
Submitted 2 April 2014
Accepted 29 May 2014
Published 26 June 2014

Corresponding author
Kang Ning, ningkang@qibebt.ac.cn

Academic editor
Yong Wang

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.436

Copyright
2014 Ren et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

QSpec: online control and data analysis
system for single-cell Raman
spectroscopy
Lihui Ren, Xiaoquan Su, Yun Wang, Jian Xu and Kang Ning

Bioinformatics Group of Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong
Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao, Shandong, P.R. China

ABSTRACT
Single-cell phenotyping is critical to the success of biological reductionism. Raman-
activated cell sorting (RACS) has shown promise in resolving the dynamics of living
cells at the individual level and to uncover population heterogeneities in comparison
to established approaches such as fluorescence-activated cell sorting (FACS). Given
that the number of single-cells would be massive in any experiment, the power of
Raman profiling technique for single-cell analysis would be fully utilized only when
coupled with a high-throughput and intelligent process control and data analysis
system. In this work, we established QSpec, an automatic system that supports high-
throughput Raman-based single-cell phenotyping. Additionally, a single-cell Raman
profile database has been established upon which data-mining could be applied to
discover the heterogeneity among single-cells under different conditions. To test the
effectiveness of this control and data analysis system, a sub-system was also developed
to simulate the phenotypes of single-cells as well as the device features.

Subjects Bioinformatics, Biotechnology, Computational Biology
Keywords Single-cell, High-throughput, Raman-activated cell sorting (RACS), Data analysis,
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INTRODUCTION
All organisms on earth, including bacteria, plants and animals, derive from single-cells.

Genetically identical parent cells can produce cells with different functions due to the

intrinsic variation among the individual offspring cells in gene expression and gene

regulation. Microbiologists are especially interested in single-cell techniques because most

microorganisms (>99%) have not yet been cultured in the lab (Amann, Ludwig & Schleifer,

1995; Rappe & Giovannoni, 2003). These uncultivated microorganisms contain a large

amount of functional genes and play crucial roles in natural ecosystems through various

ways such as global warming (Monson et al., 2006), food security (through maintaining soil

health and promoting plant growth) (Xia et al., 2011), and environmental bioremediation

(Beja et al., 2000).

The monitoring of microbial single-cells in vivo during the time course is an effective

method to analyze the adaptation of a population to changing conditions, such as nutrient

supply or stress exposure. Notwithstanding culminating evidences for varies adaptation
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diversities among individual “population or community” members, such endeavors

have only been undertaken recently due to enormous technical challenges. Regardless

of these obstacles, such studies hold great promise to provide substantial new insight

into fundamental physiological processes in microorganisms as well as to accelerate the

development of superior strains for industrial biotechnology.

Single-cell technologies, such as FACS analysis and the more recently developed

RACS (Li et al., 2012), are capable of detecting phenotypic heterogeneities in cellular

population. Raman spectroscopy is an especially powerful analytical technique which

has already been used in the study of single-cells. Raman spectroscopy is based on

inelastic scattering of photons following their interaction with vibrating molecules of

the sample. During this interaction, photons transfer (Stokes)/receive (Anti-Stokes) energy

to/from molecules as vibrational energy. Thus, the energy change of the scattered photons

corresponds to the vibrational energy levels of the sample molecules. For more detailed

description of the physics of the Raman spectroscopy please refer to Ferraro (2003).

Raman micro-spectroscopy can provide useful biochemical information regarding live

cells, therefore has a wide application area including environment monitoring, healthcare,

bioenergy, etc.

Recently, single-cell based Raman spectroscopy profiling (a light scatter analysis

technique) has become highly appropriate at resolving the dynamics of cells at individual

level by recording and comparing single-cell Raman spectra, yet the discrimination

power of the Raman profiles is not particularly strong at distinguishing marginally

different phenotypes. Nevertheless, RACS has several advantages over the classical

fluorescence-based sorting (Li et al., 2012). It can survey natural microbial communities or

study gene expression variance in cells of the same genotype without artificial interference

such as external tagging of cells or fluorescent protein insertion (Wagner, 2009).

The RACS system automates the delivery, manipulation, analysis and sorting of

single-cells from a continuous flow of cell samples. It enables the separation of cells

according to their intrinsic chemical ‘fingerprint’ with minimal pre-treatment, thus cells

are potentially viable after sorting (Huang, Ward & Whiteley, 2009). The isolated cells can

then be further processed on a chip for cultivation or DNA amplification (Huang, Ward &

Whiteley, 2009). Tweezers or microfluidic chips-based techniques combined with Raman

micro spectroscopy could be used for tumor identification (Huang et al., 2004; Wlodkowic

& Cooper, 2010b), cancer recognition (Wlodkowic & Cooper, 2010a) and stem cell research

(Pascut et al., 2011; Wang et al., 2005), etc. Given that the number of single-cells to be

analyzed and isolated would be massive in most experiments, the power of Raman profiling

techniques for single-cell analysis would be fully utilized only with the accompaniment of

high-throughput and intelligent online control and data analysis system.

In this work, we describe our approach for RACS system intelligent control and

high-throughput data analysis in the following order: (1) Establishment of an automatic

high-throughput process control system QSpec (http://www.computationalbioenergy.

org/qspec.html) that could support the full cycle of single-cell phenotyping: instrument

control (including RACS platform control and microfluidic device control), single-cell
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Figure 1 Schematic representation of RACS hardware set-up. All hardware are annotated at sides, and
arrows indicate laser pathways.

image analysis, single-cell Raman profiling, single-cell profile comparison, etc. (2) Based

on this system, a single-cell Raman profile database was established based on which some

database search and data-mining works were performed to discover the heterogeneity

among cells under different conditions and at different time-points during differentiation.

(3) To test the effectiveness of the whole control and data analysis system, we had also

created a simulation system which can simulate single-cell features as well as device

features, and tested the QSpec system with it. (4) The whole QSpec system is put to

test on the prototype of real single-cell Raman spectrum analysis platform. QSpec is an

easy-to-use, fully-customizable, memory-efficient and fast software package that could be

run on a desktop computer.

MATERIALS AND METHODS
The QSpec software system is designed to be coupled with the RACS system for single-cell

manipulation. Therefore, the RACS hardware is the foundation based on which QSpec

software is designed. Figure 1 shows the RACS hardware, which consists of a microscope,

a Raman excitation laser, optical grating, a spectrograph, a microfluidic device and some

accessory modules. The microscope objective has a numerical aperture (NA) of approx-

imately 0.9 to produce a sharp focus to trap micro-particles suspended in solutions. The

arrangement shown in Fig. 1 is in a signal acquisition format, where the Raman scattering

is collected through the same lens as the excitation. Two lasers with different output

beam of wavelength are used as the trapping laser. The choice of wavelength is dictated

by the following considerations: The efficiency of Raman scattering exhibits the λ−4
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Figure 2 Framework of QSpec. (A) Instrument Control, (B) Image Analysis, (C) Raman Profiling,
(D) Database Update and (E) Database Search.

wavelength dependence, indicating the desirability of using short wavelengths. However,

short wavelengths result in increased propensity for laser-induced photo damage. The use

of longer wavelengths also offers a potential advantage of reducing fluorescence effects

that compete with the weak Raman signals. However, longer wavelengths also lead to

inescapable problems that are related to the efficiency of CCD-based photon detectors that

are readily available at present. The best available detection efficiency of ∼50% is obtained

over the wavelength range 500–800 nm (Snook et al., 2009). The corresponding value

around 1 µm wavelength is 10% while at 1064 nm it is almost zero. Therefore, in our RACS

system, our choice of 532 nm and 785 nm as the Raman excitation wavelength appears to

be the better utilitarian compromise. Manipulation of the living cells is achieved simply by

means of microfluidic device and controllable x–y–z platform.

Base on the RACS hardware, we have developed an automatic high-throughput process

control and data analysis system QSpec (Fig. 2). QSpec was implemented using C++. To

automate and streamline the fast data process, QSpec takes advantage of multi-thread

computation. QSpec system consists of 5 major components: (A) instrument control

(including Raman profiling platform control and microfluidic device control), (B)

single-cell image analysis, (C) single-cell Raman profiling, (D) single-cell database update

and (E) database search. Figure 3 is a screenshot of the QSpec system in which all of these

five components and related results were shown simultaneously on the same screen.

Automatic control and single-cell phenotype extraction
(A) Instrument control: For the instrument control, we designed two major components:

Raman profiling platform control, and microfluidic device control. Figure 4 shows the
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Figure 3 Screenshot of user interface for QSpec. The single-cell entry in the list, its coordinate, its image
and the Raman spectrum were shown on the same screen.

Figure 4 The instrument control parameter setting interface for (A) RACS platform control and (B)
microfluidic device control. In (B), the cell sorting is started based on single-cell Raman spectra, and the
electromagnetic valve could be turned on and off for cell sorting if (i) the ratio of one peak intensity over
another is greater than a threshold as defined or (ii) the difference of one peak intensity minus another is
greater than a threshold as defined (as annotated in blue rectangles).

operation interface of the RACS platform control and microfluidic device control. RACS

platform control is for adjustment of the parameters of the spectrometer, the motor, the

laser device, etc. By means of these controls, we achieved the fully adjustable single-cell

Raman spectrum collection and signal processing. The function of microfluidic device

control is for the parameter adjustment of electromagnetic valve to facilitate the sorting of

the cells which we are interested in.

Ren et al. (2014), PeerJ, DOI 10.7717/peerj.436 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.436


(B) Image analysis: For image analysis, single-cell images are extracted through a series

of steps. Firstly, single-cell was identified from an image (from microscope) containing

many single-cells, which could be considered as a classical pattern recognition problem,

and then Sobel/Prewitt algorithm (Sobel, 1978) with default parameters was used to

recognize each of the single-cells’ boundary from the relatively large image. After this,

a conservative approach have been adopted, in which single-cells with completely clear

boundaries (defined by Sobel/Prewitt algorithm) and do not overlap with other cells were

considered as positive single-cell images. Other single-cells could either be single-cells

with abnormal shape, or single-cells with overlapping images, or noises, based on which

the Raman spectrum might not be retrieved correctly. In this way, we could achieve high

specificity while relatively lower sensitivity in single-cell image extraction.

(C) Raman profiling: Raw Raman spectrum extraction is a routine with fixed

parameters such as laser focus position, focusing time, etc. (Lewis & Edwards, 2001).

After the Raman spectrum for a single-cell was obtained, we designed a routine for quality

control and filtration process through a series of steps: Baseline correction, smoothing,

Fourier Transform for correction and normalization of the Raman spectrum (as below):

Baseline correction allows background in a spectrum to be subtracted, to yield a

spectrum with zero baseline. The correction can be applied to a single spectrum or a

multidimensional spectral array.

The smoothing function allows spectra to be smoothed and converted to first and

second derivative functions. Typically these functions allow spectral quality to be improved

after acquisition.

The Fourier Transform function allows smoothing of a spectrum based on direct

Fourier data transformation, applying the filteration and apodization functions. The

spectrum is converted into its real and imaginary Fourier functions, which essentially

represent the spectrum as a combination of wave patterns of varying frequency. Smoothing

can be applied by removing high frequency contribution (corresponding to noises) and

leaving medium and low frequency contribution (corresponding to Raman peaks).

Database and data comparison
After single-cell’s Raman profile extraction and adjustment, the Raman spectrum will then

be searched against the Raman spectra database for fast classification and sorting. These

would involve (D) database update and (E) database search (Fig. 7).

The database is organized as a two-tiered structure: the raw database contains all

single-cell phenotypes (Raman spectra and images) collected from the RACS system, and

the refined database was created based on the raw database, containing only representative

single-cell phenotypes that were of high quality as follows: (1) Selection based on

significance: If the intensity of a particular peak is higher than the defined peak intensity,

or if a specific peak has appeared, then it would be automatically stored in the refined

database; (2) Selection based on manual inspection: Raman spectra could also be manually

selected and inserted into the refined database, based on random selection or targeted

selection procedure. For example, in the case of Saccharomyces cerevisiae BY4743 in
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Table 2, when the peak at about 1003 cm-1 appears and the signal noise ratio is over 3,

it would be deposited into the refined database.

A package of data analysis tools, which includes support vector machine (SVM) (Vapnik,

2000) and Euclidean Distance (ED) (Danielsson, 1980), has also been designed for the

comparison and interpretation of the data in the database, as well as for cell classification

(Amantonico et al., 2010; Whitaker & Walt, 2007) and effective database search (against

the refined database). Additionally, a programmable portal has been created to link these

single-cell phenotypes to their related omics data, so that phenotype–genotype association

studies could be conducted.

For SVM analysis, the kernel function plays a key role in solving classification problems

because many such applications are not linearly separable in their original dimensional

space. By applying a kernel transform K, the input data vectors are mapped into a

higher-dimensional space. In this space, the mapped data vectors could be linearly

separable or have improved separability. The Radial Basis Function (RBF) kernel is

commonly considered as the most powerful, so it was applied in this work. RBF kernel

is defined as

K(xi,xj) = exp(−γ ∥xi − xj∥
2) for γ > 0 (1)

where xi, xj are two training objects in the dataset.

Using this kernel, the radial width γ has to be estimated. The optimal value of γ is found

after a grid search which only needs to be performed once for a given classification task.

The simulation system: simulation of cell features and device
features
Currently, there is still a lack of single-cell phenotype information from different aspects:

firstly, the types of single-cells examined is limited; secondly the number of single-cells

collected is far from enough; thirdly the single-cell Raman spectrometry is quite a

new technology so that related phenotypes are largely lacking. In order to compliment

the current little information about real single-cell phenotypes, the simulation system

was established. This systems could simulate the features of single-cells as well as the

device features in the following aspects: (a) multiple single-cell phenotypes, including

realistic single-cell images, Raman spectra, positions and the effects of in vivo single-cell

dynamics (such as the Brownian motion) are simulated, and (b) virtual platform

operation interfaces, focus adjustment and Raman spectra capture functions (http://www.

computationalbioenergy.org/qspec-simu.html). Figure 5 illustrates the framework of the

simulation system, which consists of several major components: simulation of phenotype

(images, Raman profiles, positions) and simulation of system control.

For the simulation of single-cells features, three main simulation processes are deployed

based on the input cell type, cell density, number of cells, etc. They include:

(1) Given cell density and the number of cells to be simulated, the cell positions are all

randomly generated and positioned onto the plate.
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Figure 5 The Framework of simulation system and its connection with QSpec system. In single-cell
simulation part (top), the supervised method (based on training dataset) is used for the simulation of
single-cell’s image, Raman spectrum and position. In the QSpec system (bottom), the simulation of
platform shift has also been implemented.

(2) Given a specific cell type, a large number of single-cell images were used for training

(by k-Nearest Neighbor (KNN) method) a simulation model for different types of strains

under different conditions, and this simulation model is used, together with a random

noise simulation process, to produce the simulated single-cell images for specified types of

single-cells.

(3) Given a specific cell type, the simulated Raman spectra are generated in a similar

way as for simulated single-cell images. A large number of Raman spectra were used for

training (by KNN method) a simulation model for different types of strains under different

conditions, and this simulation model is used to produce the simulated single-cell Raman

spectra for specified types of single-cells.

For the device features, the movements of laser focuses are also simulated in the

same pattern as for real Raman spectroscopy. Based on the resulting single-cell Raman

spectroscopy and images from this simulation as input, the QSpec would run exactly the

same as on real single-cells.
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The simulation system can simulate a single-cell’s dynamics and obtain spectral

information. Therefore, it would facilitate easy configuration and diagnosis of various

modules in QSpec system.

RESULTS
Materials and assessment methods
The RACS system that we used is a prototype that consists of Raman spectroscopy,

single-cell sorting, microfluidic device module and QSpec control and data analysis

module.

QSpec runs on Windows operating systems (Windows XP and later versions). We

provide user instructions and sample input files for ease-of-use of the entire package

(http://www.computationalbioenergy.org/qspec.html). We also provide a set of scripts to

test the accuracy and speed of QSpec.

To assess the effectiveness of QSpec on high-throughput single-cell phenotyping, we

applied QSpec on thousands of real algae, yeast and bacterial single-cells under different

conditions and at different time-points based on RACS-1 prototype system (details in

Table 2). For algae single-cells, we selected Nannochloropsis oceanica IMET1, and analyzed

their different single-cells though a time-course under N-depletion/repletion condition.

For yeast single-cells, we have selected Saccharomyces cerevisiae BY4743, and analyzed

the single-cells at stationary phase. The bacterial single-cells that we have used are from

Streptococcus sanguinis at stationary phase.

The simulated data are generated based on KNN-based training model from a large

number of Raman spectra for different types of strains under different conditions (details

in “Methods”).

The effectiveness of QSpec is measured by sensitivity. Sensitivity is defined as the

percentage of correct cells that QSpec has recognized:

Sensitivity =
# Correctly recognized cells

# Correct cells
. (2)

Accuracy test on the instrument control module
The manual operation for single-cell profiling is not only time-consuming but also makes

it difficult to choose the single-cells with specific properties in a high-throughput manner.

In QSpec, the control system is fully automatic, so it could facilitate high-throughput

single-cell analysis. This characteristics is extremely useful for massive single-cell

extraction and analysis. As QSpec could locate single-cells by using image detection

technology with low error-rate, it is more effective to choose the cell automatically.

To test the accuracy of this fully automatic process, we used 10 single-cells of Saccha-

romyces cerevisiae BY4743 under normal conditions to test the reliability of automatic

measurements. The experiment parameters were: microscope objective number 50, laser

wavelength 532 nm, exposure time 5 s. Results have shown that through instrument

control, when performing single-cell image analysis and single-cell Raman profile analysis,
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Figure 6 The comparison of Raman spectra obtained by un-normalized automatic and manual mea-
surements. (A) and (B) showed the Pearson correlations for all peaks measured by automatic (X-axis)
and manual (Y-axis) methods for two single-cells. (C) and (D) showed the real Raman profiles measured
by automatic (blue) and manual (green) methods for the two single-cells in (A) and (B), respectively.

the differences between automatic and manual measurements are very small (Fig. 6 shows

the results for two single-cells), indicating that the automatic control and analysis system is

indeed reliable and feasible.

Accuracy test on a simulation system
The simulation system first created simulation cells that contain Raman profile and image

information. The QSpec system would extract these single-cell phenotype information

in the same way as on real cells. This simulation system would be used to evaluate the

sensitivity of QSpec in extracting the images and Raman spectra of single-cells.

We tested the effectiveness of the simulation system and analyzed simulation cells based

on simulated Saccharomyces cerevisiae BY4743 single-cells with different configurations,

focusing on the simulated single-cell position, image and Raman spectrum (refer to

“Methods”, Fig. 5). Firstly, the positions of simulated single-cells were extracted based on

single-cell image analysis. From this step, we could obtain the sensitivity of image analysis

(Table 1). Then the Raman spectrum for each cell was obtained from previously identified

single-cell positions. However, due to the overlap of multiple single-cells, Raman signal
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Figure 7 The screenshot of QSpec analysis for Saccharomyces cerevisiae. The background shows the
single-cell images and their positions on the plate under microscope, and at foreground the Raman
spectra for 5 single-cells are shown.

Table 1 Sensitivity of single-cell image and Raman spectrum extraction based on simulated dataset.

Simulated cell # cells
(window size fixed)

# correctly
recognized cells

Sensitivity of
image analysis

Sensitivity of
Raman profiling

Saccharomyces cerevisiae 100*5 475 95.0% 91.0%

Saccharomyces cerevisiae 100*10 956 95.6% 95.0%

Saccharomyces cerevisiae 200*5 932 93.2% 91.3%

Saccharomyces cerevisiae 200*10 1931 96.5% 96.1%

Table 2 Accuracy for single-cell phenotype extraction based on yeast and bacterial cells under various test conditions.

Cell Test
condition

#
cells

# correctly
recognized
cells after
image analysis

Sensitivity of
image analysis

# correctly
recognized
cells after
Raman profiling

Sensitivity of
Raman profiling

Saccharomyces cerevisiae BY4743 Tube 115 82 71.3% 48 41.7%

Saccharomyces cerevisiae BY4743 Slide 96 75 78.1% 62 64.6%

Streptococcus sanguinis Tube 80 43 53.7% 16 20.0%

Streptococcus sanguinis Slide 73 41 56.1% 33 45.2%

might not be obtained from previously positioned single-cells. Results on sensitivity of

Raman profiling (Table 1) have shown that the sensitivity for Raman profiling was slightly

lower than that of image analysis.

Results based on the RACS prototype instrument
In order to verify the performance of QSpec system on RACS-1 prototype, more than

two hundred samples of Saccharomyces cerevisiae BY4743 and Streptococcus sanguinis
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single-cells were tested (Table 2). Through the automatic control we measured different

growth conditions of cells and got more sets of Raman spectra. Figure 7 is a screenshot of

QSpec analysis for cerevisiae, in which five out of six single-cells’ images and Raman spectra

have been correctly extracted.

Then we tested the effectiveness of QSpec single-cell extraction and analyzed single-cells

from cerevisiae BY4743 and sanguinis populations on large scales. Due to cell irregularity,

Brownian motion, and overlap of multiple single-cells, positional deviation is found when

pointing lasers onto some of the single-cells after identifying them (there is a time-lag

between these two processes) using QSpec. Under such situations, Raman signal cannot

be obtained for previously positioned single-cells. Thus in theory the results on real

single-cells would be worse than those on current simulated single-cells (Table 1). And

in practice this was actually the case (Table 2).

Results based on different strains of single-cells under different test conditions (tubes

and slides) (Table 2) have also shown that relatively high sensitivity of image analysis could

be achieved, while the sensitivity for Raman profiling was slightly lower. Additionally,

results based on “single-cells in tube” are generally worse than those based on “single-cells

on plate”, probably due to Brownian motion and other factors. Moreover, the sensitivity

of both image analysis and Raman profiling was lower than that based on simulated

single-cells, indicating that the above-mentioned Brownian motion and other factors

might affect the accuracy of single-cell phenotype extraction.

Single-cell Raman profile database and data comparison
Another important part for the whole QSpec platform is a single-cell Raman profile

database, which would facilitate the comparison of different profiles as well as data-mining

for bio-markers. Several basic features were considered in our initial attempt in building

a prototype of this database: (A) Project information: Cell ID, Project ID and Date;

(B) Sample preparation: Name, Temperature, Shaking, OD and so on; (C) Instrument

parameters: Laser, Filter, Objective, Grating, etc.; (D) Cell information: Image, Raman

spectrum, Coordinates, etc. (Fig. 8). Combined, these features could potentially answer

fundamental questions such as the similarities and differences among single-cells with

complex spatial–temporal relationship, as well as the co-localization of the single-cells.

Based on the automatic single-cell extraction and the massive number of single-cells, a

database including single-cell Raman profiles as well as images and position information

was created, so that single-cell Raman signal comparison and other data-mining could be

performed. The current raw database contains more than 100,000 single-cell Raman spec-

tra, and the refined database has 12,011 single-cell Raman spectra. These single-cells come

from 14 strains including: Nannochloropsis oceanica IMET1, E.coli DH5α, Schizochytrium

SR21, Saccharomyces cerevisiae BY4743, Actinomyces viscosus C505, Enterococcus faecalis

TCC29212, Porphyromonas gingivalis W83, Streptococcus mutans UA159, Streptococcus

sanguinis ATCC49425, Staphylococcus aureus ATCC6538, Staphylococcus epidermidis ATCC

12228, Chlorella pyrenoidosa, Thermoanaerobacter sp. X514, Chlamydomonas reinhardtii.
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Figure 8 The structure of the prototype of the single-cell Raman profile database. It is composed
of 4 major parts: (A) cell identity information, (B) culturing experiment information for cells, (C)
Raman spectroscopy experiment information for cells, (D) cell image, Raman spectrum and position
information.

These microbial strains represent a wide range of species from different growth conditions,

and thus could serve for our analysis of single-cell phenotypes.

For each pair of randomly selected species, we have randomly selected 100 single cells

from the pool of all single-cells for the two species, and performed PCA analysis for each

run. The same analysis was repeated for 100 times. Based on the average performance,

PCA analysis could achieve the “separation error rate” (defined as the number of wrongly

assigned single-cells, divided by the number of total cells) of 5.8%. Figure 9 showed the

separation result of Staphylococcus aureus ATCC 6538 and Staphylococcus epidermidis

ATCC 12228 cells by one run of PCA analysis, representing 50 randomly selected cells for

ATCC 12228 and 50 randomly selected cells for ATCC 6538, two Staphylococcus strains that

are phylogenetically very close. Based on their Raman spectra, the separation error rate

of 5% could be achieved. These results indicated that the different cells in this single-cell

database could be easily distinguished from the other cells based on their Raman spectra.

Moreover, based on these results on randomly selected sets of single-cells from different

strains, we concluded that the quality of the refined database is relatively high.

Single-cell Raman profile comparison
We also tried to search single-cell Raman spectra against the refined Raman spectra

database using SVM and Euclidean Distance methods. The analysis of Raman spectra was
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Figure 9 PCA analysis results based on single-cell Raman spectra for Staphylococcus aureus ATCC
6538 and Staphylococcus epidermidis ATCC 12228 in a refined database. Single-cells from different
strains can be clearly separated by PCA analysis based on their Raman spectra.

performed in two steps: (1) preprocessing of the spectra and (2) search by using SVM or

Euclidean Distance to compare the query Raman spectrum against those in the database.

For Raman spectrum database comparison and search, 120 randomly selected

single-cells from Nannochloropsis oceanica IMET1 were used as queries against the current

refined database with 12,011 single-cell Raman spectra, and repeated the query selection

and search process for 10 times. The accuracy is defined as the number of single-cells that

matched to the correct strain, divided by the number of all query single-cells, and we could

achieve the accuracy of 93.3% based on SVM, and 82.9% based on Euclidean Distance

in this study (Fig. 10). Additionally, to measure the effect of increasing database size on

accuracy and efficiency in database search, we randomly selected 6 subsets of refined

database with increasing sizes (with sizes of 810, 2,100, 3,500, 5,600, 6,700 and 8,451),

and performed searches against these subsets. For SVM analysis, we have used nu-SVC

for the type of SVM and RBF for Kernel type. Results have shown that SVM is better than

Euclidean Distance on accuracy, but it required more time (Fig. 10). This might be due

to the fact that the database size is not very large. With the increasing database size, the

time taken for model-based SVM is expected to be shorter than that based on Euclidean

Distance.

DISCUSSION
In this work, we have developed a control and data analysis system QSpec for high-

throughput Raman activated cell sorting (RACS) platform. QSpec could greatly facilitate
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Figure 10 The comparison of (A) search accuracy and (B) search time based on SVM and Euclidean
Distance methods. Each data point represents the average value based on 20 single-cells as queries.

high-throughput single-cell analysis. It is designed not only for automatic and intelligent

control of the RACS platform, but also for data analysis of the extracted single-cell Raman

spectra and images. Results based on simulated single-cells and real algae and yeast

single-cells proved that QSpec can be used for accurate single-cell phenotype extraction,

as well as for single-cell phenotype data analysis. With the rapid development of single-cell

analytical equipment as well as the needs for single-cell omics research (Zong et al., 2012),

the QSpec control and data analysis system would facilitate fast phenotype screening and

sorting, and thus would be indispensable.

Additionally, the Raman spectrum database and its companion data-mining system

have enabled not only the storage, but more importantly online single-cell profile

comparison, thus making high-throughput single-cell phenotyping and screening

possible.
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Moreover, for the simulation system, though extensive improvements are required to

mimic real cells and their dynamics, it would be essential for the development of more

sophisticated and advanced single-cell manipulation systems (microfluidic devices, signal

retrieval systems, machine learning methods to simulate the cells, etc.). Thus its further

update and optimization, which could make simulated cells to behave more likely as real

cells, by either supervised or unsupervised learning methods, would greatly facilitate the

development of future version of QSpec.
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