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ABSTRACT
The grass Ammophila breviligulata (American beachgrass) is known to host an
endophyte of the genus Epichloë. Based on morphological characteristics it was
originally identified as Acremonium typhinum var. ammophilae and is currently
designated as Epichloë typhina var. ammophilae. However, the Epichloë species has
not previously been identified based on DNA sequence data. Based on phylogenetic
placement of beta-tubulin and translation elongation factor 1-alpha DNA sequences
the endophyte is identified as a member of E. amarillans rather than E. typhina.
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INTRODUCTION
Epichloë spp. (Clavicipitaceae, Ascomycota) are systemic fungal endophytes of many cool
season grasses (Schardl et al., 2009; Tadych, Bergen & White Jr, 2014). Infection by these
endophytes often provides numerous benefits to the host, such as insect, drought anddisease
resistance (Clarke et al., 2006; Kuldau & Bacon, 2008). The Epichloë endophyte found in
some plants of American beachgrass, Ammophila breviligulata Fernald (Agrostidinae),
was previously designated as Acremonium typhinum var. ammophilae White et Morgan-
Jones, var. nov. (White Jr et al., 1992). The fungal species identification was based on
morphological characteristics and was made before the current extensive molecular data
on Epichloë spp. were available.

The nomenclature of the grass endophytes has since been revised. Based on 18S ribosomal
DNA phylogeny,Glenn et al. (1996) proposed that the anamorphic grass fungal endophytes
be reclassified from the genus Acremonium to the genus Neotyphodium. In 2011 the 18th
International Botanical Congress ratified a proposal to consolidate anamorphic and
teleomorphic fungal species based on the principle of ‘‘one fungus = one name’’ (Norvell,
2011). Leuchtmann et al. (2014) presented a comprehensive review of the known Epichloë
spp., and proposed a realignment of the anamorphic Neotyphodium spp. with Epichloë.
Based on the previous assignment (White Jr et al., 1992), the species of Epichloë infecting
A. breviligulata was designated as E. typhina var. ammophilae (J.F. White and Morgan-
Jones) J.F. White, comb. nov. (Leuchtmann et al., 2014). However, the A. breviligulata
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endophyte had not yet been subjected to any DNA sequence based analysis. Here we
report the phylogenetic placement of the Epichloë endophyte of A. breviligulata based on
beta-tubulin (tubB) and translation elongation factor 1-alpha (tefA) DNA sequences. In this
analysis the endophyte from A. breviligulata is placed in a clade with E. amarillans, rather
than E. typhina. We therefore propose that it be considered a member of E. amarillans.

MATERIALS & METHODS
Plant and fungal materials
Ammophila breviligulata (American beachgrass) cultivar ‘Cape’ plants were acquired
through the USDA Plant Materials Center, Cape May, NJ. The cultivar Cape was developed
from a single plant, which was vegetatively propagated, and was released by the Soil
Conservation Service, USDA, in 1972 (Gaffney & Duell, 1974). This cultivar is the source of
the endophyte previously described byWhite Jr et al. (1992). The endophyte from all plants
of the Cape cultivar therefore originated from a single isolate. Plants were transplanted
to pots in standard potting mix for growth in the greenhouse (Pro-mix BX Mycorrhizae,
Quakertown, PA), watered to saturation as needed and fertilized weekly with a standard
20:20:20 fertilizer (Plantex 20–20–20 Classic; Master Plant-Prod Inc., Brampton, Ontario).
Positive infection status was confirmed by plating surface-sterilized leaf sheath fragments
and by microscopic observations, which followed previously published procedures (Bacon
& White Jr, 1994; Florea, Schardl & Hollin, 2015).

The fungal endophyte was obtained by surface sterilizing innermost leaf sheath tissue
and allowing the fungus to grow out from the host-grass tissue onto potato dextrose agar
(PDA) plates. A plate was washed with sterile water and the water spread on a fresh PDA
plate to isolate colonies arising from single spores. A single spore colony was isolated and
then grown in potato dextrose broth for use in fungal genomic DNA extraction.

DNA isolation and amplification
Fungal DNA was isolated from 50 mg of tissue by using the Synergy 2.0 Plant DNA
Extraction Kit (Ops Diagnostics, Lebanon, NJ, USA). Translation elongation factor 1
alpha (tefA) and beta-tubulin (tubB) sequences were amplified from the fungal DNA. The
primers used for tubB gene amplification were tubB-exon1d-1 (5′-GAG AAA ATG CGT
GAG ATTGT-3′) and tubB-exon4u-2 (5′GTT TCG TCCGAG TTC TCG AC-3′) and those
for tefA gene amplification were tefA-exon1d-1 (5′GGGTAAGGACGAAAAGAC-3′) and
tefA-exon5u-1 (5′CGG CAG CGA TAA TCA GGA TAG-3′) (Moon et al., 2002). The 50 µL
PCR reactions contained 0.2 µg of fungal genomic DNA, 40 picomoles of each forward
and reverse primer (Integrated DNA Technologies, Inc., Coralville, IA, USA), and 25 µl
of PrimeSTAR Max Premix (Clontech Laboratories, Mountain View, CA, USA). PCR was
performed in a GeneAmp 9700 thermocycler (Applied Biosystems, Inc., Foster City, CA,
USA) with 30 cycles of denaturation at 98 ◦C for 10 s, followed by 15 s annealing at 55 ◦C,
and 2 min extension at 72 ◦C. The concentration of the PCR product was estimated by
running a 5µl aliquot on a 1% agarose gel and comparing the band intensity with that of the
1000 bp band in the HyperLadder 1kb marker (Bioline USA Inc., Taunton, MA, USA). The
PCR products were sequenced directly (Genewiz, Inc., South Plainfield, NJ, USA). For each
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sequencing reaction, approximately 40 ng of PCR product was treated with 2 µl of ExoSAP-
IT (USB Corp., Cleveland, OH, USA) to remove unincorporated primers and excess
dNTPs. The ExoSAP-IT reaction was performed at 37 ◦C for 15 min followed by heating
at 80 ◦C for 15 min to inactivate the enzymes. Sequencing was done in both directions.

Accession numbers
GenBank accession numbers for the tefA and tubB sequences are KX523126 and KX523127,
respectively.

Phylogenetic analysis
The tubB and tefA sequences were aligned with those from non-hybrid Epichloë
spp. available from the National Center for Biotechnology Information (NCBI;
http://www.ncbi.nlm.nih.gov/). The sequences included for comparison are those used
previously in the analysis of E. typhina subsp. poae (see Tadych et al., 2012, Table 1).
The Clustal-X program (Thompson et al., 1997) was used to align the sequences, and
the alignment was modified manually to minimize gaps. The phylogenetic analysis was
performed with the PAUP* program, version 4.0b10 for Macintosh. The phylogenetic
analysis was done by using the maximum parsimony full heuristic search option set to
random sequence addition, tree-bisection-reconnection (TBR) branch swapping, and
Multrees on with 1000 bootstrap replications. Gaps were treated as missing data. The tubB
tree was based on 469 total characters, of which 377 were constant, 17 variable characters
were parsimony uninformative, and 75 variable characters were parsimony informative.
The tefA tree was based on 804 total characters, of which 582 were constant, 45 variable
characters were parsimony uninformative, and 177 variable characters were parsimony
informative.

The sequences were also analyzed by the maximum likelihood method in the PAUP*
program, which generated trees of similar topology to those of the maximum parsimony
analyses (not shown). For the maximum likelihood analyses, the trees were generated with
a fast heuristic search using the HKY85 model of sequence evolution, and 100 bootstrap
replications.

RESULTS & DISCUSSION
The tubB and tefA genes were chosen for analysis of the endophyte of A. breviligulata
since sequences from many Epichloë spp. isolates are readily available at NCBI. There was
no evidence of heterogeneity that would indicate that the endophyte had multiple gene
copies typical for species of hybrid origin. Maximum parsimony phylogenetic analyses of
endophyte tubB and tefA sequences are shown in Figs. 1 and 2, respectively. The species
names are those presented in Leuchtmann et al. (2014). The E. gansuensis and E. inebrians
sequences were designated as outgroups for rooting the trees since they are considered the
basal Epichloë spp. (Ambrose, Koppenhöfer & Belanger, 2014; Chen et al., 2015). In both the
tubB and tefA trees, the sequences from the endophyte of A. brevilligulata were placed in
the E. amarillans clades.

Additional support for the species assignment as E. amarillans comes from the presence
of a shared 15 bp insert in the tefA sequence found only in other isolates of E. amarillans
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Figure 1 Rooted 50%majority rule consensus maximum parsimony phylogenetic tree of tubB se-
quences. The E. inebrians and E. gansuensis sequences were designated as outgroups for rooting the tree.
The numbers at the nodes are the bootstrap percentages based on 1,000 replications. Sequence references
are given by Epichloë species names, GenBank accession numbers, and the host grass species are given in
parentheses. The E. amarillans isolate from A. breviligulata is identified by bolded text.

Full-size DOI: 10.7717/peerj.4300/fig-1

(Fig. 3). Shared indels are considered to be important phylogenetic characters (Pasko,
Ericson & Elzanowski, 2011; Simmons & Ochoterena, 2000; Väli et al., 2008). A shared
19 bp deletion in tubB sequences was previously considered as supporting evidence
that the E. typhina ssp. poae isolates infecting several different grass genera had a common
progenitor (Tadych et al., 2012).

A. breviligulata is ecologically important in shoreline dune building. Endophyte infected
A. breviligulata was reported to exhibit greater vegetative growth and dune building
relative to uninfected plants (Emery, Bell-Dereske & Rudgers, 2015) but was also correlated
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Figure 2 Rooted 50%majority rule consensus maximum parsimony phylogenetic tree of tefA
sequences. The E. inebrians and E. gansuensis sequences were designated as outgroups for rooting the tree.
The numbers at the nodes are the bootstrap percentages based on 1,000 replications. Sequence references
are given by Epichloë species names, GenBank accession numbers, and the host grass species are given in
parentheses. The E. amarillans isolate from A. breviligulata is identified by bolded text.

Full-size DOI: 10.7717/peerj.4300/fig-2

with reduced species richness at the field site (Rudgers et al., 2015). In these reports the
endophyte was referred to as Epichloë sp.

In a survey of herbarium samples collected prior to 1971 (White Jr et al., 1992) and
a survey of plants collected from natural dunes sites in Michigan and Indiana (Emery,
Thompson & Rudgers, 2010), most A. breviligulata plants tested were not endophyte
infected. However, the cultivar Cape, which is the source of the endophyte analyzed here,
is highly infected (White Jr et al., 1992; Emery, Thompson & Rudgers, 2010). This cultivar
is commonly used in dune revegetation. Because of the importance of A. breviligulata in
dune restoration and the widespread dissemination of the endophyte infected cultivar Cape
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E. typhina ssp. clarkii AF231206       AAGCAAGCGACT---------------GCCCCT 
E. typhina AF231221                    AAGCAAGCGACT---------------GCCCCT 
E. typhina AF231228                    AAGCAAGCGACT---------------GCCCCT 
E. typhina AF231226                    AAGCAAGCGACT---------------GCCCCT 
E. typhina AF231222                    AAGCAAGCGACT---------------GCCCCT 
E. typhina AF231225                    AAGCAAGCGACT---------------GCCCCT 
E. sylvatica AF231219                  AAGCAAGCGACT---------------GCCCCT 
E. typhina AF231224                    AAGCAAGCGACT---------------GCCCCT 
E. sylvatica EU709884                  AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae AF231229          AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae AF231230          AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae AF457543          AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae AY707653          AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae AF457537          AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae JQ756452          AAGCAAGCGACT---------------GCCCCT 
E. typhina ssp. poae AF231231          AAGCAAGCGACT---------------GCTCCT 
E. amarillans KX523126                 AAGTAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans AF457504                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans AF231191                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans AF457506                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans KP689563                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans KP689562                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans AF457505                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. amarillans AF231192                 AAGCAAGCGACTTGCCCGCCCACCAAAGCCCCT 
E. baconii AF231195                    AAGCAAGCGACTTTT------------GCCCCT 
E. baconii AF231194                    AAGCAAGCGACTTT-------------GCCCCT 
E. baconii AF231193                    AAGCAAGCGACTTT-------------GCCCCT 
E. baconii AF231196                    AAGCAAGCGACTT--------------GCCCCT 
E. baconii KP689561                    AAGCAAGCGACTT--------------GCCCCT 
E. mollis KP689567                     AAGCAAGCGACTT--------------GCCCCT 
E. festucae AF231215                   AAGCAAGCGACTT--------------GCCCCT 
E. festucae AF231213                   AAGCAAGCGACTT--------------GCCCCT 
E. festucae var. lolii AF457540        AAGCAAGCGACTT--------------GCCCCT 
E. festucae AF231214                   AAGCAAGCGACTT--------------GCCCCT 
E. festucae AF231210                   AAGCAAGCGACTT--------------GCCCCT 
E. festucae AF231212                   AAGCAAGCGACTT--------------GCCCCT 
E. brachyelytri AF231200               AAGCAAGCATCT---------------GCCCCT 
E. aotearoae Af323392                  AAGCAAGCGACT---------------GCCCCT 
E. aotearoae AF323391                  AAGCAAGCGACT---------------GCCCCT 
E. bromicola AF231205                  GAGCAAGCATCT---------------GCCCCT 
E. bromicola DQ134033                  GAGCAAGCATCT---------------GCCCCT 
E. bromicola AF231204                  GAGCAAGCATCT---------------GCCCCT 
E. bromicola AF231202                  GAGCAAGCATCT---------------GCCCCT 
E. elymi AF231209                      AAGCAAGCATCT---------------GCCCCT 
E. elymi AF457500                      AAGCAAGCATCT---------------GCCCCT 
E. elymi AF457503                      AAGCAAGCATCT---------------GCCCCT 
E. elymi AF231208                      AAGCAAGCATCT---------------GCCCCT 
E. glyceriae AF231216                  AAGCAAGCAACT---------------GCCCCT 
E. glyceriae AF231217                  AAGCAAGCAACT---------------GCCCCT 
E. inebrians AF457538                  AAACAA----CT---------------GCCCCT 
E. inebrians AF457539                  AAACAA----CT---------------GCCCCT 
E. gansuensis KP689495                 AAACAA----CT---------------GCCCCT 
E. gansuensis GQ495169                 AAACAA----CT---------------GCCCCT 
 
Figure 3 Sequence alignment of the region of the 15 bp insertion in the tefA sequences from the
E. amarillans isolates. The isolate from A. breviligulata is identified by bolded text.

Full-size DOI: 10.7717/peerj.4300/fig-3
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along the East Coast of the United States, it is important to know the taxonomic affiliation
of the Epichloë endophyte that it is hosting. Based on the phylogenetic data presented here
we propose that the endophyte of A. breviligulata pertains to the species E. amarillans.
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