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ABSTRACT
There is currently unprecedented interest in quantifying variation in thermal physiology
among organisms, especially in order to understand and predict the biological impacts
of climate change. A key parameter in this quantification of thermal physiology
is the performance or value of a rate, across individuals or species, at a common
temperature (temperature normalisation). An increasingly popular model for fitting
thermal performance curves to data—the Sharpe-Schoolfield equation—can yield
strongly inflated estimates of temperature-normalised rate values. These deviations
occur whenever a key thermodynamic assumption of the model is violated, i.e., when
the enzyme governing the performance of the rate is not fully functional at the chosen
reference temperature. Using data on 1,758 thermal performance curves across a
wide range of species, we identify the conditions that exacerbate this inflation. We
then demonstrate that these biases can compromise tests to detect metabolic cold
adaptation, which requires comparison of fitness or rate performance of different
species or genotypes at some fixed low temperature. Finally, we suggest alternative
methods for obtaining unbiased estimates of temperature-normalised rate values for
meta-analyses of thermal performance across species in climate change impact studies.

Subjects Ecology, Mathematical Biology, Climate Change Biology
Keywords Sharpe-Schoolfield, Thermal response, Physiology, Temperature

INTRODUCTION
Temperature is a key factor that directly or indirectly governs the performance of
biochemical reaction rates, physiological rates (e.g., respiration and photosynthesis),
and even ecological rates (e.g., prey encounter rate). Understanding how biological rates
respond to changes in environmental temperature (the thermal performance curve, TPC;
Fig. 1) is important for ecological and comparative evolutionary analyses of thermal
physiology, for better predicting how climate change will influence the dynamics of
populations, communities, and ecosystems (Brown et al., 2004; Pörtner et al., 2006; Dell,
Pawar & Savage, 2011; Hoffmann & Sgrò, 2011; Schulte, Healy & Fangue, 2011; Pawar, Dell
& Savage, 2015). Another example of such analyses involves testing the hypothesis of
metabolic cold adaptation (MCA; e.g., see Seibel, Dymowska & Rosenthal, 2007; White,
Alton & Frappell, 2012; Clarke, 2017), according to which cold-adapted individuals exhibit
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Figure 1 A typical example of the four-parameter Sharpe-Schoolfield model fitted to a thermal perfor-
mance curve of Prochlorococcus marinus strainMIT9515 (Johnson et al., 2006). As depicted, the model
assumes that the activity of a single rate-controlling enzyme controls the apparent temperature depen-
dence of the rate. Th is defined as the temperature (before or after the peak) at which 50% of enzyme units
are made inactive. Beyond Th, an increasing proportion of the enzyme population is deactivated, to the
point where all of them become non-functional, and the curve falls to zero. B0 accurately represents the
real rate performance at a reference temperature (Tref), only if the enzyme population is fully functional
at this particular Tref, i.e., Tref� Th; otherwise, B0 will necessarily be greater than the real rate value at Tref

(B(Tref)).
Full-size DOI: 10.7717/peerj.4363/fig-1

higher metabolic rates at low temperatures (well below Tpk; see Fig. 1) than individuals
adapted to higher temperatures.

The TPCs of fundamental biological rates (traits) are generally unimodal, and biological
rate versus temperature relationships are typically well-described by mathematical models
that quantify four key features of the response: the temperature where the performance
peaks (Tpk), the rate performance at a reference temperature (B0), typically well below Tpk

within its operational temperature range (Pawar et al., 2016), the rise of the rate up to Tpk

(E), and the fall after Tpk (ED) (Fig. 1). The normalised rate value B0 is particularly
important, as it allows rate performance to be standardised for comparison across
individuals and species (Gillooly et al., 2001). In particular, the inference of normalised
rate values at a reference temperature between species is key for studying MCA, or for
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comparisons of the performance of different biological rates (e.g., photosynthesis and
respiration) at a common temperature (e.g., see Padfield et al., 2017).

Partly mechanistic models that explicitly link a cellular, organismal, or population rate’s
value to the temperature-dependence of the underlying biochemical kinetics (e.g., Johnson
& Lewin, 1946; Sharpe & DeMichele, 1977; Schoolfield, Sharpe & Magnuson, 1981; Ikemoto,
2005; Corkrey et al., 2012;Hobbs et al., 2013;DeLong et al., 2017) are becoming increasingly
popular for quantifying empirically observed TPCs (Hochachka & Somero, 2002). Such
models have occasionally received criticism on the grounds that they only constitute
phenomenological statistical descriptions, as their assumptions are too simplistic and
cannot be directly mapped onto physiological or ecological rates, which should be driven by
a far more complex interplay of processes (e.g., Clarke, 2004; Clarke & Fraser, 2004; Clarke,
2006; Clarke, 2017; but see Gillooly et al., 2006). Nevertheless, these models continue to be
used in the literature as they can adequately fit a large variety of experimentally determined
TPCs, enabling the quantification of various aspects of the shape of the performance curve.

Among these models, the Sharpe-Schoolfield model (Schoolfield, Sharpe & Magnuson,
1981) has been frequently used in recent studies to address both ecological and evolutionary
questions about the effects of temperature change on individuals, populations, and
communities (Barmak et al., 2014; Barneche et al., 2014; Fand et al., 2014; Simoy, Simoy
& Canziani, 2015; Barneche et al., 2016; Padfield et al., 2016; Vimercati et al., 2016). In
particular, the B0 calculated from fitting this model to TPC data has been used to compare
the rate performance of different species (e.g., Wohlfahrt et al., 1999), treatments (e.g.,
Padfield et al., 2016), or developmental stages (e.g., Hopp & Foley, 2001) at a reference
temperature, Tref. However, the implicit assumption made by these studies, that B0 is
exactly the normalised rate value at Tref, is only valid under certain conditions (see the
Theoretical context section), and may in fact heavily overestimate the actual rate value at
that temperature (Schoolfield, Sharpe & Magnuson, 1981) (Fig. 1). Such an overestimation
could introduce unexpected biases not only in comparisons of temperature-normalised
rates (among e.g., species, treatments, or developmental stages), but also in other analyses
(e.g., exaggerating the rate performance of cold-adapted species could provide false support
for MCA in its absence).

Here, we study the likely incidence of this overestimation of the normalised B0 obtained
by fitting the Sharpe-Schoolfield model to data of biological rates measured at a range of
temperatures. To this end, we investigate the conditions under which this overestimation
becomes particularly pronounced by analysing 1,758 real thermal performance curves
across diverse ectotherm species and rates. We then show how conclusions based upon
biased B0 estimates can compromise the results of an important application of TPC
models—detecting metabolic cold adaptation. Finally, we present alternative methods for
obtaining realistic estimates of rate performance at a reference temperature under different
scenarios of usage of the model.
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METHODS
Theoretical context
The Sharpe-Schoolfield model proposes that the effect of temperature on the performance
of a biological rate largely reflects the thermal sensitivity of a single rate-limiting enzyme
that becomes deactivated at both extreme-high and low temperatures (Schoolfield, Sharpe
& Magnuson, 1981). Nevertheless, low temperature inactivation is hard to detect, possibly
because it requires multiple rate measurements at low temperatures for inferring accurate
parameter estimates (see Pawar et al., 2016). Such resolution is typically lacking in currently
available datasets of thermal performance. For this reason, it is usually more parsimonious
to use a simpler version of the full model that ignores low-temperature enzyme inactivation
(Fig. 1):

B(T )=B0 ·
e
−E
k ·

(
1
T −

1
Tref

)

1+e
ED
k ·

(
1
Th
−

1
T

) . (1)

Here, B is the value of the rate at a given temperature T (K), E is the activation energy (eV),
which controls the rise of the curve up to the peak, ED is the de-activation energy (eV),
which sets the rate at which the rate falls after the peak, Th (K) is the temperature at which
50% of the enzyme units are inactive, and k is the Boltzmann constant (8.617 · 10−5 eV
K−1). B0 is the value of the rate at a reference (normalisation) temperature Tref—i.e.,
B0≈B(Tref)—assuming enzyme units are fully operational at that temperature. The model
can also be reformulated without normalisation, but then B0 would lose any biological
meaning (see Section A2.1 in Appendix S1). The assumption of this model variant is that,
at low temperatures, the population of the key enzyme remains fully active, with low rate
performance values being driven by the decreased amount of kinetic energy which causes
biochemical reactions to proceed at a very low rate.

Schoolfield, Sharpe & Magnuson (1981) originally suggested using Tref= 25 ◦C, a choice
they considered appropriate for most poikilotherm species. This suggestion has frequently
been followed (see Table A1 and Fig. A1 in Appendix S1). However, when non-negligible
loss of enzyme activity occurs at Tref—e.g., due to denaturation or inactivation of some
other component of the metabolic pathway— B0 overestimates the real value of the rate at
that temperature (B(Tref)) (Ikemoto, 2005). This is particularly problematic for comparisons
of B0 across diverse species, as significant temperature-mediated inactivation may begin
at very different temperatures, potentially leading to different degrees of inaccuracy in the
B0 estimates.

The inflation of rate value at reference temperature (B0)
We first consider why B0 can be biased. For this, in addition to the parameters in Eq. (1)
(B0, E , ED, Th, Tref), two extra parameters need to be defined to capture all aspects of the
shape of the TPC: the temperature at which the TPC peaks (Tpk), and the performance at
that peak (Ppk; see sections A2.2-3 in Appendix S1 for their derivations). Setting T =Tref

in Eq. (1) shows that the amount by which B0 will deviate from B(Tref) is equal to the
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denominator of Eq. (1):

B(Tref)=B0 ·
1

1+e
ED
k ·

(
1
Th
−

1
Tref

) . (2)

When Tref is much lower than Th (the temperature at which 50% of the enzyme units
become inactive), B0≈ B(Tref) because the denominator ≈ 1. On the other hand, as the
chosenTref approachesTh—or exceeds it—,B0 will increasingly deviate fromB(Tref). In any
case, B0 will always be greater than B(Tref) (at best, by a negligible amount) because of the
denominator of Eq. (2). To explore this behaviour numerically across real TPCs of a single
biological rate (for consistency reasons), we compiled a dataset of phytoplankton growth
rates versus temperature (a combination of the López-Urrutia et al., 2006; Rose & Caron,
2007; Bissinger et al., 2008; Thomas et al., 2012 datasets), containing 672 species/strains
with growth rate being measured at multiple temperatures per species/strain. To each TPC
in this dataset, we fitted the Sharpe-Schoolfield model across a range of Tref values (−10 ◦C
to 30 ◦C) using the nonlinear least-squares method (Levenberg–Marquardt algorithm). In
order to eliminate less reliable fitted parameter estimates, we rejected fits with (i) an R2

below 0.5 (raising this cutoff to 0.9 yielded qualitatively identical results) or (ii) fewer than
four data points either before or afterTpk. Based on these criteria, the number of accepted fits
per Tref value ranged from 121 to 126 out of 672 starting TPCs (for an R2 cutoff of 0.5). The
variation in the number of retained parameter estimates is due to the different Tref values
that we used which can cause small changes in the quality of the fit, leading to the occasional
exclusion of some fits with R2 values very close to the cutoff. The computer code—along
with the names and versions of all modules or packages used—for the main analyses of
this study (including fitting the Sharpe-Schoolfield model to TPCs) is available at https:
//github.com/dgkontopoulos/Kontopoulos_et_al_temperature_normalisation_2017.

Identification of conditions that lead to a severely overestimated B0
We next determine the characteristics of TPCs (parameter combinations of the Sharpe-
Schoolfield model) that lead to a severely overestimated B0. This is a complex problem
and not just a matter of determining the difference between Th and Tref, because the
denominator of Eq. (2) also includes the ED parameter. As ED influences the relationship
between Th and Tpk (see section A2.2 in Appendix S1), it is necessary to take into account
the interplay of Th and Tref with Tpk. To address this, we use a conditional inference tree
(a machine learning algorithm; Hothorn, Hornik & Zeileis, 2006) to determine the TPC
model’s parameter combinations that lead to strong overestimation.

For maximising the power of the machine learning method we used a larger dataset—a
subset of the Biotraits database (a substantial collection of performance measurements
of ecological traits and physiological rates at multiple temperatures from a wide range of
species; Dell, Pawar & Savage, 2013) combined with additional data extracted from the
published literature (see section A5 in Appendix S1). We first fitted the Sharpe-Schoolfield
model to each empirical TPC in this dataset. As the dataset is very diverse—including,
among others, rates from bacteria, macroalgae, and terrestrial plants—we set Tref to 0 ◦C
so that we could obtain reasonable estimates (i.e., at a temperature below Tpk) of B0
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and B(Tref) even for cold-adapted species with low Tpk values. It is worth stressing that
such a low Tref value is indeed appropriate because, as mentioned in the ‘‘Theoretical
context’’ section, experimentally determined TPCs generally do not possess the required
resolution for detecting low-temperature enzyme inactivation. Thus, it is safe to assume
that rate estimates will be reasonable at low temperatures, even at 0 ◦C. In total, 1,758
species/individual curves were produced from this dataset. We did not filter the results
based on goodness of fit metrics because we are interested in all the different parameter
combinations regardless of how well they describe the data.

We then analysed this ensemble of fitted curves through the construction of a conditional
inference tree from the data (see section A3.1 in Appendix S1 for details). More precisely,
we specified a binary response variable: B0 is above or below Ppk. The choice of Ppk as the
cutoff was due to the very high classification performance of the resulting model, especially
when compared to other possible cutoffs (e.g., a three-fold increase from B(Tref)) which
performed poorly. The predictor variables were the differences between (i) Tpk and Th,
(ii) Tpk and Tref, and (iii) Th and Tref for each fit. The model was constrained by setting
the maximum allowed p-value at each internal node below 10−10. Its performance was
evaluated with the Matthews correlation coefficient (MCC; Matthews, 1975), a metric
often used for machine learning models with a binary response. This metric takes values
from −1 (complete disagreement with data) to 1 (complete agreement with data) and
is considered reliable even when the different response states of the model (in this case
B0 > Ppk and B0 < Ppk) are not evenly sampled. To further ensure that the model was
accurate and generalisable, we also estimated its performance against a distinct dataset
of 405 TPCs (testing dataset). The data for these curves were also part of the Biotraits
database—similarly to the 1,758 curves—but were not used for training the model.

Implications of the inflation for investigations of thermal adaptation
Among other ecological and evolutionary questions, the effects of adaptation to different
thermal environments on the shape of the TPC (e.g., see Huey & Kingsolver, 1989;
Angilletta et al., 2003; Angilletta, 2009; Angilletta, Huey & Frazier, 2010; Clarke, 2017) can
be investigated using estimates from the Sharpe-Schoolfield model. For example, a study
may aim to uncover whether there are any trade-offs between performance at lower
and higher temperatures by correlating B0 and Tpk (e.g., a negative correlation would
suggest that high performance at warmer temperatures would come at the cost of lower
performance at colder temperatures). Overestimating B0—especially for cold-adapted
species with a Th value close to Tref—may potentially introduce such correlations where
none existed, serving as false-positive evidence for the MCA hypothesis.

To explore this possible issue, we generated a synthetic dataset of 1,000 negatively
skewed TPCs, in which MCA was absent. While a real-world dataset of a single rate could
also be used for this purpose (e.g., the phytoplankton growth rates dataset in Fig. 2), we
resorted to a simulation in order to obtain a bigger sample and, more importantly, to
ensure that the input data were not the outcome of the process of MCA. To this end, each
curve was obtained by sampling from a distinct realisation of the beta distribution, with
shape parameters (α and β; see section A4 in Appendix S1) that were in turn sampled
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Figure 2 The effect of choice of reference temperature Tref on the deviation of B0 from B(Tref) (A) and
its relationship with Ppk (B). The vertical axis of (A) stands for the log-fold increase of B0 from B(Tref),
where a value of zero indicates that B0 is double the real B(Tref) value. Zero is used here as a reference
point around and above which B0 becomes non-negligibly exaggerated. Data points were obtained by fit-
ting the Sharpe-Schoolfield model to a dataset of phytoplankton growth rate measurements versus tem-
perature (see main text) across a range of Tref values. The colour depth of each hexagon is proportional
to the number of data points at that location in the graph. As expected from Eq. (2), the deviation of B0

from B(Tref) decreases nonlinearly with the difference between Th and Tref, to the point where the former
asymptotically approaches zero (in linear scale). Towards the left end of the horizontal axis, the values of
the estimates of B0 even exceed those of the rate value at or close to optimum, Ppk.

Full-size DOI: 10.7717/peerj.4363/fig-2

from normal distributions (Table 1). Skewness was assessed by examining the α and β
parameters of each simulated curve. Curves that were not negatively skewed (i.e., those
where α≤β) were removed and new ones were produced in their place. We also randomly
varied the width and the height of the curves using two normally distributed parameters
j and k. As the minimum Tpk in this simulation was at 8.23 ◦C, we arbitrarily set Tref to
7 ◦C, but any other Tref value below 8.23 ◦C could be used as well. Note that a different run
of the simulation would most likely lead to a different minimum Tpk value, which would
potentially require a change in the chosen value of Tref. To enforce the absence of MCA, we
made sure that, in this population of curves, there was no significant association between
the performance at a Tref of 7 ◦C, and the thermal optimum (r =−0.03, 95% CI [−0.09
to 0.03], p= 0.35).

We then fitted the Sharpe-Schoolfield model to each synthetic curve and obtained
parameter estimates where possible. Following this, we performed two different tests
for MCA, and compared the results when using B0 versus B(Tref). For the first test, the
estimates were split onto two groups: (i) those originating from curves with Tpk< 15 ◦C
(colder-adapted species), and (ii) those with Tpk ≥ 15 ◦C (species adapted to warmer
temperatures). We next tested whether the distributions of the normalised rates (B0 and
B(Tref)) were significantly different using the two-sample Kolmogorov–Smirnov test
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Table 1 Parameters for the generation of simulated curves. α and β are shape parameters of the beta
distribution, whereas the two other parameters generate variation in the width and the height of the
curves. β is constrained to be smaller than α, in order for the resulting curves to be negatively skewed,
similarly to the observed thermal response curves of biological rates.

Parameter name Estimation

α α∼N (µ= 10,σ = 3)
β α− i, i∼N (µ= 4,σ = 2)
Final curve width original width ·j, j ∼N (µ= 25,σ = 4)
Final curve height original height+k, k∼N (µ= 3,σ = 0.8)

(Corder & Foreman, 2014). The second test consisted of a simple correlation between the
normalised rate values (B0 and B(Tref)) and the corresponding Tpk values.

RESULTS
Conditions that lead to different degrees of inflation of B0 estimates
Using the phytoplankton growth rates dataset, we show that, contingent on the difference
between Th and Tref, B0 can be considerably greater than B(Tref) (Fig. 2). More precisely,
the deviation of B0 from B(Tref) decreases nonlinearly with the difference between Tref and
Th (A). In many circumstances, the deviation of B0 is extreme, becoming even greater than
the rate value at or near optimum temperature, Ppk (B).

The search for thermal response parameter combinations that lead to B0 being above Ppk
(highly overestimated) or below it (less overestimated) resulted in a conditional inference
tree with four terminal nodes (Fig. 3). In each of those nodes, B0 was nearly exclusively
below or above Ppk. This machine learning model exhibited high performance both on
the training dataset (MCC = 0.954) and the testing dataset (MCC = 0.824; section A3.2
in Appendix S1). The sets of thermal response parameters in which B0 was greater than
Ppk almost always had either a Th−Tref difference that was less than 0.6 (relatively narrow
curves), or a Tpk−Tref difference of 49.1 or lower (relatively wide curves).

Impacts of the overestimation of B0 on tests for MCA
In total, we were able to obtain thermal response parameter estimates for 968 simulated
curves, as the nonlinear least-squares algorithm failed to converge on solutions for the
remaining 32. In the first test forMCA the distributions of B0 estimates differed between the
two groups (D= 0.18, p= 1.7 ·10−6), with species adapted to colder temperatures having a
highermedian value of B0 (Fig. 4A, light blue violin plots). In contrast, the two distributions
of B(Tref) estimates were statistically indistinguishable (D= 0.07, p= 0.21), as expected
(Fig. 4A, green violin plots). The overestimation of B0 also affected the second MCA test,
as a weak negative correlation between B0 and Tpk was detected, but not between B(Tref)
and Tpk (Figs. 4B and 4C). These results indicate that the inflation of B0 can provide false
support for the MCA hypothesis, even for datasets with complete absence of this pattern.
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Figure 3 The conditions under which B0 is highly overestimated (i.e., B0 > Ppk; dark grey bars and
curves) or less so (i.e., B0 < Ppk; light grey bars and curves), determined using a conditional inference
tree algorithm. Representative examples of thermal performance curves, along with their B0 estimates
(crossed circles; normalised at 0 ◦C for consistency), are shown under each terminal node. The curves are
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atively to the Ppk value of each TPC. For a few very wide—and possibly biologically unrealistic—curves
(right half), the difference between Tpk and Tref determines whether B0 > Ppk. In contrast, for the remain-
ing curves, a Th value that is greater than Tref by more than 0.599 ◦C will always lead to B0 estimates that
are below Ppk.

Full-size DOI: 10.7717/peerj.4363/fig-3
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Figure 4 Impacts of exaggerated B0 estimates on tests for metabolic cold adaptation. (A) Violin plots
of rate performance at Tref = 7 ◦C, as estimated using B0 (light blue) and B(Tref) (green), for hypothetical
cold-adapted species (Tpk < 15 ◦C; left half) and species adapted to higher temperatures (right half). Hor-
izontal lines indicate the median of each distribution. The statistical significance of the difference in per-
formance between the two temperature groups was evaluated according to the two-sample Kolmogorov–
Smirnov test. Based purely on the B0 estimates—which get increasingly inflated at low temperatures as Th

approaches Tref—one would mistakenly conclude that metabolic cold adaptation is present in this dataset.
(B, C): Correlations of B0 with Tpk, and B(Tref) with Tpk. The color surfaces represent the local density of
data points. A similar pattern to the previous panel emerges, as the inflated B0 estimates—in contrast to
the true values—suggest that cold adaptation is present, albeit weakly.

Full-size DOI: 10.7717/peerj.4363/fig-4

DISCUSSION
In this paper we have addressed the consequences of estimating the value of a rate at a
reference temperature, B0, using the Sharpe-Schoolfield model, but without satisfying
one of its fundamental assumptions: that the key enzyme—which is responsible for the
temperature dependence of the rate—is fully functional at the reference temperature.
When this assumption is not met, B0 will overestimate the real rate performance at the
reference temperature, B(Tref) (Ikemoto, 2005).
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We explain how the discrepancy between B0 and B(Tref) arises and determine the
conditions under which it becomes particularly pronounced using a machine learning
approach (Fig. 3). The resulting conditional inference tree shows that B0 estimates will
generally exceed the rate performance at the peak of the curve (Ppk) as long as: (i) Tpk−Th

is less than ∼37.58 ◦C and Th−Tref is less than ∼0.6 ◦C, or (ii) Tpk−Th is greater than
∼37.58 ◦C and Tpk−Tref is less than ∼49.11 ◦C. In any other case, B0 would most likely
be smaller than Ppk, although its inflation may well still be of concern. Using a synthetic
dataset, we then demonstrate that wrongly assuming B0= B(Tref) can lead to erroneous
conclusions in analyses of thermal adaptation, as the overestimation of B0 can mimic the
effects of metabolic cold adaptation (Fig. 4) (a Type I error).

It is important to note that while we focus on the four-parameter version of the
Sharpe-Schoolfield model in this study, the inflation of B0 estimates also mathematically
occurs in the variant of the model that assumes enzyme inactivation at both high and low
temperatures. Thus, caution is warranted regardless of the model variant that is chosen.
Beyond this issue, fitting the simpler model instead of its full counterpart may potentially
give rise to other inherent biases but, to our knowledge, a thorough comparison of the two
model variants across different organismal groups and rates is not available.

As mentioned before, previous studies have tended to set the Tref—usually at a value
of 25 ◦C—while fitting the Sharpe-Schoolfield model without considering the potential
inflation of B0 (Table A1 and Fig. A1, Appendix S1). Whether results of these studies have
been compromised by an inappropriate use of Tref is impossible to determine definitively
because most of these studies report either Th or Tpk estimates, whereas the machine
learning model depends on both (see the ‘Conditions leading to a severely overestimated
B0’ section), along with the value of Tref. If these data were available, using the machine
learning model that we generated would provide a straightforward procedure to identify
cases where B0 is highly likely to be extremely overestimated (i.e, greater than Ppk). In fact,
the only study where all necessary parameter estimates were reported for all fitted curves
was that by Padfield et al. (2016). In that study, the maximum difference of Th from Tpk

is 2.49 ◦C, and the minimum difference of Tref from Th is 5.79 ◦C, which, according to the
machine learning model (see Fig. 3), are sufficient for the B0 estimates to be below those
of Ppk. Having said that, as we showed in this paper, the fact that the overestimation of B0
is not extreme does not necessarily rid any drawn conclusions of bias (e.g., the possibility
of falsely detecting the effect of MCA).

In any case, it is crucial to point out that choosing an appropriate reference temperature
(i.e., one that is low enough but within the temperature range that the species can endure)
is not—on its own—a sufficient strategy to avoid the overestimation of B0. As different
species or individuals will most likely not share a common Th value, the difference between
Th and Tref will vary across the dataset (see Fig. 2). This approach could again lead to an
exaggeration (which may however be very small) of some B0 estimates and is therefore not
an elegant solution to the problem.
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Comparisons of temperature-normalised rates of diverse species
When data span the entire TPC
For studies in which the end goal is to compare the performance of different species at
a common temperature, the simplest approach would be to fit the Sharpe-Schoolfield
model—with or without normalising B0 at a reference temperature—and compare
estimates of B(Tref), calculated a posteriori. The confidence intervals around B(Tref) can
then be estimated by bootstrapping. Another option to avoid the issue of rate overestimation
is to consider fitting other models, such as the macromolecular rates model (Hobbs et al.,
2013) or the enzyme-assisted Arrhenius model (DeLong et al., 2017).

When data only cover the rising part of the TPC
While the previous solutions are applicable to thermal response datasets that capture
either the rise of the curve or its entirety, few studies report temperature performance
measurements after the unimodal peak of the response (Dell, Pawar & Savage, 2011).
Therefore, to obtain an estimate of baseline performance from a dataset that only covers
the exponential rise component, one could instead fit the Boltzmann-Arrhenius model
(e.g., see Gillooly et al., 2001),

B(T )=B0 ·e
−E
k ·

(
1
T −

1
Tref

)
, (3)

which does not suffer from the problems of the Sharpe-Schoolfield model, as B(Tref) indeed
simplifies to B0.

A second alternative model is the one that includes the Q10 factor (see Gillooly et al.,
2001), i.e., the rate of change in biological rate performance after a temperature rise of
10 ◦C:

Q10=

(
B(T2)
B(T1)

) 10
T2−T1

. (4)

In this case, one would first estimate the value of Q10 from known rate values at two
temperatures, and use it to calculate the rate value at the reference temperature:

B(Tref)=B(T1) ·Q
Tref−T1

10
10 . (5)

Regardless of which of these two models is chosen, careful attention must be paid to
ensure that the biological rate increases exponentially across the entire temperature range,
without signs of a plateau being reached. Otherwise, the estimates may yet again be biased.

Using the ‘intrinsic optimum temperature’ instead of Tref
Alternatively, baseline performance could be defined as the height of the curve at the
temperature where the population of the key enzyme is fully active, which should
be characteristic for each individual or species. In the Sharpe-Schoolfield model, the
denominator indicates the percentage of enzymes that are active. Therefore, in the four-
parameter variant of the model, the intrinsic optimum temperature could be estimated
as the highest temperature at which this percentage is sufficiently high (e.g., at 99%).
If, instead, the model of choice is the Sharpe-Schoolfield variant that also accounts for
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enzyme inactivation at low temperatures, there will be a unique temperature at which the
enzyme population is 100% active. Otherwise, the intrinsic optimum temperature can
also be obtained from the Sharpe-Schoolfield-Ikemoto (SSI) model (Ikemoto, 2005). This
model integrates the law of total effective temperature—often used in studies of arthropod
or parasite development—within the Sharpe-Schoolfield model, replacing Tref with the
intrinsic optimum temperature. However, this model introduces an extra parameter and
is more challenging to fit compared to the original Sharpe-Schoolfield model. To mitigate
this problem, software implementations have been developed that reduce the computation
time from often more than 3 hours (Ikemoto, 2008) down to less than a second (Shi et al.,
2011; Ikemoto, Kurahashi & Shi, 2013).

CONCLUSIONS
Obtaining accurate estimates of temperature-normalised rate performance is of crucial
importance—especially in the face of climate change—for comparisons of the same rate
across different organisms, or different rates within an individual. In this context, our study
explains why temperature-normalised rate estimates obtained using the Sharpe-Schoolfield
model can be strongly exaggerated—in comparison to the true rate values—when one of
the assumptions of the model is violated, and gives an example of possible consequences
of this exaggeration. The suggestions that we provide to address this issue should be useful
to the burgeoning studies on ectotherm thermal performance and climate change, both
for performing meta-analyses and for determining appropriate temperature ranges in
laboratory experiments.
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