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ABSTRACT
We introduce LEISR (Likehood Estimation of Individual Site Rates, pronounced
‘‘laser’’), a tool to infer relative evolutionary rates from protein and nucleotide data,
implemented in HyPhy. LEISR is based on the popular Rate4Site (Pupko et al., 2002)
approach for inferring relative site-wise evolutionary rates, primarily from protein data.
We extend the original method for more general use in several key ways: (i) we increase
the support for nucleotide data with additional models, (ii) we allow for datasets of
arbitrary size, (iii) we support analysis of site-partitioned datasets to correct for the
presence of recombination breakpoints, (iv) we produce rate estimates at all sites rather
than at just a subset of sites, and (v) we implemented LEISR as MPI-enabled to support
rapid, high-throughput analysis. LEISR is available inHyPhy starting with version 2.3.8,
and it is accessible as an option in the HyPhy analysis menu (‘‘Relative evolutionary
rate inference’’), which calls the HyPhy batchfile LEISR.bf.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Genomics
Keywords Protein evolution, Comparative sequence analysis, Evolutionary rate, Phylogenetics

INTRODUCTION
Evolutionary rate inference is a fundamental analysis in computational molecular
evolution (Echave, Spielman &Wilke, 2016). A widely-used tool for inferring evolutionary
rates from phylogenetic protein data is Rate4Site, which exists both as a server and a
command-line tool (Pupko et al., 2002). Although this method has proven extremely
useful over the years, garnering nearly 500 citations, Rate4Site has several limitations:
(i) it cannot analyze more than ∼200–300 sequences because of numerical underflow
issues; (ii) it often fails to converge to stable estimates if data are sufficiently complex even
with relatively few (25–100) sequences; (iii) it accepts primarily protein data only and
has limited nucleotide utility; and (iv) it only infers rates for sites which are not gaps in
either the first sequence seen in the input file or a specified reference sequence and ignores
remaining sites. As the number of available genomic sequences continues to rapidly
expand, tools to analyze large data sets of any genomic type (protein and nucleotide),
are needed.

To this end, we introduce a generalization of Rate4Site, which we term ‘‘LEISR’’
(Likehood Estimation of Individual Site Rates). LEISR is available as part of a
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1Earlier versions of HyPhy (specifically,
≥ 2.3.6) also contain the LEISR method,
although those pre-release versions will
have reduced functionality relative to the
LEISR implemented in HyPhy version
2.3.8.

2We note that HyPhy contains several ro-
bust methods (including FEL (Kosakovsky
Pond & Frost, 2005), SLAC (Kosakovsky
Pond & Frost, 2005), and FUBAR (Murrell
et al., 2013)) for inferring site-wise
evolutionary rates from codon data;
see Spielman, Wan &Wilke (2016) for
recommendations specifically on codon-
level rate inference

Table 1 Nucleotide and Protein models, both generalist and specialist, available for use in LEISR, as of
HyPhy version 2.3.8. Future HyPhy versions are expected to include more models. Users can alternatively
define and fit other parametric and empirical models with the use of HBL, the HyPhy batch language.

Data type Models

Nucleotide GTR (Tavare, 1984), HKY85 (Hasegawa, Kishino & Yano,
1985), JC69 (Jukes & Cantor, 1969)

Protein, Generalist LG (Le & Gascuel, 2008), WAG (Whelan & Goldman, 2001),
JTT (Jones, Taylor & Thornton, 1992), JC69 (Jukes & Cantor,
1969)

Protein, Specialist mtMet (Le, Dang & Le, 2017), mtVer (Le, Dang & Le, 2017),
gcpREV (Cox & Foster, 2013), HIV B/W (Nickle et al., 2007)

leading molecular evolution inference platform HyPhy starting with version ≥ 2.3.8.1

LEISR can be used to infer relative evolutionary rates from either nucleotide or protein
data, thereby providing a flexible and fast platform for rate inference that may complement
codon-level rate inference.2 LEISR has been successfully tested with alignments containing
up to 10,000 sequences, several orders of magnitude beyond what Rate4Site can fit. In
addition, LEISR isMPI-enabled to support rapid inference from datasets withmany sites by
distributing optimization tasks to multiple compute nodes. Like other methods in HyPhy,
LEISR allows users to provide partitioned alignments, with separate phylogenies for each
partition, to correct for the effect of recombination during rate inference. Such partitioned
alignments can be obtained, for example, with the method GARD (Kosakovsky Pond et al.,
2006) in HyPhy.

APPROACH
As input, LEISR requires a phylogeny and multiple sequence alignment, and its algorithm
proceeds in two steps. It first obtains estimates of alignment-wide branch lengths
(considering the input topology as fixed) under a user-specified substitution model
(Table 1), and infers at each site a scaling parameter, rs, that is used to uniformly scale all
the branch lengths of the partition-specific tree at the site. rs can therefore be interpreted
as the evolutionary rate at a specific site relative to the alignment-wide mean rate.

Rate4Site offers two statistical frameworks for rate inference: maximum-likelihood
(ML) (Pupko et al., 2002) and empirical Bayes (Mayrose et al., 2004). Their ML framework
is a ‘‘fixed effects’’ approach where a separate rate parameter is inferred at each site. Their
empirical Bayes framework, by contrast, employs a ‘‘random effects’’ approach where rates
are drawn from a prior gamma distribution. The LEISR implementation is analogous
to the Rate4Site ML approach. During LEISR’s branch length optimization stage, users
can specify whether to model rate variation, with, if chosen, either a discrete gamma
distribution (Yang, 1993) or the general discrete distribution (GDD) (Kosakovsky Pond &
Muse, 2005). Although we provide the option to consider rate variation, we encourage
users to opt for no rate variation. Indeed, the desired behavior for this method is for
only the relative site-wise rates to contain information about site-wise evolutionary rate
heterogeneity. If branch length optimization considers rate variation, then this information
will be ‘‘conflated’’ between these two parameters (branch lengths and site rates). In other
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words, one can view Rate4Site and LEISR as non-parametric rate estimation methods,
whereas gamma and GDD are parametric estimation methods, and layering the two would
be inefficient.

As LEISR inference proceeds,HyPhywill writemarkdown-formatted (MacFarlane, 2017)
status-indicators to the console, including the inferred site-wise maximum-likelihood rate
estimateswith the approximate 95%confidence interval (CI) obtained via profile likelihood.
All final output is written to a JSON-formatted (Crockford, 2006) file, named as the input
data file with the suffix .leisr.json. Site-wise rates are stored in the top-level JSON fieldmle,
whose content field contains a row for each site’s inferred rates. Individual values in each
row correspond to information given in the headers key. A general description of HyPhy
output JSON contents is available from http://www.hyphy.org/ in the ‘‘Resources’’ tab.

Users are free to transform these rates in a manner that suits their given analyses. For
example, Rate4Site computes a standard score for each site, and other applications have
called for normalizing each rate by the mean (or median) gene-wide rate (Jack et al., 2016;
Sydykova et al., 2017). This latter scheme re-scales the average gene rate as 1, lending amore
intuitive interpretation to each site’s rate, i.e., a rate of 2 indicates that a site evolves twice as
quickly as does an average site, and a rate of 0.5 indicates that a site evolves half as quickly
as does an average site. That said, in certain circumstances, empirical rate distributions
may be overdispersed and zero-inflated. In such cases, we suggest to normalize by the
median rather than the mean, should normalization be desired. We note that even raw rate
estimates generated by LEISR are already defined relative to the jointly-inferred partition
mean rate.

RESULTS
We confirmed that LEISR yields comparable inferences to Rate4Site using simulations. For
each of three random phylogenies with 25, 50, and 100 taxa each, we simulated 10 replicate
alignments, each with 100 sites, under the WAG model of protein evolution (Whelan &
Goldman, 2001). Tree lengths (sum of branch lengths) for each tree, respectively, were
13.85, 27.32, and 52.83, and all trees had a mean branch length of ∼0.27. Our simulations
modeled rate heterogeneity among sites with a discrete gamma distribution with 20
categories and a shape parameter of 0.4. Each replicate number used the same model
parameterizations for all three trees, i.e., replicate 1 employed the same model for 25, 50,
and 100 taxa. Simulations were conducted using the Python simulation library pyvolve
(Spielman &Wilke, 2015).

We then inferred relative evolutionary rates in LEISR in two modes: turning off rate
heterogeneity during branch length optimization (‘‘LEISR’’), and specifying a four-category
discrete gamma distribution during branch length optimization (‘‘LEISR+G’’). We again
inferred rates in two modes in Rate4Site (specifically their ML algorithm): without rate
heterogeneity during branch length optimization (‘‘R4S’’) and with a four-category discrete
gamma distribution (‘‘R4S+G’’).While the default number of rate categories for this step in
Rate4Site is 16, but Rate4Site failed with errors for all 100-taxa simulations. We therefore
used four rate categories, to both achieve a fair comparison with LEISR and to ensure
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Figure 1 Mean R2 values (across 10 replicates) between inferred evolutionary rates across platforms
and simulations. Bars represent the standard error of the mean. Note that the y-axis of this figure begins
at R2
= 0.85. All code to generate simulations and reproduce figures is available from https://github.com/

sjspielman/leisr_validation.
Full-size DOI: 10.7717/peerj.4339/fig-1
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Figure 2 Inferred evolutionary rates for a single simulation replicate with 100 taxa. The line shown in
(A–C) is y = x . All code to generate simulations and reproduce figures is available from https://github.
com/sjspielman/leisr_validation.

Full-size DOI: 10.7717/peerj.4339/fig-2

that Rate4Site could complete inferences. For those runs which completed, we observed
comparable run times between LEISR and Rate4Site. Finally, for each alignment inference,
we normalized rate estimates by dividing all rates by themean site rate estimate, as described
earlier.

In Fig. 1, we showR2 values for Pearson’s linear correlation between LEISR and Rate4Site
inferences, computed across all simulations. The R2 values further increase as the number
of taxa increases, although even with 25 taxa the agreement is remarkably high. This trend
is expected because the precision of inference for individual site rates will increase for larger
samples with more taxa Scheffler, Murrell & Kosakovsky Pond (2014). Figure 2 shows, for a
single representative simulation replicate of 100 taxa, the relationship between inferred site
rates across different methods and/or parameterization. Overall, these results demonstrate
a nearly complete agreement between LEISR and Rate4Site, with rate inferences showing
the closest agreement when the same option for branch length optimization was specified
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Figure 3 Inferred evolutionary rates with LEISR and Rate4Site on an empirical alignment of mam-
malian HRH1 receptors. The line shown is y = x . Code to infer rates and reproduce this figure is avail-
able from https://github.com/sjspielman/leisr_validation.

Full-size DOI: 10.7717/peerj.4339/fig-3

(i.e., turned off or with a discrete gamma distribution). Although our simulations consisted
relatively short gene sequences of only 100 sites, LEISR’s use of a fixed effect approach
means it will show similar accuracy for longer gene sequences. In addition, we found that
nucleotide rate inferences under the JC69 model (the only currently available nucleotide
model in the Rate4Site command line version) show similarly strong agreement between
LEISR and Rate4Site.

Finally, we examined whether the comparability in rate estimates from simulated
data extends to empirical data. We inferred rates using both LEISR and Rate4Site on an
established mammalian protein alignment of HRH1 receptor (histamine receptor type 1)
genes consisting of 23 sequences and 507 sites, where the phylogeny had a total tree length
of 3.30 and a mean branch length of 0.077 (Spielman &Wilke, 2013; Sydykova et al., 2017).
We specified the WAG model of evolution and branch length optimization without rate
variation. Because Rate4Site only infers rates at sites which are not gaps in a reference
sequence, we removed all sites which were gaps in the first sequence present in the the
multiple sequence alignment before inference. This step resulted in a final alignment of
478 sites and ensured that rates from each platform were directly comparable.

As shown in Fig. 3, rate inferences between LEISR and Rate4Site on empirical protein
data are extremely similar, with an R2

= 0.93. This strong of agreement with 23 sequences
is consistent with the observed R2 values from the simulated datasets with 25 taxa
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(Fig. 1), in spite of the overall fewer substitutions present in the empirical data related to
the simulated data. We therefore find, using both simulated and empirical data, that LEISR
provides a robust and reliable platform that can be used in the place of Rate4Site when
dataset size and/or complexity preclude Rate4Site use, or when recombination is suspected.
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