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ABSTRACT
Complex networks have been successfully applied to the characterization andmodeling
of complex systems in several distinct areas of Biological Sciences. Nevertheless, their
utilization in phylogenetic analysis still needs to be widely tested, using different
molecular data sets and taxonomic groups, and, also, by comparing complex networks
approach to current methods in phylogenetic analysis. In this work, we compare all the
fourmainmethods of phylogenetic analysis (distance,maximumparsimony,maximum
likelihood, and Bayesian) with a complex networks method that has been used to
provide a phylogenetic classification based on a large number of protein sequences
as those related to the chitin metabolic pathway and ATP-synthase subunits. In order
to perform a close comparison to these methods, we selected Basidiomycota fungi as
the taxonomic group and used a high-quality, manually curated and characterized
database of chitin synthase sequences. This enzymatic protein plays a key role in the
synthesis of one of the exclusive features of the fungal cell wall: the presence of chitin.
The communities (modules) detected by the complex network method corresponded
exactly to the groups retrieved by the phylogenetic inference methods. Additionally, we
propose a bootstrap method for the complex network approach. The statistical results
we have obtained with this method were also close to those obtained using traditional
bootstrap methods.
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INTRODUCTION
The complex networks approach has been successfully applied to uncover organizational
principles underlying the origin, evolution, and functioning of several and distinct complex
systems in all areas of science, particularly, in the Biological Sciences (Barábasi & Oltvai,
2004).

Among the many developed approaches, we call the attention to the phylogenetic
analysis based on complex networks using protein or gene similarity as the only source
of information. It precludes the use of any previously developed or newly proposed
classification model, as required in currently used methods of phylogenetic analysis
(distance, maximum parsimony, maximum likelihood, and Bayesian). The basic ideas and
essential tools of this approach were presented and thoroughly discussed in Góes-Neto et
al. (2010) and Andrade et al. (2011). Data of four enzymes present in the chitin metabolic
pathway for 1695 organisms (with complete genomes) were collected and used to test
and validate the method. This framework was also successfully applied to investigate
the evolutionary origins of mitochondria using three ATP synthase subunits and its
alphaproteobacterial homologs (Carvalho et al., 2015), and to present an evolutionary study
of apolipoprotein-E carrying organisms (Benevides et al., 2016). Despite these advances,
with large databases, we understand this approach should be widely tested, using distinct
databases and taxonomic groups, and comparing its results with those provided the current
methods quoted above. In order to confer confidence to such a comparison, it is reasonable
to use a high-quality database of sequences related to a small number of organisms as well
as to propose a bootstrap procedure for the complex network method.

Nowadays, the taxonomy of Basidiomycota fungi is still strongly based in phylogenetic
analyses of nucleotide sequences of rRNA genes (18S, 28S) and spacers (ITS) of nuclear
ribosomal DNA as well as some protein-coding genes of nuclear origin (rpb1, rpb2, tef1-α)
(Zhao et al., 2017). However, among the protein-coding genes or their protein products
used in phylogenetic reconstructions, none is directly related to exclusive metabolic
pathways of fungi, such as that of the biosynthesis of chitin (Pirovani et al., 2005). Therefore,
phylogenetic inferences based on unique functional fungal proteins are highly desirable.

Chitin, the linear homopolymer of β-1,4-N-acetylglucosamine, is an endogenous
structural carbohydrate and one of the main components of the fungal cell wall (Souza et
al., 2009). In fungi, chitin is synthesized by a pathway containing six steps and the last and
irreversible step corresponds to the conversion of UDP-GlcNAc to chitin by the enzyme
chitin synthase (E.C. 2.1.4.16) (Góes-Neto et al., 2010).

In this study, we conduct further investigations on the reliability of the complex network
approach addressing two important issues: (i) we present a direct comparison of its results
to those provided by the four phylogenetic methods indicated before; (ii) we propose a
bootstrap method that provides a quantitative measure of support values to the branching
processes. Although some comparative analysis to other the results of other methods
had already been provided, a systematic investigation was missing. On the other hand, a
quantitative support for the phylogenetic branches had not been provided up to now. To
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this purpose, we have used a high-quality, manually curated and characterized database of
chitin synthases of Basidiomycota fungi from representative species.

METHODS
Database
The database CHSBasidio was built by data mining using primarily text-based querying
in GenPept (NCBI). It comprises complete chitin synthases sequences of Basidiomycota
fungi from model species. Each individual enzymatic protein sequence was stored in a
single file containing the protein sequence itself and all the relevant associated information,
such as indexers, molecular source, structural and functional information, and complete
taxonomic classification of the organism from which the sequence was derived, using
automatic procedures specifically developed for these tasks.

The knowledge discovery process (KDP) in the CHSBasidio database comprised four
steps: (i) data gathering, (ii) screening of collected data, (iii) classification of screened data,
and (iv) thorough analyses of classified screened data (Góes-Neto et al., 2010). The gathered
data were thus screened to eliminate spurious and doubtful (hypothetical or uncertain)
reads, and then organized in structured tables with all the relevant associated information.

Molecular characterization of the CHSBasidio sequences
The complete sequences of the CHSBasidio database were quali-quantitatively meta-
analyzed for identification, characterization and comparison at the protein level.
The accessions were analyzed, compared and classified mostly using UniProt (The
UniProt Consortium, 2017), according to the following features: (a) sequence length;
(b) theoretical molecular mass; (c) theoretical isoelectric point (pI ); (d) transmembrane
topological organization (transmembrane regions) using TMHMM v.2.0 (Krogh et al.,
2001); (e) conserved domains (Marchler-Bauer et al., 2017); (f) CHS classes (in accordance
with the most comprehensive classification recently proposed by Gonçalves et al., 2016).

In order to reveal biological patterns in our CHS database and correlate them to
the phylogenetic and complex network analyses, we performed a series of univariate,
bivariate and multivariate statistical techniques on this customized database. The statistical
description of the quantitative univariate protein data (number of entries; smallest, largest
and mean values of sequence length, molecular mass and isoelectric point; standard error
of the estimate of the mean; variance; standard deviation; median; skewness; and kurtosis),
as well as correlation (quantitative data) or association (qualitative data) between all the
variables (bivariate analyses) were also performed. A multivariate exploratory method to
reveal variation trends (ordination) was also carried out for the complete protein sequences
data set. The ordination method of Principal Coordinates Analysis (PCOa) was performed
using the Gower index as resemblance measure for the mixed qualitative and quantitative
variables. All the aforementioned statistical analyses were performed in PAST 3.0 (Hammer,
Harper & Ryan, 2001).

Phylogenetic analyses
The data matrix consisted of 42 sequences from 11 species of basidiomycotan fungi.
The sequences were aligned in the most recent version of TCoffee (Notredame,
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Higgins & Heringa, 2000), which aligns proteins by combining the output of many
aligners as MAFFT/MUSCLE/PROBCONS/POA/DIALIGN/CLUSTALW/PCMA (http:
//tcoffee.crg.cat/). The gaps were considered as a 21st character state. Phylogenetic
analyses were performed in PAUP 4.0b10 (Swofford, 2002), and Mr. Bayes 3.2 (Ronquist &
Huelsenbeck, 2003), using distance-based (distancematrix) and character-based (maximum
parsimony, maximum likelihood and Bayesian) methods.

Mean distances and a neighbor-joining algorithm were used for distance analysis,
unweighted parsimony for maximum parsimony analysis. VT (Muller & Vingron, 2000) +
I (invariable sites)+ G (rate heterogeneity among sites: gamma-distributed) best-fit model
of protein evolution, previously selected after ProtTest 3.2 (Abascal, Zardoya & Posada,
2005), was used for maximum likelihood and Bayesian analyses. Three independent runs
were conducted (each with four chains) for 1×106 generations for Bayesian inference.

Clade robustnesswas assessed using bootstrap proportions (1,000 replicates) for distance,
maximum parsimony, and likelihood analyses, and posterior probabilities proportions for
Bayesian analysis. Unrooted trees were edited using Geneious v.9. The resulting single
distance and maximum likelihood trees and the majority consensus trees of maximum
parsimony and Bayesian inference were then subsequently analyzed.

Network construction and analyses
All networks in this study were constructed based on the similarity degree between
amino acid sequences in proteins of the 42 selected organisms. Whenever necessary,
one or more of the following indices, which characterize geometrical and topological
aspects a given network, were evaluated (Albert & Barabási, 2002): node degree (ki), node
clustering coefficient (ci), shortest path between two nodes (dij), node betweenness (bni ),
edge betweenness (bnij), degree assortativity (qi). These indices have local character, as
they reflect properties of a given node, of its immediate neighborhood, or of links that are
attached to it. Information on the global aspects of the network can be provided by averages
of these indices: average degree (<k>), network clustering coefficient (C), average shortest
path (<d>), average node betweenness (Bn), average edge betweenness (Be), average degree
assortativity (Q). Other global properties of relevance that have no local counterpart can
also be evaluated: network diameter (D), probability distribution of nodes with k links
(p(k)), probability distribution of node clustering coefficients to node degree k (C(k)),
fractal dimension (db), modularity (md). A brief description of the meaning of these indices
and functions is provided on the Table 1.

Differently from other methods to construct phylogenetic trees (Saitou & Nei, 1987)
and phylogenetic networks (Bryant & Moulton, 2004), our method is, in fact, a method
to detect communities in generally weighted complex networks (Andrade et al., 2011).
When applied to protein similarity networks, it leads to the phylogenetic classification for
the organisms associated to the protein sequences, using less biological assumptions than
phylogenetic tree and phylogenetic network methods. The method requires the evaluation
of some of these indices, particularly ki, dij , and bnij . The whole process can be described in
the following steps (1–8):
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Table 1 Description of the most usual indices and functions used to characterize a network. A brief description of the meaning of indices and
functions used to characterize the structure of complex networks.

Symbol Denomination Description

N Number of nodes Number of nodes in the network. N (N − 1)/2 is the
maximal number of edges, or connections, the network may
contain.

ki Node degree Number of neighbors of node i, i.e., nodes connected to
node i by an edge.

ci Node clustering coefficient Number of edges between the neighbors of node i divided
by ki (ki−1)/2.

dij Shortest path between two nodes Smallest number of edges necessary to connect two nodes i
and j.

bni Node betweenness Number of shortest paths between all pairs of nodes that go
through node i divided by N (N −1)/2.

beij Edge betweenness Number of shortest paths between all pairs of nodes that go
through node i divided by N (N −1)/2.

qi Degree assortativity Measure of the average degree of the neighbors of node i as
compared to the degree ki . It assumes values between+1
and−1. The extreme values indicate whether the neighbors
of i have degree close or distant from ki.

< k> Average degree Average value of ki taken over all N nodes.
C Network clustering coefficient Average value of ci taken over all N nodes.
< d > Average shortest path Average value of dij taken over all N nodes.
Bn Average node betweenness Average value of bni taken over all N nodes.
Be Average edge betweenness Average value of beij taken over all N nodes.
Q Average degree assortativity Average value of qi taken over all N nodes.
D Network diameter Largest value of dij
p(k) Probability distribution of nodes with k links Characterizes one important aspect of network related to

the presence or not of hubs (nodes with very large degree in
comparison to< k>).

C(k) Probability distribution of ci with respect to ki. Characterizes the correlation between the values of ki and ci.

db Fractal dimension Measure of invariance of the distribution of nodes. Relevant
when the network admits a cascade of substructures inside
similar substructures.

md Modularity Measure of the presence of modules or communities. These
are subsets of nodes such that the number of edges between
them is much larger than the number of edges linking this
subset to other nodes outside it.

1. Construction of similarity matrices: the n × n similarity matrix (S), where n indicates
the number of organisms, is set up by the comparison of their protein sequences using
the most recent version of BLAST (Altschul et al., 1997). The similarity matrix (S) was
generated by pairwise alignment, using the score matrix BLOSUM62, which assigns a
score for aligning pairs of residues, and determines overall alignment score. The cost to
create and extend a gap in alignment is 11 and 1, respectively. The matrix adjustment
method that was used to compensate for amino acid composition of sequences was the
conditional composition score matrix adjustment (Altschul et al., 2005). The elements
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Sij of the similarity matrix (S) are real numbers in the interval [0,100] corresponding to
the percentage of agreement of amino acid types between the two sequences. As BLAST
may assign a value Sji different from Sij , the matrix S is subsequently symmetrized with
its elements being defined by Sij =min(Sij,Sji).

2. Generation of protein similarity networks: based on the information stored in S, Protein
Similarity Networks (PSN) are generated associated with values of a similarity threshold
(σ ) according to the following rules: (i) any organism (sequence) is associated to a
network node; (ii) a connection is introduced between any pair of nodes (i,j) provided
Sij ≥ σ . This criterion based on σ reflects the evolutionary relationships between the
organisms containing the proteins. This strategy makes it possible to replace one single
weighted network defined in terms of σ by a family of unweighted networks, which
can be analyzed by many developed methods and measures (Albert & Barabási, 2002;
Newman, 2003; Boccaletti et al., 2006; Costa et al., 2007).

3. Construction of adjacency matrices: any PSN is represented by its adjacency matrix (M ),
with elements mij such that: (i) mij =1, if there is a link between nodes i and j; (ii)
mij = 0 otherwise. In the current study we generate a set of 101 networks, one for each
integer value of the similarity threshold σ ∈ [0,100].

4. Construction of neighborhood matrices M̂ : for each adjacency matrixM, we constructed
the set of all neighborhood matrices M (`) of order `= 1,...,D (Andrade, Miranda
& Lobão, 2006). Any element (M (`))ij is such that it assumes the value 1 only if the
shortest path between nodes i and j is `. Otherwise, (M (`))ij = 0. Based on the set of
M (`), a neighborhood matrix M̂ is constructed according to:

M̂ =
D∑
`=1

`M (`).

5. Distance between networks: Based on the set of 101 neighborhood matrices, 100 values
of the network distance δ(σ ,σ+1σ ) between two subsequent networks are evaluated.
The network distance δ(α,β) (Andrade et al., 2008) is a measure of how two networks
α and β are distinct from each other. Here, δ(σ ,σ+1σ ) indicates the network distance
between two PSN evaluated at nearby values σ and σ +1σ , with 1σ = 1.

6. Identification of an optimal value of σ using the distances δ: the set of values
δ(σ ,σ +1σ ) is characterized by one or more sharp peaks, indicating the threshold
values where important changes in the topological structure of the network occur. The
value of σ where the maximal value of δ(σ ,σ+1σ ) occurs defines the critical network
and the critical value σc (Andrade et al., 2008). Analyses of the properties of the critical
network and of the networks close to σc , as well as those close to the high peaks, are
likely to reveal properties related to an evolutionary branching process.

7. Characterization of the properties of the critical network: The network indices indicated
in beginning of this subsection are evaluated for the networks indicated before,
providing auxiliary information on the community structure of the corresponding
networks.

8. Identification of communities in critical networks: the final step leading to the separation
of organisms into phylogenetic groups corresponds to the detection of modules in
the networks selected in the step 6. A module is a subset of nodes such that the
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number of connections between nodes belonging to the module is proportionally
larger than the number of connections between nodes within it to nodes outside it.
The Newman–Girvan algorithm (NGA) is used to find the modular structure of the
selected networks. It is a bond removal procedure, which amounts to successively
removing bonds with largest edge betweenness. At the end of the procedure all bonds
are removed, and the community structure analysis results from the dendrogram and
the color representation of the renumbered neighborhoodmatrix (Andrade et al., 2008;
Newman & Girvan, 2004).

Open software
We developed a software (still at beta version) to evaluate all necessary steps of the
community detection procedure according to the complex network method explained in
this paper, which is available for download at http://projectsn.github.io/scannet/. The input
data is the similarity matrix which, in the current work, was obtained using BLAST. All
results reported in thework that are related to thismethodwere obtainedusing this software.
This does not include the steps related to the evaluation of the bootstrap support measures.

Comparison of complex network method with tree-based
phylogenetic methods
The comparison of complex network with tree-based methods of phylogenetic inference
for the same dataset and taxonomic group was carried out by: (i) the congruence index
(G(ϕ,ψ)=Q(ϕ,ψ)/R(ϕ,ψ), where R (ϕ,ψ)): number of common organisms in the
critical networks ϕ and ψ and Q (ϕ,ψ): number of organisms in the same community in
ϕ and ψ (Andrade, Pinho & Lobão, 2009); (ii) topological comparison of the dendrograms
generated by each method; (iii) the corresponding metrics (support indexes)—bootstrap
(BS) for distance, maximum parsimony, maximum likelihood, and posterior probability
(PP) for Bayesian inference; and (iv) the number of removed edges based on the criterion
of largest betweenness degree in the complex networks method.

Randomization tests were performed in order to evaluate if there was statistically
significant association between the following pair of variables: (i) number of removed
edges with largest betweenness degree within the NG procedure and branch length, (ii)
number of removed edges during the calculation of betweenness and support indexes of
the retrieved groups (BP and PP), using the following parameters: (a) coherence coefficient
between variables (resemblance measure) as test criterion (λ); (b) 1000 iterations, (c)
5% significance level (α= 0.05). The randomization tests were carried out in MULTIV
(Pillar, 2001).

A bootstrap method for the complex network approach
The bootstrap samples for the complex network method were generated as replicates of
the similarity matrix S (see step 1 in section ‘Network construction and analyses’). In order
to generate a bootstrap sample, each similarity value Sij of the original similarity matrix
was divided by 100 and taken as the probability p of success in a binomial distribution.
Then, 4,944 samples (this number is the size of the overall alignment for the 42 sequences
in our study, including gaps) are drawn at random with replacement from this binomial
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distribution, resulting in k successes. Finally, the corresponding entry S′ij in the bootstrap
similarity matrix S′ is obtained by normalizing the number of successes into a percentile
score according to the formula: S′ij = k×100/4,944. Each of the 1,000 similarity matrix
bootstrap samples thus generated was then run through the same network-community
detection algorithm as the original similarity matrix. The same critical value of σc as the
original similarity matrix (for this study, σc = 46%) was used for this step. The bootstrap
score for any given branch indicates the percentage of bootstrap samples, which featured
the community that corresponds to that branch.

RESULTS AND DISCUSSION
Biological characterization of CHS database
Our manually curated database comprises 42 unique complete chitin synthase sequences
of representative model taxa of the three subphyla of Basidiomycota (Agaricomycotina,
Pucciniomycotina, and Ustilaginomycotina), including distinct species with agricultural
(the phytopathogens Moniliophthora perniciosa, Puccinia graminis, and Ustilago maydis;
and the edible macrofungi, Agaricus bisporus, Flammulina veluticeps, Lentinula edodes,
and Pleurotus ostreatus) or medical importance (Filobasidiella neoformans and Malassezia
pachydermatis), besides the model species of this phylum (Coprinopsis cinerea) (Table 2).

Most of the unique complete protein sequences (76.2%) in the CHSBasidio database
comprise proteins that are either predicted (by in silico translation) or inferred by homology
(when clear orthologs exist in closely related species). Although there are some entries
(23.8%) with evidence at the transcript level, with expression data such as the existence
of experimentally produced complete cDNA sequences, there is no accession with clear
experimental evidence for the existence of the protein by X-ray structure. This can be
reasonably explained by the fact that basidiomycotan chitin synthases have few to many
transmembrane regions and occur in the cell membrane. These characteristics make the
protein crystallization process difficult.

The lengths of the protein sequences range from 519 to 2,066 amino acids residues
(mean = 1,135 ± 367.68), but most of the sequences (68%) are in the range from 864 to
1,271 amino acids, exhibiting a marked positive skewness kurtosis. The same is true for the
calculated molecular masses of the CHS sequences, which vary from 58.518 to 227.286 KDa
(mean = 128.317 ± 45.26), since protein length and molecular mass are highly correlated
and precisely linear. The calculated isoelectric points (pI ) for the enzymes range from 5.42
to 9.30 (mean = 7.72 ± 1.13), but most of the enzymes (71%) are basic. Thus, conversely
to protein length and mass, isoelectric point frequency distribution has a marked negative
skewness and kurtosis. In fact, both protein length and molecular mass are negatively
correlated to isoelectric point, since usually the shorter and lighter the enzymes, the more
basic they are (Table 2).

Seven distinct patterns of transmembrane topological organization were identified
in basidiomycotan chitin synthases and were named profiles 1–7 (1, 2, 3, 4, 5, 6, 7)
(Fig. S1). Profile 2 was the most common (52.4%), followed by profile 1 (26.2%). These
two profiles accounted for most of the entries (78.6%). Profile 3 occurred in the minority
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Table 2 List of the basidiomycotan chitin synthase sequences used in this work. List of the basidiomycotan chitin synthase sequences and their corresponding quali-
quantitative features and assignment to the groups retrieved in phylogenetic tree-based and network-based analyses.

Id. No. Id. Protein
(NCBI)

Species No.
amino
acid
residues

MW
(kDa)

pI Transmembrane
regions
profile

CDD
profile

Conserved
domains

CHS
class
(Gonçalves
et al., 2016)

Group in
phylogenetic
analyses

Community
in complex
network
analysis

6 AAW44688 Cryptococcus neo-
formans var. neo-
formans JEC22

947 106.385 8.86 2 2 PF01644
PF08407

E A C3

7 AAW42050 Cryptococcus neo-
formans var. neo-
formans JEC21

1,024 112.904 8.20 2 2 PF01644
PF08407

B A C3

9 XP_003328707 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

910 102.931 6.96 2 2 PF01644
PF08407

B A C3

10 CBQ67873 Sporisorium reil-
ianum

940 104.729 7.07 2 2 PF01644
PF08407

B A C3

15 EFP77369 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

891 99.563 8.27 2 2 PF01644
PF08407

C A C3

17 BAJ08815 Lentinula edodes 866 97.134 8.37 2 2 PF01644
PF08407

E A C3

19 EAU80919 Coprinopsis cinerea
okayama 7 #130

941 105.442 7.61 2 2 PF01644
PF08407

B A C3

24 ABB70407 Puccinia graminis
f. sp. tritici

919 104.076 7.84 2 2 PF01644
PF08407

B A C3

29 BAF76741 Pleurotus
ostreatus

927 103.784 6.92 2 2 PF01644
PF08407
PF03142

B A C3

31 BAD20778 Malassezia pachy-
dermatis

805 91.459 8.64 2 2 PF01644
PF08407

B A C3

36 AAW47172 Cryptococcus neo-
formans var. neo-
formans JEC21

996 110.026 7.26 2 2 PF01644
PF08407

C A C3

(continued on next page)
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Table 2 (continued)
Id. No. Id. Protein

(NCBI)
Species No.

amino
acid
residues

MW
(kDa)

pI Transmembrane
regions
profile

CDD
profile

Conserved
domains

CHS
class
(Gonçalves
et al., 2016)

Group in
phylogenetic
analyses

Community
in complex
network
analysis

38 CBQ67884 Sporisorium reil-
ianum

977 108.015 6.53 2 2 PF01644
PF08407

C A C3

41 ADX07309 Flammulina velu-
tipes

1,676 185.073 6.00 7 2 PF01644
PF08407
PF03142

C A C3

4 CAB96110 Agaricus bisporus 909 102.259 8.45 2 2 PF01644
PF08407

III B C2

5 AAW43575 Cryptococcus neo-
formans var. neo-
formans JEC21

931 104.441 8.38 2 2 PF01644
PF08407

III B C2

11 EFP91815 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

870 97.036 8.97 2 2 PF01644
PF08407

III B C2

16 EFP76086 Puccinia grami-
nis f. sp. trit-
ici CRL 75-36-700-
3

969 108.438 7.03 2 2 PF01644
PF08407

III B C2

23 ABB70409 Puccinia grami-
nis f. sp. tritici

977 109.334 6.90 2 2 PF01644
PF08407

III B C2

25 ABB70408 Puccinia graminis
f. sp. tritici

868 96.632 8.85 2 2 PF01644
PF08407

III B C2

28 BAF37219 Pleurotus ostreatus 938 105.202 8.62 2 2 PF01644
PF08407

III B C2

30 ABW09311 Moniliophthora
perniciosa

913 102.762 8.68 2 2 PF01644
PF08407

III B C2

33 XP_570882 Cryptococcus neo-
formans var. neo-
formans JEC21

755 85.383 8.74 2 2 PF01644
PF08407

III B C2

40 ADX07313 Flammulina velu-
tipes

620 70.162 9.30 6 2 PF01644
PF08407
PF03142

III B C2

42 ADX07293 Flammulina velu-
tipes

864 97.184 7.57 2 2 PF01644
PF08407
PF03142

III B C2
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Table 2 (continued)
Id. No. Id. Protein

(NCBI)
Species No.

amino
acid
residues

MW
(kDa)

pI Transmembrane
regions
profile

CDD
profile

Conserved
domains

CHS
class
(Gonçalves
et al., 2016)

Group in
phylogenetic
analyses

Community
in complex
network
analysis

1 XP_566840 Cryptococcus neo-
formans var. neo-
formans JEC21

1,271 143.041 5.46 1 1 PF03142 Vb C C1

2 AAB71697 Cryptococcus neo-
formans var. grubii

1,041 116.201 8.84 1 1 PF03142 IVb C C1

3 BAC78196 Coprinopsis cinerea 1,409 157.676 8.92 1 1 PF03142 IVa C C1

8 XP_003328148 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

1,417 155.072 7.41 4 1 PF03142 IVa C C1

12 EFP89079 Puccinia grami-
nis f. sp. trit-
ici CRL 75-36-700-
3

1,729 192.445 6.28 3 3 PF03142
PF00063

Va C C1

13 EFP83544 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

1,212 135.277 8.28 1 1 PF03142 IVb C C1

14 EFP78527 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

2,066 227.286 5.63 3 3 PF03142
PF00063

Vb C C1

18 XP_001830485 Coprinopsis cinerea
okayama7#130

1,147 125.865 8.77 1 1 PF03142 IVb C C1

20 AAB84284 Ustilago maydis 1,486 162.724 9.00 1 1 PF03142 IVa C C1

21 AAB84285 Ustilago maydis 1,180 130.623 6.07 1 1 PF03142 Vb C C1
(continued on next page)
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Table 2 (continued)
Id. No. Id. Protein

(NCBI)
Species No.

amino
acid
residues

MW
(kDa)

pI Transmembrane
regions
profile

CDD
profile

Conserved
domains

CHS
class
(Gonçalves
et al., 2016)

Group in
phylogenetic
analyses

Community
in complex
network
analysis

22 ABB70406 Puccinia graminis
f. sp. tritici

1,019 113.685 9.02 1 1 PF03142 IVb C C1

26 ABB70410 Puccinia graminis 1,997 222.514 6.44 3 3 PF03142
PF00063

Va C C1

27 BAF41225 Pleurotus ostreatus 1,436 159.927 8.44 1 1 PF03142 IVa C C1

32 BAF37218 Lentinula edodes 1,937 215.318 5.42 3 3 PF03142
PF00063

Vb C C1

34 AAW45092 Cryptococcus neo-
formans var. neo-
formans JEC21

1,423 158.113 7.85 1 1 PF03142 IVa C C1

35 AAW44838 Cryptococcus neo-
formans var. neo-
formans JEC21

1,236 136.325 8.77 1 1 PF03142 IVb C C1

37 AAW44187 Cryptococcus neo-
formans var. neo-
formans JEC21

1,895 214.398 6.41 3 3 PF03142
PF00063

Va C C1

39 XP_003327390 Puccinia graminis
f. sp. tritici CRL
75-36-700-3

519 58.518 7.16 5 1 PF03142 IVb C C1
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of the accessions, and the four others were unique: each one occurred for only one
sequence. Profile 1 comprised six transmembrane helices distributed as followed: two
in the N-terminal region, one in the medial region, and three in the C-terminal region
of the protein; Profile 2 encompassed seven transmembrane helices in the C-terminal
region; Profile 3 were represented by six transmembrane helices, one in the medial, one in
sub-terminal and three other in the C-terminal part of the protein. Profile 4 resembled to
some degree the profile 1, as well as profiles 5 and 6 did regarding to profile 2. Profile 7
was the most divergent, exhibiting six transmembrane helices, all in the medial region of
the protein (Table 2).

Three distinct patterns of types of conserved domains were identified in the CHSBasidio
database and were designated as profiles 1, 2, and 3. Profile 1 corresponded to the sole
presence of the conserved domain PF03142. Profile 2 comprised those entries with the
conserved domains PF01644 and PF08407. Profile 3 included the accessions containing
the conserved domains PF03142 and PF00063. Profile 2 was the most frequent in the
sequences (57.1%). Profile 1 appeared in 31% of the entries while profile 3 was found in
only 11.9% of the complete CHS sequences (Table 2). Furthermore, there is a statistically
significant (p= 1.5016E–7) correlation (Spearman coefficient = 0.71) between identified
transmembrane topological organization and conserved domains profiles. This probably
occurred because some of the conserved domains also include transmembrane helices.

There are many distinct and, mainly, contradictory classifications of chitin synthase
(CHS) isoenzymes in different fungal groups. Recently, Gonçalves et al. (2016) performed a
genome-wide analysis in more than 800 putative chitin synthases in proteomes associated
with about 130 complete genomes of all known evolutionary lineages of organisms. This
large-scale analysis not only allowed the authors to completely revise and unify the fungal
CHS classification but also to develop an excellent searchable, web-based reference database
(http://wwwabi.snv.jussieu.fr/public/CHSdb/).

Gonçalves et al. (2016) classified basidiomycotan CHS in eight classes: B, C, E, III,
IVa, IVb, Va, Vb. The classes B, C and E are some subdivisions of the classical class II
in the older fungal CHS classifications (Niño Vega, Carrero & San-Blas, 2004). All these
aforementioned classes for basidiomycotan CHS, according to Gonçalves et al. (2016), were
represented in our CHSBasidio database.

Principal Coordinates Analysis (PCoA) was based on five variables (sequence length,
isoelectric point, transmembrane topological organization profile, conserved domains
profile, and CHS class according to Gonçalves et al., 2016) for the 42 sampling units
(entries). The basidiomycotan CHS sequences were ordinated based on the first two
coordinates (coord. 1: 38.23% and coord. 2: 27.69%), which jointly represented
approximately 66% of the explained variation according to their qualiquantitative
attributes. All classes Va and Vb CHS sequences located in the positive portion of the
coordinate 1 and mostly above this coordinate. All classes IVa and IVb CHS sequences
occurred in the negative portion of the Coordinate 2 and mostly, in the negative portion
of coordinate 1. Conversely, all CHS classes III, B, C and E located in the positive portion
of coordinate 2, with class III sequences in the less positive portion and B, C, and E in the
more positive portion of this coordinate 2 (Fig. 1). Thus, PCO feature-based approach
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Figure 1 Principal Coordinates Analysis (PCOa) of the qualiquantitaive feature-based matrix of com-
plete sequences of proteins of CHSBasidio database. The basidiomycotan CHS sequences were ordinated
based on the first two coordinates (coord. 1: 38.23% and coord. 2: 27.69%), which jointly represented ap-
proximately 66% of the explained variation according to their qualiquantitative attributes.

Full-size DOI: 10.7717/peerj.4349/fig-1

analysis is in complete accordance with the most detailed and large-scale classification of
chitin synthases of all fungi until date (Gonçalves et al., 2016).

Tree-based phylogenetic methods
Maximum parsimony
The matrix of aligned sequences of basidiomycotan chitin synthases was 4,944 characters
long (including gaps), of which 63% were variable and 58.4% of the variable characters
were parsimony informative. The final result of the parsimony analysis comprised only
one most parsimonious unrooted tree, which showed three distinct clades (named A, B
and C), besides a more inclusive clade composed by the union of A and B clades (named
AB) (Fig. 2). The first dichotomous division was observed between the most inclusive clade
AB and clade C. The most inclusive clade AB showed a 100% bootstrap value and, thus,
it was maximally supported while for clade C a low support value of only 50% bootstrap
was obtained. Clades A and B, despite being topologically supported by bootstrap values
above 50%, showed very contrasting values: clade B, similarly to the most inclusive clade
AB, exhibited 100% bootstrap, while for clade A, topological confidence was a few above
half (54%).

Distance
The final result of distance analysis comprised only one unrooted tree. The unrooted tree
showed, as well as in parsimony analysis, the same distinct three groups (named as A, B
and C), besides a more inclusive group formed by the union of groups A and B (named
as AB) (Fig. 2). The most inclusive group AB exhibited, similarly to maximum parsimony
analysis, maximum support index, with a 100% bootstrap value, while group C also had
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Figure 2 (A) Maximum Parsimonymajority-rule consensus tree; (B) Distance tree; (C) Maximum
Likelihood tree; (D) Bayesian majority-rule consensus tree. Trees of the fourtree-based phylogenetic
methods. Bootstrap values above 50% are exhibited. Scale bar represents the number of amino acid substi-
tutions.

Full-size DOI: 10.7717/peerj.4349/fig-2

low support (<50% bootstrap). Both groups A and B had also maximum values of support,
with 100% bootstrap. Conversely to what was retrieved in maximum parsimony analysis,
the topological confidence of group A was significantly higher.

Maximum likelihood
The unrooted tree retrieved the same which was obtained in maximum parsimony and
distance analyses: the same three distinct groups (named A, B and C), besides a more
inclusive group composed by the union of A and B (named as AB) (Fig. 2). The most
inclusive group AB showed, similarly to maximum parsimony and distance analysis,
the maximum value of bootstrap (100%), but, conversely to those analyses, group C,
as well group AB, also exhibited maximum support value (bootstrap = 100%). Group
B, individually, also showed a value next to maximum support but slightly lower (97%
bootstrap) than those found in maximum parsimony and distance analyses. Nevertheless,
in marked contrast to those analyses, group A had a low support value (<50% bootstrap).
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Table 3 Comparison of the support indexes (bootstrap and posterior probabilities) of the tree-based
methods.

Groups Maximum
parsimony (% BP)

Distance
(% BP)

Maximum
likelihood (% BP)

Bayesian
(% PP)

AB 100 100 100 100
C <50 <50 100 <50
A 54 100 <50 93
B 100 100 97 100

Bayesian
The final result of Bayesian analysis was a majority consensus unrooted tree. Once again,
it was retrieved the same as obtained in the analysis of maximum parsimony, distance
and maximum likelihood, with the same three distinct groups (named as A, B and C),
besides the more inclusive group formed by the union of groups A and B (named as AB)
(Fig. 2). The most inclusive group AB showed, similarly to the maximum parsimony,
distance and maximum likelihood analyses, the maximum support value (100% posterior
probability), but, conversely to the results obtained in maximum likelihood and similarly
to those obtained in maximum parsimony and distance analyses, group C exhibited a low
support value (posterior probability <50%). Group B, as in maximum parsimony and
distance analyses, also exhibited the maximum support value, 100% posterior probability.
Nevertheless, similarly to distance analysis and differently from maximum parsimony
and maximum likelihood, group A had a significantly high support, with 93% posterior
probability.

Table 3 comparatively summarizes the support indexes of bootstrap (BP) and posterior
probability (PP), retrieved from the four tree-based phylogenetic analysis methods for the
studied database (non-congruent indexes amongst different methods are in red).

In all the tree-based phylogenetic analyses (distance, maximum parsimony, maximum
likelihood and Bayesian), the group A comprised only basidiomycotan CHS isoenzymes
of the classes B, C and E, while group B encompassed exclusively CHS of the class III, and
group C consisted of all CHS of the classes IVa, IVb, Va and Vb. Moreover, the group AB,
retrieved in all phylogenetic analyses corresponded exactly to the join grouping of classes B,
C, E and III CHS sequences. Therefore, all the four phylogenetic methods retrieved exactly
the fungal CHS classification of Gonçalves et al. (2016) for the Phylum Basidiomycota.

Complex networks method
The optimum value of similarity (critical similarity) used to retrieve the phylogenetic
relations (Andrade et al., 2011) was σc = 46% (Fig. 3). Near this critical value, there is an
abrupt topological change with the disaggregation of a sole network completely connected
in groups that can be discerned, with maximum phylogenetically-relevant information in
relation to noise, enabling the detection of communities (modules) in the network (Fig. 4).

The selected critical network that best represented the phylogenetic relationships of the
studied dataset has order (N )= 42 nodes and size (M )= 198 edges.

This critical network has the following indexes in relation to:
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Figure 3 The distance δ(σ,σ+1σ) between networks for successive similarities at the maximal value
with1σ = 1. The optimum value of similarity (critical similarity) used to retrieve the phylogenetic rela-
tions (Andrade et al., 2011).

Full-size DOI: 10.7717/peerj.4349/fig-3

I. Connectivity: (i) the degrees of nodes varies from 1 to 13 and the average degree is
< k>= 9.429; (ii) the probability distribution of nodes with degree k corresponds to a
bimodal distribution: 7 nodes with low value of k centered in k= 3, and 35 nodes with
high values of k centered in k= 11;

II. Assortativity Q= 0.00216;
III. Distance: (iv) average minimal path is < d >= 3.272, (v) diameter D= 7, (vi) average

node betweenness Bn= 137.4 (vii) average edge betweenness Be = 3.27;
IV. Cluster: (viii) average clustering coefficient C = 0.815; mainly in the interval [0.6,1.0],

only 5 nodes with ci value below 0.6;
V. Auto-similarity: (ix) fractal dimension db= 1.37;
VI. Modularity md = 0.975;

The detection of modular structure (that is, the identification of communities in the
critical network σcrit= 46%) was carried out by joint analysis of the color representation
of the neighborhood matrix (Fig. 5) along with the dendrogram generated by successive
link elimination according to the betweenness index (using edge betweenness) (Fig. 6).

The critical network σcrit= 46% exhibited three very distinct communities (modules),
named C1, C2, and C3 (Fig. 7). The community C2 was the one with highest connectivity,
as one can see in the color matrix.

Communities C2 and C3 showed more connected between them, with four nodes with
a high edge betwenness value (C2: 16 and 23; C3: 19 and 29) and four edges with high
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Figure 4 Size of the largest connected component (Nc) versus the threshold similarity σ. Near the crit-
ical value, there is an abrupt topological change with the disaggregation of a sole network completely con-
nected in groups that can be discerned, with maximum phylogenetically-relevant information in relation
to noise, enabling the detection of communities (modules) in the network.

Full-size DOI: 10.7717/peerj.4349/fig-4

edge betweenness (inter-communities: 29–23, 29–16; 19–23, 19–16) that connect them.
Community C1, however, had only one inter-community edge, linking the vertices C1:12
and C3:38.

Comparison of the complex networks method and traditional
tree-based methods of phylogenetic analyses
The classifications generated by the complex networks method and the four tree-
based methods of phylogenetic analysis (distance, maximum parsimony, maximum
likelihood, Bayesian) exhibited maximum congruence index: G(ϕ,ψ)= 100%, with ϕ,
ψ corresponding to a community CX generated by any two methods. The communities
C1, C2 and C3, detected by the complex networks method, corresponded exactly to the
groups C, B and A obtained through the phylogenetic inference methods, respectively,
and, thus, the critical network (σcrit= 46%) retrieved all the phylogenetic relationships of
the basidiomycotan CHS. The closer relationship of groups A and B, forming the more
inclusive group AB, was also detected by the complex networks method, through the higher
number of vertices connected by inter-community edges of high betweenness between C2
and C1. Furthermore, additional phylogenetic relationships, which cannot be directly
visualized by a tree graph, were also evidenced as exhibited by the intercommunitary edges
between nodes in communities C2 and C3, and between communities C1 and C3 (Table 2
and Fig. 7).
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Figure 5 Colour plot of neighbourhoodmatrix at σcri = 46%with the indication of the communities
(modules). The detection of modular structure (that is, the identification of communities in the critical
network) was carried out by joint analysis of the color representation of the neighborhood matrix.

Full-size DOI: 10.7717/peerj.4349/fig-5

Table 4 synthesizes, in a comparative manner, the indices of number of removed edges
(in the complex networksmethod) and the support indexes of bootstrap (BP) and posterior
probability (PP) (in themaximumparsimony, distance,maximum likelihood, and Bayesian
methods) for the main retrieved groups/communities. However, a statistically significant
correlation between the number of removed edges by the complex networks method and
the support measures of the traditional methods of phylogenetic analysis was not detected.

The dendrograms generated by tree-based phylogenetic methods are a graphic
representation of evolutionary relationships between included organisms or their
molecules, such as proteins (Russo, Miyaki & Pereira, 2012). The trees are generated based
on the assumption that the evolutionary process is strictly divergent but the widespread
existence of reticulated evolution (horizontal/lateral transfers, hybridizations, and non-
dicothomous cladogenesis) implies that the evolutionary process can be concurrently
divergent and convergent so that the best graphic representation would not be a tree
(Kunin et al., 2005). Therefore, a more realistic graphical representation of phylogenetic
hypotheses can be generated by a complex networks method (Bapteste et al., 2013). Tree
graphs are a subset of general graphs or networks. Trees are optimized visualizations
of often much more complex evolutionary signals. Using trees, additional dimensions of
information in the data are overlooked (Bapteste et al., 2012). The scope of our evolutionary
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Figure 6 Dendrogram produced by the successive elimination of edges with the largest value of be-
tweenness. The detection of modular structure, that is, the identification of communities in the critical
network was carried out by joint analysis of the color representation of the neighborhood matrix (Fig. 5)
along with the dendrogram generated by successive link elimination according to the betweenness index.

Full-size DOI: 10.7717/peerj.4349/fig-6

thinking should bemoved beyond a tree-thinking to a network-thinking paradigm (Bapteste
et al., 2013).

Comments on the used bootstrap method
The topologies generated by the phylogenetic analyses must be submitted to some
confidence test that quantitatively evaluates the statistical support of the inferred or
proposed groups (Felsenstein, 2004). The percentage values of bootstrap (distance,
maximumparsimony,maximum likelihood, Bayesian) and posterior probability (Bayesian)
are the most used support measures: the closer to the maximum value, the more robust is
the retrieved topology; that is, the more reliable is the formed group/community. Using the
bootstrap method based on random resampling over similarity scores, we have obtained
results that were strikingly similar to those used for the tree-based methods. Notably, the
same groups A, B and C as in the tree-based methods were also retrieved by the complex
network method, with bootstrap values of 100%, 100%, and 74.6%, respectively. In this
scenario, we also found a bootstrap support of 100% for group AB (Fig. 8).

This bootstrap procedure is distinct from those used in the tree-based methods since
it does not rely on the resampling of characters (Felsenstein, 2004); instead, the locus of
the resampling procedure is here the similarity matrix, which serves as the starting point
for the community detection algorithm. The rationale behind this procedure is that it
may emulate to some degree the consequences on the similarity matrix that would be
obtained if one were to resample characters (i.e., amino acids) directly, since this would
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Figure 7 The standard network representation at σcri = 46% (Gephi) with the indication of the com-
munities (modules). The critical network exhibited three very distinct communities (modules), named
C1, C2, and C3.

Full-size DOI: 10.7717/peerj.4349/fig-7

Table 4 Comparison of the number of removed edges and support indexes (bootstrap and posterior
probabilities) of tree-based and complex networks methods.

Groups Complex
networks

Maximum
parsimony

Distance Maximum
likelihood

Bayesian

A+ B= C3+ C2 5 100 100 100 100
C= C1 6 <50 <50 100 <50
A= C3 21 54 100 <50 93
B= C2 75 100 100 100 100

plausibly result in a variance on the similarity scores that would depend on the similarity
scores themselves. That is, by resampling characters, we could expect a peak of variance in
similarity scores across bootstrap samples around the similarity score of 50%, since at this
point there would be a greater margin for the alignment of bootstrap sequences to either
improve or worsen over the original sequences. We also expect the variance for bootstrap
similarity scores to decrease as we approach either end of the similarity spectrum. The
method of resampling over a binomial distribution herein adopted emulates this behavior.
Across our bootstrap samples, the highest variance (0.66) was found in one of the entries
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Figure 8 Dendrogram produced by the successive elimination of edges with the largest value of be-
tweenness. Bootstrap values for all branches were produced according to the method described in the
text. Bootstrap support for communities AB (C3+ C2), A (C3), B (C2), and C (C1) in complex network
method. (Note: the terminology A, B and C is those used in tree-based methods).

Full-size DOI: 10.7717/peerj.4349/fig-8

with an original similarity score of 46, while an entry with an original similarity score of 95
exhibited a variance of 0.11 (Table S1).

It should be noted that, by performing a bootstrap resampling according to the method
here described, each bootstrap sample results in an adjacency matrix m (see section
‘Network construction and analyses’, step 3, above) that is slightly different than the one
obtained from the original similarity matrix and σc . We also performed tests in which
the bootstrap samples were generated by direct random rewiring of the adjacency matrix
itself, yielding similar results to the method adopted herein. However, the rewiring method
demands additional statistical assumptions for which we are not ready to provide support
at this point.
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It may be objected that this bootstrap method yields scores that cannot be compared
to those in the tree-based methods. Strictly speaking, however, bootstrap scores for the
complex network-based method are calculated in exactly the same way as in the other
methods; what differs is the resampling method. While traditional resampling from
sequences, followed by the application of the network-based method, can in principle be
done for each bootstrap sample, in practice this is computationally much more demanding
than resampling from the similarity matrix. The degree to which those methods are
equivalent will be the subject of a future study.

In complex networks, the statistical measure that could be used in a similar manner
as the support measures used in phylogenetic analyses (BP and PP) is the number of
removed edges during the calculation of betweenness. When one removes edges with high
betweenness, a great perturbation in the system is caused, which can imply in the rupture of
network structure, and the more resilient to attacks a community/group is, the more robust
it is (Costa et al., 2007). In this case study with chitin synthases of Basidiomycota fungi,
the community C2 (= group B in phylogenetic analyses) was the one that exhibited the
highest value when considering this statistical measure. Nonetheless, the lack of statistically
significant correlation between a probable support measure for communities in complex
networks and the traditionally used support measures in phylogenetic methods (BP and
PP) involving a same dataset suggests the need of a more comprehensive investigation
about this topic. Currently, our research group has been generating and analyzing many
complex networks with high order and size to answer this fundamental question.

Concluding remarks
In this work, we compared a complex networks method with the traditional methods of
phylogenetic analysis (distance,maximumparsimony,maximum likelihood, andBayesian),
using a manually curated and characterized database of chitin synthases of Basidiomycota
fungi from model species. The three modules detected by the complex networks method
corresponded exactly to the groups retrieved by the aforementioned phylogenetic inference
methods. By applying the method again to the values of σ = 52, 63 and 65, which locate the
three small secondary peaks in the Fig. 4, we were able to provide a finer sub-community
analysis. The intra-community links that survive in the presented analyses correspond to
adjacency matrix elements mij = 1 and similarity score Sij > 46, which are about to be
erased at these higher threshold values. Furthermore, we proposed and successfully tested,
for the first time, a bootstrap method, whose results were close to those obtained using
traditional bootstrap in current phylogenetic methods.

Finally, we remark that complex network formalism can be applied to investigation
subsequent transitions that give rise to sub-communities within C1, C2 and C3. To this
purpose we use the secondary peaks of δ(σ ,σ +1σ ) identified at σ = 52, 63, and 65%.
Then, the same sequence of steps (2–8) indicated previously at these values σ to obtain
dendrograms and neighborhood matrices uncovering the subcommunity structure.
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Gonçalves IR, Brouillet S, Soulié MC, Gribaldo S, Sirven C, Charron N, Boccara M,
Choquer M. 2016. Genome-wide analyses of chitin synthases identify horizontal
gene transfers towards bacteria and allow a robust and unifying classification into
fungi. BMC Evolutionary Biology 16(1):252 DOI 10.1186/s12862-016-0815-9.

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software
package for education and data analysis. Palaeontologia Electronica 4(1):1–9.

Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane
protein topology with a hidden Markov model: application to complete genomes.
Journal of Molecular Biology 305:567–580 DOI 10.1006/jmbi.2000.4315.

Kunin V, Goldovsky L, Darzentas N, Ouzounis CA. 2005. The net of life: recon-
structing the microbial phylogenetic network. Genome Research 15:954–959
DOI 10.1101/gr.3666505.

Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK,
Geer RC, Gonzales NR, GwadzM, Hurwitz DI, Lu F, Marchler GH, Song JS,
Thanki N,Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH. 2017.
CDD/SPARCLE: functional classification of proteins via subfamily domain architec-
tures. Nucleic Acids Research 4 45(D1):D200–D203 DOI 10.1093/nar/gkw1129.

Góes-Neto et al. (2018), PeerJ, DOI 10.7717/peerj.4349 26/27

https://peerj.com
http://dx.doi.org/10.1016/j.tig.2013.05.007
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1590/1678-4685-gmb-2015-0164
http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1093/molbev/msh018
http://dx.doi.org/10.1371/journal.pone.0134988
http://dx.doi.org/10.1080/00018730601170527
http://dx.doi.org/10.1016/j.biosystems.2010.04.006
http://dx.doi.org/10.1186/s12862-016-0815-9
http://dx.doi.org/10.1006/jmbi.2000.4315
http://dx.doi.org/10.1101/gr.3666505
http://dx.doi.org/10.1093/nar/gkw1129
http://dx.doi.org/10.7717/peerj.4349


Muller T, VingronM. 2000.Modeling amino acid replacement. Journal of Computational
Biology 7:761–776 DOI 10.1089/10665270050514918.

NewmanMEJ. 2003. The structure and function of complex networks. SIAM Review
45:167–256 DOI 10.1137/S003614450342480.

NewmanMEJ, GirvanM. 2004. Finding and evaluating community structure in
networks. Physical Review E 69:026113 DOI 10.1103/PhysRevE.69.026113.

Niño Vega GA, Carrero L, San-Blas G. 2004. Isolation of the CHS4 gene of Paracoccid-
ioides brasiliensis and its accommodation in a new class of chitin synthases.Medical
Mycology 42:51–57 DOI 10.1080/1369378031000153811.

Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: a novel method for fast and
accurate multiple sequence alignments. Journal of Molecular Biology 302:205–217
DOI 10.1006/jmbi.2000.4042.

Pillar VP. 2001.MULTIV—multivariate exploratory analysis, randomization testing and
bootstrap resampling. Available at http:// ecoqua.ecologia.ufrgs.br (accessed on 10 July
2017).

Pirovani CP, Lopes MA, Oliveira BM, Dias CV, Souza CS, Galante RS, Santos-Junior
MC, Silva BGM, Uetanabaro APT, Taranto AG, Cruz SH, RoqueMRA, Micheli
FFL, Gesteira AS, Schriefer A, Cascardo JCM, Pereira GAG, Góes-Neto A. 2005.
Knowledge discovery in genome database: the chitinmetabolic pathway in Crinipellis
perniciosa. In: Proceedings of IV Brazilian symposium on mathematical and computa-
tional biology/international symposium on mathematical and computational biology.
Rio de Janeiro: E-Papers Serviços Editoriais LTDA, 122–139.
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