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ABSTRACT
The degree of inhospitable terrain encountered by migrating birds can dramatically
affect migration strategies and their evolution as well as influence the way we develop
our contemporary flyway conservation responses to protect them. We used telemetry
data from 44 tagged individuals of four large-bodied, Arctic breeding waterbird species
(two geese, a swan and one crane species) to show for the first time that these birds fly
non-stop over the Far East taiga forest, despite their differing ecologies and migration
routes. This implies a lack of suitable taiga refuelling habitats for these long-distance
migrants. These results underline the extreme importance of northeast China spring
staging habitats and of Arctic areas prior to departure in autumn to enable birds to clear
this inhospitable biome, confirming the need for adequate site safeguard to protect these
populations throughout their annual cycle.

Subjects Animal Behavior, Conservation Biology, Zoology
Keywords East Asian-Australasian Flyway, Ecological barrier, Geese, Satellite tracking, Siberian
crane, Swans

INTRODUCTION
Many migrating avian species undertake long uninterrupted flights across inhospitable
terrain between breeding and wintering areas (Hahn et al., 2014; Henningsson & Alerstam,
2005), including the Pacific Ocean (Gill et al., 2009), the Himalayas (Bishop et al., 2015) and
deserts (Ouwehand & Both, 2016). Large-bodied herbivorous geese wintering in Ireland
and Britain breeding in Greenland cross 300–1,000 km of ocean between staging areas on
Iceland where they regain depleted fuel for the journey (Weegman et al., 2017). Waterbirds
crossing continents are assumed to put down and refuel on wetlands at will, because most
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studied western European, large-bodied waterbirds undertake relatively short migration
episodes en route to and from continental arctic breeding areas (Eichhorn et al., 2009;Green
et al., 2002; Van Wijk et al., 2012). Waterbirds breeding in high Arctic Far East Asia winter
in the Chinese Yangtze River Floodplain and undertake a north-south migration route,
traversing up to 2,500 km of continental boreal forest (‘‘taiga’’) after leaving NE China (Li,
2016), but we know nothing about how these birds might fly across this area. We fitted
telemetry devices to four large-bodied, Arctic breeding waterbird species (two geese, one
swan and one crane species) to analyse their migration/stopover patterns to compare with
studies elsewhere.

MATERIALS & METHODS
We captured 40 to 44 individuals of four large-bodied waterbird species on the wintering
grounds or as flightless moulting adults or pre-flight juvenile geese, swans and cranes on
the breeding grounds and fitted them with transmitters (Appendix A and see Yu et al.
(2017) for full details of catch methods and devices). Bird capture and logger deployment
were undertaken in accordance with the guidance and permission (No. rcees-ddll-001)
of Research for Eco-Environmental Sciences, Chinese Academy of Sciences. We also
reconstructed movement tracks of four Siberian cranes Grus leucogeranus reported by
Li (2016) to generate georeferenced individual migration tracks entered into QGIS in
comparable formats to our own data (Quantum GIS Development Team, 2017). Location
and duration of individual stopping and staging were obtained from tables and maps
in Li (2016). The duty cycle for generating GPS positional fixes differed between the
model of transmitters and varied from one fix per hour to one fix per day, depending
on transmitter type and battery condition. For movement data of Argos transmitters, we
removed relocations with a duplicated timestamp and applied the algorithm of Douglas
et al. (2012) to moderate location errors. These combined analyses generated 20 spring
and 46 autumn migration episodes from the 44 different individual birds over two years
(see the Appendix A). All migrations traversed the taiga forest. We only used complete
migration tracks to compare with European populations.

We identified major staging areas by major clusters of sequential position data, which
contrasted with consistent movements during flights (for details of the precise methods
applied to define these, see Appendix B). This enabled identification of the arrival and
departure dates and times (to the nearest 2 h) at major staging sites. From these, we were
able to identify the timing and duration of stopovers and intervening migration flights,
as well as the distances between stopovers. The differences in frequency of GPS positional
fixes between transmitters did not affect results of the analyses, because inspection of the
segmentation results showed that additional stopover sites could not have missed during
any of the individual tracks (Fig. S1). We used t -tests to compare migration parameters of
spring and autumn migrations.

We defined spring migration tracks within the period from day 40 to day 200 of the year
and day 240 to 340 as autumn migration.
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Table 1 Summary of migration legs in complete spring and autumnmigrations.

Species Mean value± SE
(sample size) for
spring migration

Mean value± SE
(sample size) for
autumnmigration

df t P value

Number of migration legs
Siberian Crane 3.0 ± 0.6 (4) 2.1 ± 0.3 (9) 4.28 1.40 0.23
Bean Goose 6 (1) 3.7 ± 0.3 (3)
Tundra Swan 5.0 ± 0.7 (5) 2.9 ± 0.3 (7) 5.10 2.84 0.04
Greater White-fronted Goose 5.6 ± 0.3 (12) 2.9 ± 0.3 (11) 20.99 5.81 <0.01

Length of migration leg (km)
Siberian Crane 1,628.7 ± 324.6 (12) 2,117.8 ± 244.5 (19) 22.60 −1.20 0.24
Bean Goose 864.5 ± 210.2 (6) 1,479.7 ± 397.5 (3) 14.16 −1.37 0.19
Tundra Swan 1,279.3 ± 160.5 (25) 1,944.6 ± 314.2 (20) 28.66 −1.89 0.07
Greater White-fronted Goose 991.1 ± 106.0 (67) 1,757.8 ± 219.3 (32) 46.00 −3.15 <0.01

RESULTS
We tracked and obtained migration data from 15 tundra swans Cygnus columbianus,
seven eastern tundra bean geese Anser fabalis serrirostris, nine greater white-fronted geese
A. albifrons and 13 Siberian cranes instrumented with logger devices to track intra-annual
movements throughout the annual cycle (Appendix A). The white-fronted geese and
Siberian cranes partitioned their spring and autumn migrations into at least two major
migration legs, both traversing the taiga forest ecoregion without stopping. Bean geese and
tundra swans showed more frequent stops and shorter migration legs south of the taiga
zone, but all four species flew over the taiga almost non-stop (Fig. 1). Only bean geese and
greater white-fronted geese made short stopovers in a few wetlands along rivers within the
taiga forest ecoregion. All staged in spring north of 60◦N for periods of two weeks prior to
arrival at ultimate breeding areas, providing breeding females with time to acquire fat and
protein stores for reproductive investment prior to rapid follicular development before egg
laying (Anderson et al., 2015).

Individual tundra swan migratory legs were longer (1,279.3 km ± 160.5 SE in spring
and 1,944.6 ± 314.2 in autumn in the Far East Asia) than those of swans tracked in Europe
(557–624 km and 1,032–1,142 km respectively (Beekman, Nolet & Klaassen, 2002; Nuijten
et al., 2014), Table 1). Likewise, European greater white-fronted geese migrated in spring in
legs of mean length 404 km with an average of 10 stopovers en route (Van Wijk et al., 2012)
compared to 991.1 km (±106.0 SE) and an average of 5.6 stopovers in this study. Far East
spring migration involved significantly more legs of significantly shorter distance (Table 1).

DISCUSSION
For the first time, these data show that, despite following different routes, all individuals
of four different species of large-bodied waterbirds staged south of the taiga forest before
non-stop flights over this biogeographical zone. Most spring staging occurred in the tundra
zone before arrival to ultimate summering areas. In autumn, all birds again crossed the
entire taiga non-stop. These patterns common to four species of differing ecologies suggest
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Figure 1 Wintering, staging and summering sites of bean and greater white-fronted geese, Siberian
crane and tundra swan in (A) spring and (B) autumn. Individual routes describe tracks generated from
GPS loggers attached to wild caught birds. White triangles represent ultimate wintering/summering sites.
Red circle sizes indicate relative staging duration at each stopover site by each individual. Line colours in-
dicate migration duration between adjacent staging/wintering/summering sites, yellow 0–5 days, orange
6–15 days and red 16–20 days. The degree of greenness on the map indicates the percentage of forest cov-
erage derived from Hansen et al. (2013).

Full-size DOI: 10.7717/peerj.4353/fig-1

that the Far East Asian taiga constitutes unfavourable feeding habitat for these birds,
necessitating specific migration and refuelling strategies to cross. These results underline
the extreme importance of northeast China spring staging habitats for accumulating body
stores prior to the long flight to summering areas and of Arctic areas prior to departure in
autumn, confirming the need for adequate site management to protect these populations
throughout their annual cycle.
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Theory predicts migrants should shorten spring migration, minimize number of
stopovers and maximize migration leg distance, to arrive earliest at breeding areas (time-
minimization strategy,Kokko, 1999;Moore, Smith & Sandberg, 2005); but autumnmigrants
have less time pressure and would increase numbers of stopovers and reduce migration
leg distance (energy-minimization strategy, Nilsson, Klaassen & Alerstam, 2013; Zhao et al.,
2017). Contrary to theoretical predictions, many of our tracked birds used more stopover
sites and/or performed shorter migration legs in spring than in autumn. Despite differing
diets, this is likely because all large-bodied waterbirds must acquire extra spring energy
stores for migration (and ultimately for investment in reproduction) at successive stopover
sites as these become successively freed by the variable timing of the vernal thaw. Following
the Arctic summer pulse of biological productivity, waterbirds accumulate body stores close
to breeding areas sufficient to move rapidly back to wintering grounds without needing
to refuel before clearing the southern edge of the taiga. Future telemetry studies based on
larger sample size will help answer these questions.

Why large herbivorous birds do not stage in the Far East taiga zone in spring and autumn
as they do elsewhere remains unclear. The high (>1,000 m above sea level) altitude of the
Far Eastern Asia taiga compared to that in western Eurasia is a potential explanation,
delaying the spring thaw compared to lower altitudes (Appendix C). Whatever the reason,
our results show the vital role of northeast China staging areas for all four species during
both migration episodes for individuals wintering in the Yangtze River floodplain. Tundra
swans breeding in the European and Far Eastern Russian tundra used more and different
staging areas south of the taiga compared to the geese and cranes. Nevertheless, our results
suggest that all four waterbird species are relatively robust to effects of climate change in the
taiga, because the birds did not utilize wetlands in this area. However, reliance on staging
areas in northeast China (which are subject to climate change and rapid anthropogenic
change through economic development) and the Arctic (subject to more rapid climate
change) underline the importance of maintaining viable habitats for wintering, spring-
and autumn staging waterbirds along these parts of the existing flyway to maintain these
populations. The maintenance of viable habitat is especially important because the Siberian
crane remains critically endangered under IUCN Red List criteria and numbers of the other
three taxa wintering in China are all currently declining (Jia et al., 2016).

CONCLUSIONS
The 44 tagged individuals of four large-bodied, Arctic breedingwaterbird species (two geese,
a swan and one crane species) flew non-stop over the Far East taiga forest, despite their
differing ecologies and migration routes. These results underline the extreme importance
of northeast China spring staging habitats and of Arctic areas prior to departure in autumn
to enable birds to clear this inhospitable biome, confirming the need for adequate site
management to protect these populations throughout their annual cycle.
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