
dDocent: a RADseq, variant-calling pipeline designed for 
population genomics of non-model organisms

Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful 

approach for population genomics. Currently, no software exists that utilizes both paired-end 

reads from RADseq data to efficiently produce population-informative variant calls, especially 

for organisms with large effective population sizes and high levels of genetic polymorphism 

but for which no genomic resources exist. dDocent is an analysis pipeline with a user-

friendly, command-line interface designed to process individually barcoded RADseq data 

(with double cut sites) into informative SNPs/Indels for population-level analyses. The 

pipeline, written in BASH, uses data reduction techniques and other stand-alone software 

packages to perform quality trimming and adapter removal, de novo assembly of RAD loci, 

read mapping, SNP and Indel calling, and baseline data filtering. Double-digest RAD data 

from population pairings of three different marine fishes were used to compare dDocent with 

Stacks, the first generally available, widely used pipeline for analysis of RADseq data. 

dDocent consistently identified more SNPs shared across greater numbers of individuals and 

with higher levels of coverage. This is most likely due to the fact that dDocent quality trims 

instead of filtering and incorporates both forward and reverse reads in assembly, mapping, 

and SNP calling, thus enabling use of reads with Indel polymorphisms. The pipeline and a 

comprehensive user guide can be found at (http://dDocent.wordpress.com).
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INTRODUCTION
Next-generation sequencing (NGS) has transformed the field of genetics into genomics by 

providing DNA sequence data at an ever increasing rate and reduced cost (Mardis, 2008).  The 

nascent field of population genomics relies on NGS coupled with laboratory methods to 

reproducibly reduce genome complexity to a few thousand loci.  The most common approach, 

restriction-site associated DNA sequencing (RADseq), uses restriction endonucleases to 

randomly sample the genome at locations adjacent to restriction-enzyme recognition sites that, 

when coupled with Illumina sequencing, produces high coverage of homologous SNP (Single 

Nucleotide Polymorphism) loci.  As such, RADseq provides a powerful approach for population 

level genomic studies (Ellegren, 2014;Narum et al., 2013;Rowe et al., 2011).

The original RADseq approach (Baird et al., 2008), and initial population genomic studies 

employing it (Hohenlohe et al., 2010), focused on SNP discovery and genotyping on the first 

(forward) read only.  This is because the original RADseq method (Baird et al., 2008) utilized 

random shearing to produce RAD loci; paired-end reads were not of uniform length or coverage, 

making  it  problematic  to  find  SNPs  at  high  and  uniform levels  of  coverage  across  a  large 

proportion of individuals.  As a result, the most comprehensive and widely used software package 

for analysis of RADseq data, Stacks (Catchen et al., 2013, 2011), provides SNP genotypes based 

only on first-read data.  In contrast, RADseq approaches such as ddRAD (Peterson et al., 2012), 

2bRAD (Wang et al., 2012), and ezRAD (Toonen et al., 2013) rely on restriction enzymes to 

define both ends of a RAD locus, largely producing RAD loci of fixed length (flRAD).  Paired-

end Illumina sequencing of flRAD fragments provides an opportunity to significantly expand the 

number of SNPs that can be genotyped from a single RADseq library.

Here, the variant-calling pipeline dDocent is introduced as a tool for generating population 

genomic data; a brief methodological outline of the analysis pipeline also is presented.  dDocent 

is a wrapper script designed to take raw RADseq data and produce population informative SNP 
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calls, taking full advantage of both paired-end reads.  dDocent is configured for organisms with 

high levels of nucleotide and INDEL polymorphisms, such as found in many marine organisms 

(Guo et al., 2012;Keever et al., 2009;Sodergren et al., 2006;Waples, 1998;Ward et al., 1994).  As 

input, dDocent takes paired FASTQ files for individuals and outputs raw SNP and INDEL calls as 

well as filtered SNP calls in VCF format.  The pipeline and a comprehensive online manual can 

be found at (http://dDocent.wordpress.com).  Finally, results of pipeline analyses, using both 

dDocent and Stacks, of populations of three species of marine fishes are provided to demonstrate 

the utility of dDocent compared to Stacks, the first and most comprehensive existing  software 

package for RAD population genomics.

METHODS

Implementation and basic usage

The dDocent pipeline is written in BASH and will run using most Unix-like operating 

systems.  dDocent is largely dependent on other bioinformatics software packages, taking 

advantage of programs designed specifically for each task of the analysis and ensuring that each 

modular component can be updated separately.  Proper implementation depends on the correct 

installation of each third-party packages/tools.  A full list of dependencies can be found in the 

user manual at (http://ddocent.wordpress.com/ddocent-pipeline-user-guide/) and a sample script 

to automatically download and install the packages in a Linux environment can be found at the 

dDocent repository (https://github.com/jpuritz/dDocent).

dDocent is run by simply switching to a directory containing the input data and starting the 

program.  There is no configuration file; dDocent will proceed through a short series of 

command-line prompts, allowing the user to set up analysis parameters.  After all required 

variables are configured, including an e-mail address for a completion notification, dDocent 

provides instructions on how to move the program to the background and run, undisturbed, until 

completion.  The pipeline is designed to take advantage of multiple processing core machines 
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and, whenever possible, processes should be invoked with multiple threads or occurrences.  For 

most Linux distributions, the number of processing cores should be automatically detected.  If 

dDocent cannot determine the number of processors, it will ask the user to input the value.

There are two distinct modules of dDocent: dDocent.FB and dDocent.GATK.  dDocent.FB 

uses minimal, BAM-file preparation steps before calling SNPs and INDELs, simultaneously using 

FreeBayes (Garrison & Marth, 2012).  dDocent.GATK uses GATK (McKenna et al., 2010) for 

INDEL realignment, SNP and INDEL genotyping (using HaplotypeCaller), and variant quality-

score recalibration, largely following GATK Best Practices recommendations (Auwera & 

Carneiro, 2013;DePristo et al., 2011).  The modules represent two different strategies for 

SNP/INDEL calling that are completely independent of one another.  The remainder of this paper 

focuses on dDocent.FB; additional information on dDocent.GATK may be found in the user 

guide and results from dDocent.GATK can be found in Appendix S1.

Data input requirements

dDocent requires demultiplexed forward and paired-end FASTQ files for every individual in 

the analysis.  A simple naming convention (a single-word locality code/name and a single-word 

sample identifier separated by an underscore) must be followed for every sample; examples are 

LOCA_IND01.F.fq and LOCA_IND01.R.fq.  A sample script for using a text file with barcodes 

and sample names and process_radtags from Stacks (Catchen et al., 2013) to properly 

demultiplex samples and put them in the proper dDocent naming convention can be found at the 

dDocent repository (https://github.com/jpuritz/dDocent).

Quality trimming

After dDocent checks that it is recognizing the proper number of samples in the current 

directory, it asks the user if s/he wishes to proceed with quality trimming of sequence data.  If 

directed, dDocent can use the program Trim Galore! 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to simultaneously remove 
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Illumina adapter sequences and trim ends of reads of low quality.  By default, Trim Galore! looks 

for double-digest RAD adapters (Peterson et al., 2012) and trims bases with quality scores less 

than Phred 10.  Typically, quality trimming only needs to be performed once on data, so the 

option exists to skip this step in subsequent dDocent analyses.

De novo assembly

Without reference material, population genomic analyses from RADseq depend on de novo 

assembly of a set of reference contigs.  Inherently, not all RAD loci appear in all individuals due 

to stochastic processes inherent in library preparation and sequencing and to polymorphism in 

restriction-enzyme restriction sites (Catchen et al., 2011).  Moreover, populations can contain 

large levels of within locus polymorphism, making generation of a reference sequence 

computationally difficult.  dDocent minimizes the amount of data used for assembly by taking 

advantage of the fact that flRAD loci present in multiple individuals should have higher levels of 

exactly matching reads (forward and reverse) than loci that are only present in a few individuals.  

Caution is advised for unique reads with low levels of coverage throughout the data set as they 

likely represent sequencing errors or polymorphisms that are shared only by a few individuals.

During assembly, paired-end reads are reverse complemented and concatenated to forward 

reads.  Unique paired reads are identified and their occurrences are counted in the entire data set.  

These data are tabulated into the number of unique reads per levels of 1X to 50X coverage; a 

graph is then generated and printed to the terminal.  The distribution usually follows an 

asymptotic relationship (Figure 1), with a large proportion of reads only having one or two 

occurrences, meaning they likely will not be informative on a population scale.  Highly 

polymorphic RAD loci still should have at least one allele present at the level of expected 

sequence coverage, so this can be used as a guide for informative data.  The user chooses a cut-

off level of coverage for reads to be used for assembly – note all reads are still used for 

subsequence steps of the pipeline.
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After a cut-off level is chosen, remaining reads are returned in forward- and reverse-read 

files and then input directly into the RADseq assembly program Rainbow (Chong et al., 2012).  

The default parameters of Rainbow are used except that the maximum number of mismatches 

used in initial clustering should be changed from four to six.  In short, Rainbow clusters forward 

reads based on similarity; clusters are then recursively divided, based on reverse reads, into 

groups representing single alleles.  Reads in merged clusters are then assembled using a greedy 

algorithm (Pop & Salzberg, 2008).  dDocent then selects the longest contig for each cluster as the 

representative reference sequence for that RAD locus.  If the forward read does not overlap with 

the reverse read (almost always the case with flRAD), the forward read is concatenated to the 

reverse read with ten ‘N’ characters as padding.  Finally, reference sequences are clustered based 

on overall sequence similarity (chosen by user, 90% by default), using the program CD-HIT (Fu 

et al., 2012;Li & Godzik, 2006).  This final cluster step reduces the data set further, based on 

overall sequence identity after assembly.  Alternatively, de novo assembly can be skipped and the 

user can provide a FASTA file with reference sequences.

Read mapping

dDocent uses the MEM algorithm (Li, 2013) of BWA (Li & Durbin, 2009, 2010) to map 

quality-trimmed reads to the reference contigs.  Users can deploy the default values of BWA or 

set an alternative value for each mapping parameter (match score, mismatch score, and gap-

opening penalty).  The default settings are meant for mapping reads to the human genome, so 

users are encouraged to experiment with mapping parameters.  BWA output is ported to 

SAMtools (Li et al., 2009), saving disk space, and alignments are saved to the disk as binary 

alignment/Map (BAM).  BAM files are then sorted and indexed.

SNP and INDEL discovery and genotyping

dDocent uses a two-step process to optimize the computationally intensive task of 

SNP/INDEL calling.  First, quality-trimmed forward and reverse reads are reduced to unique 
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reads.  This data set is then mapped to all reference sequences using the previously entered 

mapping settings (see Read Mapping above).  From this alignment, a set of intervals is created 

using BEDtools (Quinlan & Hall, 2010).  The interval set saves computational time by directing 

the SNP-/INDEL-calling software to examine only reference sequences along contigs that have 

high quality mappings.  Second, the interval list is then split into a single file for each processing 

core, allowing SNP/INDEL calling to be optimized with a scatter-gather technique.  The program 

FreeBayes (Garrison & Marth, 2012) is then executed multiple times simultaneously (one 

execution per processor and genomic interval).  FreeBayes is a Bayesian-based, variant-detection 

software that uses assembled haplotype sequences to simultaneously call SNPs, INDELS, multi-

nucleotide polymorphisms (MNPs), and complex events (e.g., composite insertion and 

substitution events) from alignment files; FreeBayes has the added benefit for population 

genomics of using reads across multiple individuals to improve genotyping (Garrison & Marth, 

2012).  FreeBayes is run with minimal changes to the default parameters; minimum mapping 

quality score and base quality score are set to PHRED 10.  After all executions of FreeBayes are 

completed, raw SNP/INDEL calls are concatenated into a single variant call file (VCF), using 

VCFtools (Danecek et al., 2011).

Variant Filtering

Final SNP data-set requirements are likely to be highly dependent on specific goals and aims 

of individual projects.  To that end, dDocent uses VCFtools (Danecek et al., 2011) to provide only 

basic level filtering, mostly for run diagnostic purposes.  dDocent produces a final VCF file that 

contains all SNPs, INDELS, MNPs, and complex events that are called in 90% of all individuals, 

with a minimum quality score of 30.  Users are encouraged to use VCFtools and vcflib (part of 

the FreeBayes package; https://github.com/ekg/vcflib) to fully explore and filter data 

appropriately.

Comparison between dDocent and Stacks
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Two sample localities, each comprised of 20 individuals, were chosen randomly from 

unpublished RADseq data sets of three different, marine fish species: red snapper (Lutjanus 

campechanus), red drum (Sciaenops ocellatus), and silk snapper (Lutjanus vivanus).  These three 

species are part of ongoing RADseq projects in our laboratory, and preliminary analyses 

indicated high levels of nucleotide polymorphisms across all populations.  Double-digest RAD 

libraries were prepared, generally following Peterson et al. (2012).  Individual DNA extractions 

were digested with EcoRI and MspI.  A barcoded adapter was ligated to the EcoRI site of each 

fragment and a generic adapter was ligated to the MspI site.  Samples were then equimollarly 

pooled and size-selected between 350 and 400 bp, using a Qiagen Gel Extraction Kit.  Final 

library enhancement was completed using 12 cycles of PCR, simultaneously enhancing properly 

ligated fragments and adding an Illumina Index for additional barcoding.  Libraries were 

sequenced on three separate lanes of an Illumina HiSeq 2000 at the University of Texas Genomic 

Sequencing and Analysis Facility.

Demultiplexed individual reads were analyzed with dDocent, using three different levels of 

final reference contig clustering (90%, 96%, and 99% similarity) in an attempt to alter the most 

comparable analysis variable in dDocent to match analysis variables of Stacks.  The coverage cut-

off for assembly was 12 for red snapper, 13 for red drum, and nine for silk snapper.  All dDocent 

runs used mapping variables of one, three, and five for match-score value, mismatch score, and 

gap-opening penalty, respectively.  For comparisons, complex variants were decomposed into 

canonical SNP and INDEL representation from the raw VCF files, using vcfallelicprimitives from 

vcflib (https://github.com/ekg/vcflib).

For Stacks, reads were demultiplexed and cleaned using process_radtags, removing reads 

with ‘N’ calls and low-quality base scores.  Because dDocent inherently uses both reads for 

SNP/INDEL genotyping, forward reads and reverse reads were processed separately with 

denovo_map.pl (Stacks version 1.08), using three different sets of parameters.  The first set had a 
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minimum depth of coverage of two to create a stack, a maximum distance of two between stacks, 

and a maximum distance of four between stacks from different individuals, with both the 

deleveraging algorithm and removal algorithms enabled.  The second set had a minimum depth of 

coverage of three to create a stack, a maximum distance of four between stacks, and a maximum 

distance of eight between stacks from different individuals, with both the deleveraging algorithm 

and removal algorithms enabled.  The third set had a minimum depth of coverage of three to 

create a stack, a maximum distance of four between stacks, and a maximum distance of 10 

between stacks from different individuals, with both the deleveraging algorithm and removal 

algorithms enabled.  SNP calls were output in VCF format.

For both dDocent and Stacks runs, VCFtools was used to filter out INDELs and SNPs that had 

a minor allele count of less than five.  SNP calls were then evaluated at different individual-

coverage levels: the total number of SNPs; the number of SNPS called in 75%, 90%, and 99% of 

individuals at 3X coverage; the number of SNPS called in 75% and 90% of individuals at 5X 

coverage; the number of SNPS called in 75% and 90% of individuals at 10X coverage; and the 

number of SNPS called in 75% and 90% of individuals at 20X coverage.  Overall coverage levels 

for red snapper were lower and likely impacted by a few low-quality individuals; consequently, 

the number of 5X and 10X SNPs shared among 90% of individuals (after removing the bottom 

10% of individuals in terms of coverage) were compared instead of SNP loci shared at 20X 

coverage.  Results from two runs of Stacks (one using forward and one using reverse reads) were 

combined for comparison with dDocent, which inherently calls SNPs on both reads.  All analyses 

and computations were performed on a 32-core Linux workstation with 128 GB of RAM.

RESULTS AND DISCUSSION

Results of SNP calling, including run times (in minutes) for each analysis (not including 

quality trimming), are presented in Table 1.  Data from high coverage SNP calls, averaged over 

all runs for each pipeline, are presented in Figure 1.  While Stacks called a larger number of low 
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coverage SNPs, limiting results to higher individual coverage and to higher individual call rates 

revealed that dDocent consistently called more high-quality SNPs.  Run times were equivalent 

for both pipelines.

At almost all levels of coverage in three different data sets, dDocent called more SNPs across 

more individuals than Stacks.  Two key differences between dDocent and Stacks likely contribute 

these discrepancies: (i) quality trimming instead of quality filtering, and (ii) simultaneous use of 

forward and reverse reads by dDocent in assembly, mapping, and genotyping, instead of 

clustering as employed by Stacks.  As with any data analysis, quality of data output is directly 

linked to the quality of data input.  Both dDocent and Stacks use procedures to ensure that only 

high-quality sequence data are retained; however, Stacks removes an entire read when a sliding 

window of bases drops below a preset quality score (PHRED 10, by default), while dDocent via 

Trim Galore! trims off low-quality bases, preserving high-quality bases of each read.  Filtering 

instead of trimming results in fewer reads entering the Stacks analysis (between 65%-95% of the 

data compared to dDocent; data not shown), generating lower levels of coverage and fewer SNP 

calls than dDocent.

dDocent offers two advantages over Stacks: (i) it is specifically designed for paired-end data 

and utilizes both forward and reverse reads for de novo RAD loci assembly, read mapping, 

variant discovery, and genotyping; and (ii) it aligns reads to reference sequence instead of 

clustering by identity.  Using both reads to cluster and assemble RAD loci helps to ensure that 

portions of the genome with complex mutational events, including INDELs or small repetitive 

regions, are properly assembled and clustered as homologous loci.  Additionally, using BWA to 

map reads to reference loci enables dDocent to properly align reads with INDEL polymorphisms, 

increasing coverage and subsequent variant discovery and genotyping.  Clustering methods 

employed by Stacks, whether clustering alleles within an individual or clustering loci between 

individuals, effectively remove reads, alleles, and loci with INDEL polymorphisms because the 
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associated frame shift effectively inflates the observed number of base-pair differences.  For 

organisms with large effective population sizes and high levels of genetic diversity, such as many 

marine organisms (Waples, 1998;Ward et al., 1994), removing reads and loci with INDEL 

polymorphisms will result in a loss of shared loci and coverage.

CONCLUSION

dDocent is an open-source, freely available population genomics pipeline configured for 

species with high levels of nucleotide and INDEL polymorphisms, such as many marine 

organisms.  The dDocent pipeline reports more SNPs shared across greater numbers of 

individuals and with higher levels of coverage than current alternatives.  The pipeline and a 

comprehensive online manual can be found at (http://dDocent.wordpress.com) and 

(https://github.com/jpuritz/dDocent).
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Table 1.  Results from individual runs of dDocent and Stacks.  dDocent runs varied in the level of 

similarity used to cluster reference sequences: A (90%), B (96%), and C (99%).  For Stacks, 

forward reads and reverse reads were separately processed with denovo_map.pl (Stacks version 

1.08), using three different sets of parameters: A, minimum depth of coverage of two to create a 

stack, a maximum distance of two between stacks, and a maximum distance of four between 

stacks from different individuals; B, minimum depth of coverage of three to create a stack, a 

maximum distance of four between stacks, and a maximum distance of eight between stacks from 

different individuals; and C, minimum depth of coverage of three to create a stack, a maximum 

distance of four between stacks, and a maximum distance of 10 between stacks from different 

individuals.  SNP calls were evaluated at different individual coverage levels: (i) total number of 

SNPs; (ii) number of SNPS called in 75%, 90%, and 99% at 3X coverage; (iii) number of SNPS 

called in 75% and 90% of individuals at 5X coverage; (iv) number of SNPS called in 75% and 

90% of individuals at 10X coverage; and, (v) number of SNPS called in 75% and 90% of 

individuals at 20X coverage.   Results from forward and reverse reads of Stacks were combined 

for comparison with dDocent , which inherently calls SNPs on both reads.

dDocent A dDocent B dDocent C Stacks A Stacks B Stacks C

Red snapper
Total 3X SNPS  30,130  30,043  29,907  28,817  33,479  34,459 
75% 3X SNPs  12,507  12,249  12,012  4,150  5,735  5,728 
90% 3X SNPs  5,368  5,187  5,039  675  987  983 
99% 3X SNPs  52  25  5 0 0 0
75% 5X SNPs  8,144  7,946  7,793  2,632  4,351  4,324 
90% 5X SNPs  2,775  2,696  2,606  179  579  574 
75% 10X SNPs  4,151  4,017  3,914  783  1,618  1,579 
90% 10X SNPS  785  729  682  7  48  47 

90% IND 90% 5X  5,625  5,499  5,332  806  1,807  1,079 
90% IND 90% 10x  2,403  2,298  2,196  129  441  434 

Run time  59  58  57  70  47  53 
Red drum

Total 3X SNPS  27,263  27,329  27,295  45,792  50,821  52,366 
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75% 3X SNPs  23,339  23,328  23,226  24,134  28,991  28,981 
90% 3X SNPs  20,764  20,704  20,586  13,439  17,946  17,874 
99% 3X SNPs  7,121  7,022  6,937  828  1,264  1,259 
75% 5X SNPs  20,015  20,009  19,946  21,021  26,526  26,464 
90% 5X SNPs  16,739  16,680  16,588  10,494  15,282 15,207
75% 10X SNPs  16,078  16,042  15,970  12,928  17,018  16,983 
90% 10X SNPS  10,988  10,942  10,842  4,159  6,734  6,705 
75% 20X SNPs  7,975  7,933  7,824  2,276  3,538  3,516 
90% 20X SNPs  3,534  3,512  3,455  243  1,974  1,961 

Run time  55  55  53  58  55  65 
Silk snapper

Total 3X SNPS  35,763  35,645  35,509  48,742  55,505  58,352 
75% 3X SNPs  17,518  17,244  16,992  7,596  9,705  9,696 
90% 3X SNPs  8,586  8,353  8,157  2,007  3,439  3,433 
99% 3X SNPs  2,552  2,380  2,276  132  527  523 
75% 5X SNPs  10,775  10,547  10,385  4,789  7,290  7,274 
90% 5X SNPs  4,936  4,725  4,606  1,225  2,573  2,570 
75% 10X SNPs  5,252  5,018  4,876  2,094  3,547  3,546 
90% 10X SNPS  2,191  2,058  1,938  489  1,224  1,223 
75% 20X SNPs  2,220  2,098  1,984  703  1,415  1,411 
90% 20X SNPs  801  721  675  136  417  418 

Run time 98 100 60 93 89 204
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Figure 1.  Levels of coverage for each unique read in the red snapper data set.  The horizontal 

axis represents the minimal level of coverage and the vertical axis represents the number of 

unique paired reads in thousands.
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Figure 2.  SNP results averaged across the three different run parameters for dDocent and Stacks.  

(A) Red snapper, (B) Red drum, (C) Silk snapper (see Methods or Table 1 for SNP categories 

description).  Error bars represent standard error.
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