible dietary shifts in response to that change.

A total of 75 discrete burials containing 119 individuals were excavated. The majority of
burials were single interment but there were also graves containing multiple individuals.
All but one burial (dated to the Late Archaic) were interred on the Knoll Top. Of the
remaining 74 burials, the vast majority (n= 68) date to the Texas Early Archaic, including
one extremely early burial dated to 8,500 BP. The Texas Early Archaic burial dates tend to
cluster between 7,400–6,300 BP–the lack of non-mortuary activity at the site during the
7th millennium (roughly 7,000–6,200 BP) suggests that the Knoll Top space was reserved
exclusively for treatment of the dead during this time (Ricklis, Weinstein & Wells, 2012b;
Ricklis, Weinstein & Wells, 2012c). Texas Early Archaic burials are associated with artifacts
that form a unique mortuary assemblage that is closely related to Middle Archaic period
(i.e., ca. 8,000–5,000 BP) cultures in the Mississippi Valley region and beyond. Thus,
this assemblage reflects larger regional cultural associations. During this period, flexed or
semi-flexed burials were most common followed by a smaller number of disarticulated
individuals, and an even smaller number of individuals interred in sitting postures. The Late
Archaic period was characterized by extended burials (Ricklis, Weinstein & Wells, 2012b).

Photogrammetric materials and methods
Photographs were used for data collection because the Buckeye Knoll sample was reinterred.
Reliability of LEH scoring is more robust in photogrammetric methods, with a significant
increase in LEH number identified compared to direct examination method (Golkari et al.,
2011). This method was successfully applied to a similar published study on another Early
Archaic population, Windover (Berbesque & Doran, 2008).

Photographs were taken of the left maxillary and mandibular canines using the Nikon
990 Coolpix in macro mode. The diminished focal length presents some difficulty with
depth or focus on anything other than one plane. As teeth are often curved, every attempt
was made to capture the labial surface of the tooth with most clarity. Multiple photographs
were taken from different angles to ensure defects were scorable. A metric scale was placed
in the plane of the tooth surface in each photograph. The photographs were taken in high
quality TIFF file format. Missing teeth or teeth too worn to score were excluded from
analysis. In some cases, dental calculus prevented an accurate measurement of crown
height, and measurements were then taken from the bottom of the calculus to the top
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of the crown. These measurements are primarily for quality control in using an imaging
software for analysis.

Permanent canines were chosen for data collection because they have a prolonged
period of crown formation (7.5 months to 6.5 years for maxillary canines and 10.5 months
to 5.5 years for mandibular canines) (AlQahtani, Hector & Liversidge, 2014) and can best
capture the peak window of developmental stress caused by weaning (Sandberg et al.,
2014). LEH was scored in Microsoft Paint. Once scored, the images were imported into
Scion Image for analysis (a PC friendly software modeled after the National Institute of
Health ImageJ, which is commonly used in morphometrics studies) (Scion, 2000–2001)
http://www.nist.gov/lispix/imlab/labs.html.

Developmental timing of each defect was determined using the estimate by Reid and
Dean (Reid & Dean, 2000), which necessitates estimation of complete, unworn crown
height for every tooth. An estimate of completeness for each canine was based on
surrounding dentition and other canines within the population. The median percent
complete for permanent dentition is 85% overall. Mandibular canines were 86% complete,
and maxillary canines were 81% complete. This visual estimate of complete canine height
provided a wear estimate for each canine. Because this population has significant dental
wear, stage of development for each defect was determined by measuring the distance from
the cemento-enamel junction to the bottom of each defect rather than from the tip of the
cusp down to the defect. All statistical analysis was conducted using SPSS version 22. None
of the variables met the assumptions of a normal distribution, so nonparametric statistics
were used for all analyses.

To place Buckeye Knoll in context with similar populations, data from this study were
compared to published data from populations dating to an average of 3,000 years or older
contained in the public Global History of Human Health Database (Steckel & Rose, 2002)
(see Table 1). Buckeye Knoll was also compared with another Early Archaic population,
Windover (8,120–6,980 14C years B.P. uncorrected), using the same methods deployed in
this study (Berbesque & Doran, 2008).

RESULTS
There were 41 deciduous canines in the sample and 92 permanent canines. The permanent
dentition consisted of 37 maxillary canines and 43 mandibular canines—12 could not be
identified asmaxillary ormandibular. The permanent dentition had a hypoplasia frequency
rate of 59% (n= 54 canines with at least one hypoplastic defect) in the population. There
was an overall mean of 0.93 defects per permanent canine, with a median of one defect,
and a mode of zero defects. We did not analyse deciduous dentition for timing of defects.
Out of 41 deciduous canines in the population, only one defect was found.

Despite limited demographic information available for these mostly isolated dentition,
there were associated skeletal material for some individuals—allowing for a basic
breakdown by sex and age category (adults versus juvenile with permanent dentition).
Juveniles with permanent dentition had higher rates of multiple defects than the general
population (see Table 2). Table 2 provides breakdownof the sample by presenting frequency
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Table 1 Descriptive information for comparative sites, including domesticated plants/animals.

Site n Animals Plants Climate Settlement Site date

Preceramico 60 None None Subtropical Mobile 2,000–4,000
Tlatilco 80 Some Maize, beans, squash Temperate Small/medium village 2,930–3,250
Realto 34 Some None Tropical Settled dispersed 3,450–5,876
Sta. Elena 39 None None Tropical Mobile 6,600–8,250
Buckeye Knoll 92 None None Subtropical Mobile 3,500–8,500

Table 2 LEH count and frequency by demographic category, Buckeye Knoll.

Total n 0 LEH 1 LEH 2 LEH 3 LEH 4 LEH

n Freq n Freq n Freq n Freq n Freq

Males 5 1 0.20 2 0.40 1 0.20 1 0.20 0 0.00
Females 13 5 0.38 5 0.38 2 0.15 1 0.08 0 0.00
Juveniles 6 0 0.00 1 0.17 0 0.00 3 0.50 2 0.33
Adulta 9 7 0.78 1 0.11 1 0.11 0 0.00 0 0.00
Caninesb 59 25 0.42 23 0.39 8 0.14 2 0.03 1 0.02

Notes.
aNo sex identification.
bLoose, not affiliate with any burial.

and portion of the overall sample by LEH count (range= 0–4) and demographic category.
There were no significant differences between the maxilla and mandible in timing

of earliest defect (Mann Whitney U = 228, earliest maxillary defect N = 20, earliest
mandibular N = 27, p= .366) or number of defects (U = 640.5, maxillary defects N = 37,
mandibular defects N = 43, p= .110). The mean age for the earliest defect per individual
was 3.92 (range = 2.5–5.4). Individuals with more LEHs also had earlier age of first insult
(n= 54, rho = −0.381, p= 0.005). The mean developmental age of all defects was 4.18
years old (range = 2.5–5.67).

A comparative analysis of individual LEH frequency in Buckeye Knoll and populations
in the Global History of HumanHealth Database (Steckel & Rose, 2002) found that Buckeye
Knoll frequencies were significantly higher with one or more LEH on their canine (see
Table 3) (Chi-Square = 58.425, df = 4, p= 0.000).

LEH incidence in another Early Archaic population,Windover, wasmore than twice that
of Buckeye Knoll (see Table 4) (Berbesque & Doran, 2008). LEH data collection methods
for both sites used the same photographic methods.

DISCUSSION AND CONCLUSIONS
Juveniles with permanent dentition had the highest incidence of LEH. Also, having greater
numbers of LEH defects was associated with earlier age of death, providing some evidence
for a mortality curve that would support the use of LEH as a stress indicator in this
population and indicating social factors that warrant further investigation. This finding
provides some evidence for the Barker Hypothesis; wherein individuals exposed to stressors
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Table 3 LEH count and frequency, comparative populations.

Site Total n 0 LEH 1 LEH 2+ LEH

Count Freq Count Freq Count Freq

Preceramico 60 41 0.68 16 0.27 3 0.05
Tlatilco 80 41 0.51 32 0.40 7 0.09
Realto 34 31 0.91 3 0.09 0 0.00
Sta. Elena 39 38 0.97 1 0.03 0 0.00
Buckeye Knoll 92 38 0.41 32 0.35 22 0.24

Table 4 LEH descriptive statistics, Buckeye Knoll andWindover.

Mandibular canine Maxillary canine

Windover Buckeye Knoll Windover Buckeye Knoll

N 59 43 48 37
Mean LEH 2.78 1.07 2 0.7
Median LEH 3 1 2 1
Mode LEH 3 0 2 0
Range 1–6 1–4 1–4 1–4
SD 1.34 1.06 0.99 0.85

earlier in life may actually have damaged immunological competence as a consequence of
those stressors (Armelagos et al., 2009; Goodman & Armelagos, 1989).

The location of each defect gives insight into the timing of metabolic insult. Cusp enamel
completion occurs at 1.7 years for maxillary canines and 0.98 years for mandibular canines
(Reid & Dean, 2000). As the first period on the occlusal surface of the crown is often worn
away by attrition, much of the data on the second year of life is lost. Clustering of LEH
around a location on the tooth that corresponds to a particular age might indicate some
stressful milestone event whether culturally flexible (e.g., age of weaning) or not (e.g.,
birth). Weaning ages across hunter-gatherer societies vary considerably, with New World
hunter-gatherers weaning earlier (mean= 2.32 years old) thanOldWorld hunter-gatherers
(mean = 3.20 years old) and a combined range of 1 to 4.5 (Marlowe, 2005). Age of the
mean earliest defect for Buckeye Knoll is within this range (mean = 3.92), but late for the
mean age of weaning in ethnographically described hunter-gatherers in the New World.
Perhaps the developmental timing of most LEH defects has less to do with extreme stress
fromweaning andmore with the more with the acute angles formed by the Striae of Retzius
relative to the enamel surface to enamel formation. It has been suggested that these acute
angles make even small disruptions in enamel production are more pronounced and visible
in the intermediate and occlusal thirds of the tooth (Blakey, Leslie & Reidy, 1994; Newell
et al., 2006).

Of the limited samples of comparable antiquity (minimally over 3,000 years old on
average) in the Global History of Human Health Database (Steckel & Rose, 2002; Steckel,
Sciulli & Rose, 2002), most populations demonstrated lower incidence of LEH compared
to Buckeye Knoll (59% with at least one defect). The comparative sample with the closest
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frequency of Buckeye Knoll LEH was Tlatilco. Tlatilco was a sedentary population with
evidence of domesticated plants and animals. Sedentary populations and those using
domesticated plants were found to have higher incidence of various stress indicators, and
agriculturalists are documented as having higher LEH incidence than foragers (Larsen,
1995; Starling & Stock, 2007).

It has been suggested that fishing populations might be at higher risk for LEH defects
due to parasite load (Bathurst, 2005). One example of this is found in Japan; prehistoric
hunter-gatherer-fishers have surprisingly high rates of LEH but these are sedentary
complex stratified populations (Hoover & Matsumura, 2008; Temple, 2010). And, the
higher incidence of defects is widely documented across the island and throughout time;
given the abundance of resources and consistently high rates of LEH, a likelier explanation
might be a genetic etiology (Hoover & Hudson, 2016; Hoover & Matsumura, 2008; Hoover
& Williams, 2016). Coastal populations share a host of traits that may contribute to LEH
defects, such as sedentism and reliance on domesticates. Although the Buckeye Knoll
population likely relied at least partially on coastal resources, there is no evidence of
domesticated plants or animals or sedentism at Buckeye Knoll.

The population most comparable to Buckeye Knoll is Windover. Windover has been
assessed for LEH defects using the same methods used in the GHHD as well as the
photogrammatic methods. Even when examining data on LEH defects using the unaided
eye, Windover had a very high number of individuals affected by LEH defects. In the
GHHD, 100% represents a population completely unaffected by LEH, and the GHHD
score for LEH in Windover was = 39.5% (Wentz et al., 2006). It is not clear why these
two Early Archaic populations both appear to have a surprisingly high incidence of LEH,
but a possible ecological explanation for the high overall incidence of LEH defects in this
population is the climate shift during this time that may have caused physiological stress
during periods of diminished resources.

CONCLUSIONS
Buckeye Knoll had greater incidence of LEH than any other population in the Global
History of Health Database of comparable age. However, these data are taken by unaided
visual assessment only, and photogrammetric methods have been shown to result in
identification of greater numbers of LEH defects. However, Buckeye Knoll had fewer
LEH defects compared with data collected using the same photogrammetric methods from
Windover, a population of comparable antiquity. It is not clear whether the higher incidence
of defects seen in these populations are entirely due to methodological differences in data
collection, or whether an environmental factor such as the climate change documented
during the Early Archaic period affected the health of coastal/riverine foragers such as the
Windover and Buckeye Knoll populations.
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