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dDocent: a RADseq, variant-calling pipeline designed for
population genomics of non-model organisms

Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful
approach for population genomics. Currently, no software exists that utilizes both paired-end
reads from RADseq data to efficiently produce population-informative variant calls, especially
for organisms with large effective population sizes and high levels of genetic polymorphism
but for which no genomic resources exist. dDocent is an analysis pipeline with a user-
friendly, command-line interface designed to process individually barcoded RADseq data
(with double cut sites) into informative SNPs/Indels for population-level analyses. The
pipeline, written in BASH, uses data reduction techniques and other stand-alone software
packages to perform quality trimming and adapter removal, de novo assembly of RAD loci,
read mapping, SNP and Indel calling, and baseline data filtering. Double-digest RAD data
from population pairings of three different marine fishes were used to compare dDocent with
Stacks, the first generally available, widely used pipeline for analysis of RADseq data.
dDocent consistently identified more SNPs shared across greater numbers of individuals and
with higher levels of coverage. This is most likely due to the fact that dDocent quality trims
instead of filtering and incorporates both forward and reverse reads in assembly, mapping,
and SNP calling, thus enabling use of reads with Indel polymorphism@e pipeline and a

comprehensive user guide can be found at (http://dDocent.wordpress.com).
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INTRODUCTIO
Next-generation sequencing (NGS) has transformed|:“|field of genetics into genomics by

providing DNA sequence data at an ever increasing rate and reduced cost (Mardis, 2008). The
nascent field of population genomics relies on NGS coupled with laboratory methods to
reproducibly reduce genome complexity to a few thousand loci. The most common approach,
restriction-site associated DNA sequencing (RADseq), uses restriction endonucleases to
randomly sample the genome at locations adjacent to restriction-enzyme recognition sites that,
when coupled with Illumina sequencing, produces high coverage of homologous SNP (Single
Nucleotide Polymorphism) loci. As such, RADseq provides a powerful approach @Lopulation
level genomic studies (Ellegren, 2014;Narum et al., 2013;Rowe et al., 2011).

The original RADseq approach (Baird et al., 2008), and initial population genomic studies
employing it (Hohenlohe et al., 2010), focused on SNP discovery and genotyping on the first
(forward) read only. This is because the original RADseq method (Baird et al., 2008) utilized
random shearing to produce RAD loci; paired-end reads were not of uniform length or coverage,
making it problematic to find SNPs at high and uniform levels of coverage across a large
proportion of individuals. As a result, the most comprehensive and widely used software package
for analysis of RADseq data, Stacks (Catchen et al., 2013, 2011), provides SNP genotypes based
only on first-read data. In contrast, RADseq approaches such as ddRAD (Peterson et al., 2012),
2bRAD (Wang et al., 2012), and ezRAD (Toonen et al., 2013) rely on restriction enzymes to
define both ends of a RAD locus, largely producing RAD loci of fixed length (fIRAD). Paired-
end Illumina sequencing of fIRAD fragments provides an opportunity to significantly expand the
number of SNPs that can be genotyped@n a single RADseq library.

Here, the variant-calling pipeline dDocent is introduced as a tool for generating population
genomic data; a brief methodological outline of the analysis pipeline also is presented. dDocent

is a wrapper script designed to take raw RADseq dat@d produce population informative SNP
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calls, taking full advantage of both paired-end reads. dDocent is configured for organism@ith
high levels of nucleotide and INDEL polymorphisms, such as found in many marine organisms
(Guo et al., 2012;Keever et al., 2009;Sodergren et al., 2006; Waples, 1998;Ward et al., 1994). As
input, dDocent takes paired FASTQ files for individuals and outputs raw SNP and INDEL calls as
well as filtered SNP calls in VCF format. The pipeline and a comprehensive online manual can
be found at (http://dDocent.wordpress.com). Finally, results of pipeline analyses, using both
dDocent and Stacks, of populations of three species of marine fishes are provided to demonstrate
the utility of dDocent compared to Stacks, the first and most comprehensive existing software
package for RAD population genomics.
METHODS

Implementation and basic usage

The dDocent pipeline is written in BASH and will run using most Unix-like operating
systems. dDocent is largely dependent on other bioinformatics software packages, taking
advantage of programs designed specifically for each task of the analysis and ensuring that each
modular component can be updated separately. Proper implementation depends on the correct
installation of each third-party packages/tools. A full list of dependencies can be found in the
user manual at (http://ddocent.wordpress.com/ddocent-pipeline-user-guide/) and a sample script
to automatically download and install the packages in a Linux environment can be found at the
dDocent repository (https://github.com/jpuritz/dDocent).

dDocent is run by simply switching to a directory containing the input data and starting the
program. There is no configuration file; dDocent will proceed through a short series of
command-line prompts, allowing the user to set up analysis parameters. After all required
variables are configured, including an e-mail address for a completion notification, dDocent
provides instructions on how to move the program to the background and run, undisturbed, until

completion. The pipeline is designed to take advantage of multiple processing core machines
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and, whenever possible, processes should be invoked with multiple threads or occurrences. For
most Linux distributions, the number of processing cores should be automatically detected. If
dDocent cannot determine the number of processors, it will ask the user to input the value.

There are two distinct modules of dDocent: dDocent.FB and dDocent. GATK. dDocent.FB
uses minimal, BAM-file preparation steps before calling SNPs and INDELs, simultaneously using
FreeBayes (Garrison & Marth, 2012). dDocent. GATK uses GATK (McKenna et al., 2010) for
INDEL realignment, SNP and INDEL genotyping (using HaplotypeCaller), and variant quality-
score recalibration, largely following GATK Best Practices recommendations (Auwera &
Carneiro, 2013;DePristo et al., 2011). The modules represent two different strategies for
SNP/INDEL calling that are completely independent of one another. The remainder of this paper
focuses on dDocent.FB; additional information on dDocent. GATK may be found in the user
guide and results from dDocent. GATK can be found in Appendix S1.
Data input requirements

dDocent requires demultiplexed forward and paired-end FASTQ files for every individual in
the analysis. A simple naming convention (a single-word locality code/name and a single-word
sample identifier separated by an underscore) must be followed for every sample; examples are
LOCA _INDOI.Ffq and LOCA_INDOI.R.fq. A sample script for using a text file with barcodes
and sample names and process_radtags from Stacks (Catchen et al., 2013) to properly
demultiplex samples and put them in the proper dDocent naming convention can be found at the
dDocent repository (https://github.com/jpuritz/dDocent).
Quality trimming

After dDocent checks that it is recognizing the proper number of samples in the current
directory, it asks the user if s/he wishes to proceed with quality trimming of sequence data. If
directed, dDocent can use the program Trim Galore!

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to simultaneously remove
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[llumina adapter sequences and trim ends of reads of low quality. By default, 7rim Galore! looks
for double-digest RAD adapters (Peterson et al., 2012) and trims bases with quality scores less
than Phred 10. Typically, quality trimming only needs to be performed once on data, so the
option exists to skip this step in subsequent dDocent analyses.
De novo assembly

Without reference material, population genomic analyses from RADseq depend on de novo
assembly of a set of reference contigs. Inherently, not all RAdgi appear in all individuals due
to stochastic processes inherent in library preparation and sequencing and to polymorphism in
restriction-enzyme restriction sitetchen et al., 2011). Moreover, populations can contain
large levels of within locus polymorphism, making generation of a reference sequence
computationally difficult. dDocent minimizes the amount of data used for assembly by taking
advantage of the fact that fIRAD loci present in multiple individuals should have higher levels of
exactly matching reads (forward and reverse) than loci that are only present in a few individuals.
Caution is advised for unique reads with low levels of coverage throughout the data set as they
likely represent sequencing errors or polymorphisms that are shared only by a few individuals.

During assembly, paired-end reads are reverse complemented and concatenated to forward
reads. Unique paired reads are identified and their occurrences are counted in the entire data set.
These data are tabulated into the number of unique reads per levels of 1X to 50X coverage; a
graph is then generated and printed to the terminal. The distribution usually follows an
asymptotic relationship (Figure 1), with a large proportion of reads only having one or two
occurrences, meaning they likely will not be informative on a population scale. Highly
polymorphic RAD loci still should have at least one allele present at the level of expected
sequence coverage, so this can be used as a guide for informative data. The user chooses a cut-
off level of coverage for reads to be used for assembly — note all reads are still used for

subsequence steps of the pipeline.

PeerJ reviewing PDF | (v2014:03:1837:0:0:NEW 28 Mar 2014)


Reviewer
Sticky Note
considering re-wording

"Essentially, not all RAD"

Reviewer
Highlight

Reviewer
Highlight

Reviewer
Highlight

Reviewer
Sticky Note
this sentence does not read particularly well. I would consider re-writing it.

PauloProdohl
Sticky Note
Marked set by PauloProdohl

PauloProdohl
Sticky Note
Marked set by PauloProdohl

PauloProdohl
Sticky Note
Marked set by PauloProdohl


PeerJ

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

After a cut-off level is chosen, remaining reads are returned in forward- and reverse-read
files and then input directly into the RADseq assembly program Rainbow (Chong et al., 2012).
The default parameters of Rainbow are used except that the maximum number of mismatches
used in initial clustering should be changed from four to six. In short, Rainbow clusters forward
reads based on similarity; clusters are then recursively divided, based on reverse reads, into
groups representing single alleles. Reads in merged clusters are then assembled using a greedy
algorithm (Pop & Salzberg, 2008). dDocent then selects the longest contig for each cluster as the
representative reference sequence for that RAD locus. If the forward read does not overlap with
the reverse read (almost always the case with fIRAD), the forward read is concatenated to the
reverse read with ten ‘N’ characters as padding. Finally, reference sequences are clustered based
on overall sequence similarity (chosen by user, 90% by default), using the program CD-HIT (Fu
et al., 2012;Li & Godzik, 2006). This final cluster step reduces the data set further, based on
overall sequence identity after assembly. Alternatively, de novo assembly can be skipped and the
user can provide a FASTA file with reference sequences.

Read mapping

dDocent uses the MEM algorithm (Li, 2013) of BWA (Li & Durbin, 2009, 2010) to map
quality-trimmed reads to the reference contigs. Users can deploy the default values of BWA or
set an alternative value for each mapping parameter (match score, mismatch score, and gap-
opening penalty). The default settings are meant for mapping reads to the human genome, so
users are encouraged to experiment with mapping parameters. BWA output is ported to
SAMtools (Li et al., 2009), saving disk space, and alignments are saved to the disk as binary
alignment/Map (BAM). BAM files are then sorted and indexed.

SNP and INDEL discovery and genotyping
dDocent uses a two-step process to optimize the computationally intensive task of

SNP/INDEL calling. First, quality-trimmed forward and reverse reads are reduced to unique
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reads. This data set is then mapped to all reference sequences using the previously entered
mapping settings (see Read Mapping above). From this alignment, a set of intervals is created
using BEDtools (Quinlan & Hall, 2010). The interval set saves computational time by directing
the SNP-/INDEL-calling software to examine only reference sequences along contigs that have
high quality mappings. Second, the interval list is then split into a single file for each processing
core, allowing SNP/INDEL calling to be optimized with a scatter-gather technique. The program
FreeBayes (Garrison & Marth, 2012) is then executed multiple times simultaneously (one
execution per processor and genomic interval). FreeBayes is a Bayesian-based, variant-detection
software that uses assembled haplotype sequences to simultaneously call SNPs, INDELS, multi-
nucleotide polymorphisms (MNPs), and complex events (e.g., composite insertion and
substitution events) from alignment files; FreeBayes has the added benefit for population
genomics of using reads across multiple individuals to improve genotyping (Garrison & Marth,
2012). FreeBayes is run with minimal changes to the default parameters; minimum mapping
quality score and base quality score are set to PHRED 10. After all executions of FreeBayes are
completed, raw SNP/INDEL calls are concatenated into a single variant call file (VCF), using
VCFtools (Danecek et al., 2011).
Variant Filtering

Final SNP data-set requirements are likely to be highly dependent on specific goals and aims
of individual projects. To that end, dDocent uses VCFtools (Danecek et al., 2011) to provide only
basic level filtering, mostly for run diagnostic purposes. dDocent produces a final VCF file that
contains all SNPs, INDELS, MNPs, and complex events that are called in 90% of all individuals,
with a minimum quality score of 30. Users are encouraged to use VCFtools and vcflib (part of
the FreeBayes package; https://github.com/ekg/vcflib) to fully explore and filter data
appropriately.

Comparison between dDocent and Stacks
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Two sample localities, each comprised of 20 individuals, were chosen randomly from
unpublished RADseq data sets of three different, marine fish species: red snapper (Lutjanus
campechanus), red drum (Sciaenops ocellatus), and silk snapper (Lutjanus vivanus). These three
species are part of ongoing RADseq projects in our laboratory, and preliminary analyses
indicated high levels of nucleotide polymorphisms across all populations. Double-digest RAD
libraries were prepared, generally following Peterson et al. (2012). Individual DNA extractions
were digested with EcoRI and Mspl. A barcoded adapter was ligated to the EcoRI site of each
fragment and a generic adapter was ligated to the Mspl site. Samples were then equimollarly
pooled and size-selected between 350 and 400 bp, using a Qiagen Gel Extraction Kit. Final
library enhancement was completed using 12 cycles of PCR, simultaneously enhancing properly
ligated fragments and adding an Illumina Index for additional barcoding. Libraries were
sequenced on three separate lanes of an Illumina HiSeq 2000 at the University of Texas Genomic
Sequencing and Analysis Facility.

Demultiplexed individual reads were analyzed with dDocent, using three different levels of
final reference contig clustering (90%, 96%, and 99% similarity) in an attempt to alter the most
comparable analysis variable in dDocent to match analysis variables of Stacks. The coverage cut-
off for assembly was 12 for red snapper, 13 for red drum, and nine for silk snapper>4Jl dDocent
runs used mapping variables of one, three, and five for match-score value, mismatch score, and
gap-opening penalty, respectively. For comparisons, complex variants were decomposed into
canonical SNP and INDEL representation from the raw VCF files, using vcfallelicprimitives from
veflib (https://github.com/ekg/vcflib).

For Stacks, reads were demultiplexed and cleaned using process_radtags, removing reads
with ‘N’ calls and low-quality base scores. Because dDocent inherently uses both reads for
SNP/INDEL genotyping, forward reads and reverse reads were processed separately with

denovo_map.pl (Stacks version 1.08), using three different sets of parameters. The first set had a
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minimum depth of coverage of two to create a stack, a maximum distance of two between stacks,
and a maximum distance of four between stacks from different individuals, with both the
deleveraging algorithm and removal algorithms enabled. The second set had a minimum depth of
coverage of three to create a stack, a maximum distance of four between stacks, and a maximum
distance of eight between stacks from different individuals, with both the deleveraging algorithm
and removal algorithms enabled. The third set had a minimum depth of coverage of three to
create a stack, a maximum distance of four between stacks, and a maximum distance of 10
between stacks from different individuals, with both the deleveraging algorithm and removal
algorithms enabled. SNP calls were output in VCF format.

For both dDocent and Stacks runs, VCFtools was used to filter out INDELs and SNPs that had
a minor allele count of less than five. SNP calls were then evaluated at different individual-
coverage levels: the total number of SNPs; the number of SNPS called in 75%, 90%, and 99% of
individuals at 3X coverage; the number of SNPS called in 75% and 90% of individuals at 5X
coverage; the number of SNPS called in 75% and 90% of individuals at 10X coverage; and the
number of SNPS called in 75% and 90% of individuals at 20X coverage. Overall coverage levels
for red snapper were lower and likely impacted by a few low-quality individuals; consequently,
the number of 5X and 10X SNPs shared among 90% of individuals (after removing the bottom
10% of individuals in terms of coverage) were compared instead of SNP loci shared at 20X
coverage. Results from two runs of Stacks (one using forward and one using reverse reads) were
combined for comparison with dDocent, which inherently calls SNPs on both reads. All analyses
and computations were performed on a 32-core Linux workstation with 128 GB of RAM.

RESULTS AND DISCUSSION

Results of SNP calling, including run times (in minutes) for each analysis (not including

quality trimming), are presented in Table 1. Data from high coverage SNP calls, averaged over

all runs for each pipeline, are presented in Figure 1. While Stacks called a larger number of low
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coverage SNPs, limiting results to higher individual coverage and to higher individual call rates
revealed that dDocent consistently called more high-quality SNPs. Run times were equivalent
for both pipelines.

At almost all levels of coverage in three different data sets, dDocent called more SNPs across
more individuals than Stacks. Two key differences between dDocent and Stacks likely contribute
these discrepancies: (i) quality trimming instead of quality filtering, and (ii) simultaneous use of
forward and reverse reads by dDocent in assembly, mapping, and genotyping, instead of
clustering as employed by Stacks. As with any data analysis, quality of data output is directly
linked to the quality of data input. Both dDocent and Stacks use procedures to ensure that only
high-quality sequence data are retained; however, Stacks removes an entire read when a sliding
window of bases drops below a preset quality score (PHRED 10, by default), while dDocent via
Trim Galore! trims off low-quality bases, preserving high-quality bases of each read. Filtering
instead of trimming results in fewer reads entering the Stacks analysis (between 65%-95% of the
data compared to dDocent; data not shown), generating lower levels of coverage and fewer SNP
calls than dDocent.

dDocent offers two advantages over Stacks: (1) it is specifically designed for paired-end data
and utilizes both forward and reverse reads for de novo RAD loci assembly, read mapping,
variant discovery, and genotyping; and (ii) it aligns reads to reference sequence instead of
clustering by identity. Using both reads to cluster and assemble RAD loci helps to ensure that
portions of the genome with complex mutational events, including INDELs or small repetitive
regions, are properly assembled and clustered as homologous loci. Additionally, using BWA to
map reads to reference loci enables dDocent to properly align reads with INDEL polymorphisms,
increasing coverage and subsequent variant discovery and genotyping. Clustering methods
employed by Stacks, whether clustering alleles within an individual or clustering loci between

individuals, effectively remove reads, alleles, and loci with INDEL polymorphisms because the
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associated frame shift effectively inflates the observed number of base-pair differences. For
organisms with large effective population sizes and high levels of genetic diversity, such as many
marine organisms (Waples, 1998;Ward et al., 1994), removing reads and loci with INDEL
polymorphisms will result in a loss of shared loci and coverage.
CONCLUSION

dDocent is an open-source, freely available population genomics pipeline configured for
species with high levels of nucleotide and INDEL polymorphisms, such as many marine
organisms. The dDocent pipeline reports more SNPs shared across greater numbers of
individuals and with higher levels of coverage than current alternatives. The pipeline and a
comprehensive online manual can be found at (http://dDocent.wordpress.com) and
(https://github.com/jpuritz/dDocent).
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320 Table 1. Results from individual runs of dDocent and Stacks. dDocent runs varied in the level of
321 similarity used to cluster reference sequences: A (90%), B (96%), and C (99%). For Stacks,

322 forward reads and reverse reads were separately processed with denovo_map.pl (Stacks version
323 1.08), using three different sets of parameters: A, minimum depth of coverage of two to create a
324  stack, a maximum distance of two between stacks, and a maximum distance of four between

325 stacks from different individuals; B, minimum depth of coverage of three to create a stack, a

326 maximum distance of four between stacks, and a maximum distance of eight between stacks from
327 different individuals; and C, minimum depth of coverage of three to create a stack, a maximum
328 distance of four between stacks, and a maximum distance of 10 between stacks from different
329 individuals. SNP calls were evaluated at different individual coverage levels: (i) total number of
330 SNPs; (i) number of SNPS called in 75%, 90%, and 99% at 3X coverage; (iii) number of SNPS
331 called in 75% and 90% of individuals at 5X coverage; (iv) number of SNPS called in 75% and
332 90% of individuals at 10X coverage; and, (v) number of SNPS called in 75% and 90% of

333 individuals at 20X coverage. Results from forward and reverse reads of Stacks were combined

334 for comparison with dDocent , which inherently calls SNPs on both reads.

dDocent A dDocent B dDocent C  Stacks A Stacks B Stacks C

Red snapper
Total 3X SNPS 30,130 30,043 29,907 28,817 33,479 34,459
75% 3X SNPs 12,507 12,249 12,012 4,150 5,735 5,728
90% 3X SNPs 5,368 5,187 5,039 675 987 983
99% 3X SNPs 52 25 5 0 0 0
75% 5X SNPs 8,144 7,946 7,793 2,632 4,351 4,324
90% 5X SNPs 2,775 2,696 2,606 179 579 574
75% 10X SNPs 4,151 4,017 3,914 783 1,618 1,579
90% 10X SNPS 785 729 682 7 48 47
90% IND 90% 5X 5,625 5,499 5,332 806 1,807 1,079
90% IND 90% 10x 2,403 2,298 2,196 129 441 434
Run time 59 58 57 70 47 53
Red drum
Total 3X SNPS 27,263 27,329 27,295 45,792 50,821 52,366
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75% 3X SNPs
90% 3X SNPs
99% 3X SNPs
75% 5X SNPs
90% 5X SNPs
75% 10X SNPs
90% 10X SNPS
75% 20X SNPs
90% 20X SNPs
Run time

Total 3X SNPS
75% 3X SNPs
90% 3X SNPs
99% 3X SNPs
75% 5X SNPs
90% 5X SNPs
75% 10X SNPs
90% 10X SNPS
75% 20X SNPs
90% 20X SNPs
Run time

23,339
20,764
7,121
20,015
16,739
16,078
10,988
7,975
3,534
55

35,763
17,518
8,586
2,552
10,775
4,936
5,252
2,191
2,220
801
98

23,328
20,704
7,022
20,009
16,680
16,042
10,942
7,933
3,512
55

35,645
17,244
8,353
2,380
10,547
4,725
5,018
2,058
2,098
721
100
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23,226 24,134
20,586 13,439
6,937 828
19,946 21,021
16,588 10,494
15,970 12,928
10,842 4,159
7,824 2,276
3,455 243
53 58
Silk snapper
35,509 48,742
16,992 7,596
8,157 2,007
2,276 132
10,385 4,789
4,606 1,225
4,876 2,094
1,938 489
1,984 703
675 136
60 93

28,991
17,946
1,264
26,526
15,282
17,018
6,734
3,538
1,974
55

55,505
9,705
3,439

527
7,290

2,573
3,547
1,224
1,415

417
89

28,981
17,874
1,259
26,464
15,207
16,983
6,705
3,516
1,961
65

58,352
9,696
3,433

523

7,274
2,570
3,546
1,223
1,411

418
204



PeerJ Reviewing Manuscript

335 Figure 1. Levels of coverage for each unique read in the red snapper data set. The horizontal
336 axis represents the minimal level of coverage and the vertical axis represents the number of

337 unique paired reads in thousands.
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338 Figure 2. SNP results averaged across the three different run parameters for dDocent and Stacks.
339 (A) Red snapper, (B) Red drum, (C) Silk snapper (see Methods or Table 1 for SNP categories

340 description). Error bars represent standard error.
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