

Life histories predict genetic diversity and population structure within three species of Octopus targeted by small-scale fisheries in Northwest Mexico (#17922)

1

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready [submit online](#). The manuscript starts on page 4.

Important notes

Editor and deadline

Robert Toonen / 24 Jun 2017

Files

3 Figure file(s)

12 Table file(s)

Please visit the overview page to [download and review](#) the files not included in this review PDF.

Declarations

One or more DNA sequences were reported.
Involves a field study on animals or plants.

Please read in full before you begin

How to review

When ready [submit your review online](#). The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit <https://peerj.com/about/editorial-criteria/>

7 Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging “modern” with “cursorial”.

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Life histories predict genetic diversity and population structure within three species of *Octopus* targeted by small-scale fisheries in Northwest Mexico

José F Domínguez-Contreras^{Corresp., 1, 2}, Adrian Munguia-Vega^{Corresp., 3, 4}, Bertha P Ceballos-Vázquez², Marcial Arellano-Martínez², Francisco J García-Rodríguez², Melanie Culver^{3, 5}, Héctor Reyes-Bonilla¹

¹ Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Mexico

² Instituto Politécnico Nacional, La Paz, Baja California Sur, Mexico

³ Conservation Genetics Laboratory, School of Natural Resources and Environment, University of Arizona, Tucson, Arizona, United States

⁴ PANGAS Science Coordination, Comunidad y Biodiversidad, Guaymas, Sonora, Mexico

⁵ U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, Conservation Genetics Laboratory, School of Natural Resources & Environment, University of Arizona, Tucson, Arizona, United States

Corresponding Authors: José F Domínguez-Contreras, Adrian Munguia-Vega

Email address: fradoco@gmail.com, airdrian@email.arizona.edu

The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species with varying life histories targeted by artisanal fisheries in the region, lack of information about the distribution of each species and metapopulation size and structure could impede effective fisheries management to avoid overexploitation. Here we tested if different life histories in three species of octopus help to predict observed patterns of genetic diversity, population dynamics, structure and connectivity that could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the Pacific coast of the Baja California peninsula. We tested four a priori hypothesis derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We found that the species with low fecundity and without a planktonic larval stage (*Octopus bimaculoides*) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, suggesting limited dispersal and high local recruitment. In contrast, two species with higher fecundity and planktonic larvae (*O. bimaculatus*, *O. hubbsorum*) showed higher effective population size and genetic diversity, and overall lower kinship and population structure, supporting higher levels of gene flow over a larger geographical scale. Even among the latter, there were differences in the calculated parameters possibly associated with increased connectivity in the species with the longest planktonic larval duration (*O. bimaculatus*). We consider that *O. bimaculatus* could be more susceptible to over exploitation of small, isolated

populations that could have longer recovery times, and suggest that management should take place within each local population. For the two species with pelagic larvae, management should consider metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal between localities driven by ocean currents. The distribution of each species and variations in their reproductive timing should also be considered when establishing marine reserves or seasonal fishing closures.

1 **Life histories predict genetic diversity and population structure within three species of**
2 **Octopus targeted by small-scale fisheries in Northwest Mexico**

3

4 **José F. Domínguez-Contreras^{1,2}, Adrian Munguia-Vega^{3,4}, Bertha P. Ceballos-Vázquez²,**
5 **Marcial Arellano-Martínez², Francisco J. García-Rodríguez², Melanie Culver^{3,5}, and**
6 **Héctor Reyes-Bonilla¹.**

7 ¹ Departamento Académico de Ciencias Marinas y Costeras, Universidad Autónoma de Baja

8 California Sur, La Paz, Baja California Sur, México, 23080,

9 ² Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional s/n., Col. Playa
10 Palo de Santa Rita, La Paz, B.C.S. México, 23096,

11 ³ Conservation Genetics Laboratory, School of Natural Resources and Environment, BSE-317,
12 University of Arizona, 1311 E 4th Street, Tucson, AZ, USA, 85721,

13 ⁴ PANGAS Science Coordination, Comunidad y Biodiversidad A.C., Isla del Peruano 215,
14 Lomas de Miramar, Guaymas, Sonora, México, 85448,

15 ⁵ U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit, Conservation
16 Genetics Laboratory, School of Natural Resources & Environment, BSE-317, University of
17 Arizona, Tucson, AZ, USA, 85721.

18 Corresponding Author:

19 José F. Domínguez-Contreras^{1,2}

20 Email address: fradoco@gmail.com

21 **ABSTRACT**

22 The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to
23 date the specific composition of the catch has been ignored. With at least three main species with
24 varying life histories targeted by artisanal fisheries in the region, lack of information about the
25 distribution of each species and metapopulation size and structure could impede effective
26 fisheries management to avoid overexploitation. Here we tested if different life histories in three
27 species of octopus help to predict observed patterns of genetic diversity, population dynamics,
28 structure and connectivity that could be relevant to the sustainable management of the fishery.
29 We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to
30 identify the distribution of each species in 20 locations from the Gulf of California and the
31 Pacific coast of the Baja California peninsula. We tested four a priori hypothesis derived from
32 population genetic theory based on differences in the fecundity and dispersal potential for each
33 species. We found that the species with low fecundity and without a planktonic larval stage
34 (*Octopus bimaculoides*) had lower average effective population size and genetic diversity, but
35 higher levels of kinship, population structure, and richness of private alleles, suggesting limited
36 dispersal and high local recruitment. In contrast, two species with higher fecundity and
37 planktonic larvae (*O. bimaculatus*, *O. hubbsorum*) showed higher effective population size and
38 genetic diversity, and overall lower kinship and population structure, supporting higher levels of
39 gene flow over a larger geographical scale. Even among the latter, there were differences in the
40 calculated parameters possibly associated with increased connectivity in the species with the
41 longest planktonic larval duration (*O. bimaculatus*). We consider that *O. bimaculatus* could be
42 more susceptible to over exploitation of small, isolated populations that could have longer
43 recovery times, and suggest that management should take place within each local population. For

44 the two species with pelagic larvae, management should consider metapopulation structure over
45 larger geographic scales and the directionality and magnitude of larval dispersal between
46 localities driven by ocean currents. The distribution of each species and variations in their
47 reproductive timing should also be considered when establishing marine reserves or seasonal
48 fishing closures.

49

50 **KEYWORDS:** octopus, fecundity, planktonic larval duration, larval dispersal, marine
51 connectivity, Gulf of California

52 **INTRODUCTION**

53 As fish catches are collapsing around the world, the focus of commercial fisheries has
54 shifted to resources within lower trophic levels, but with similar or upper economic impact
55 (Watson & Pauly 2001; Pauly et al. 2002; Sala et al. 2004). Some of the marine resources among
56 lower trophic levels capable to support the substantial expansion of fisheries landings include
57 cephalopods (Arkhipkin et al. 2015; Doubleday et al. 2016), for which fishing pressure is
58 expected to increment as a response to growing demands of marine resources (Hunsicker et al.
59 2010). Cephalopods represent about 20% of the fisheries landing of the world, mainly
60 represented by squids (FAO 2015). The octopus fisheries targeted by small-scale fisheries have
61 incremented considerably since 1970 to date (from ~3,000 ton/year up to ~60,000 ton/year) and
62 its value in the market is sometimes higher than squids (FAO 2015). From 2003 to 2013 most of
63 the production has originated in Mexico (36%), Spain (17%), Portugal (15%), Italia (12%) and
64 others (20%) (FAO 2015). In contrast to most countries where *Octopus vulgaris* is the main
65 species targeted, in Mexico *O. maya* Voss and Solís-Ramírez, 1966 is the most important species
66 along the Atlantic coast (NOM-008-PESC-1993; Jurado-Molina 2010).

67 In the Mexican pacific, there have been described at least 10 different *Octopus* species,
68 including *Octopus bimaculatus* Verrill 1883, *Octopus chierchiae* Jatta 1889, *Octopus digueti*
69 Perrier and Rocheburne 1894, *Octopus bimaculoides* Pickford and McConaughey 1949, and
70 Berry's (1953) octopuses: *Octopus alecto*, *Octopus fitchi*, *Octopus hubbsorum*, *Octopus veligero*,
71 *Octopus rubescens* ~~Y~~ *Octopus penicillifer* (Brusca 1980; Hochberg & Fields 1980; Roper et al.
72 1995; Gotshall 1998; Norman & Hochberg 2005). Recent studies indicate that probably three
73 species contribute to the majority of the catch in the Pacific coast of Mexico, namely *O.*
74 *hubbsorum* (López-Uriarte et al. 2005, Alejo-Plata et al. 2009, Domínguez-Contreras et al.

75 2013), *O. bimaculatus* (López-Rocha et al. 2012, Villegas et al. 2014) and *O. bimaculoides*
76 (González-Meléndez 2012). In Northwest (NW) Mexico, the octopus fishery represents an
77 important resource for small-scale fishers both in terms of local consumption and markets
78 (Moreno-Báez et al. 2012; Finkbeiner 2015; Finkbeiner & Basurto 2015). However, it is unclear
79 which species contribute to the catch in different localities, and even official fisheries statistics
80 do not attempt to distinguish different species. During 2014, official reports indicate NW Mexico
81 produced at least ~2,000 ton of octopus worth ~6 million Mexican pesos (~350,000 USD)
82 (CONAPESCA 2014). Most of the capture for octopus in NW Mexico takes place in the Gulf of
83 California year-round via hooka diving with an air compressor or using traps, and it has been
84 suggested that the fishery might be targeting at least two different species (*O. bimaculatus* and
85 *O. hubbsorum*) (Moreno-Báez et al. 2012). The lack of identification of octopus species in
86 fisheries reports is due to their dynamic behavior and ability to change color, pattern, texture and
87 shape (Boyle & vonBoletzky 1996). Besides, their anatomy includes few hard structures that
88 difficult their identification to the species level, especially in octopods (Hanlon 1988).

89 Ignoring which species are being fished and their geographic distribution could have
90 serious detrimental consequences in the long term not only for local fisheries management but
91 for the conservation of species (Garcia-Vazquez et al. 2012), including over or sub exploiting
92 particular species in certain areas (Marko et al. 2004). The problem of not identifying different
93 species could be particularly serious if they show contrasting life histories and population
94 dynamics that may translate into distinct levels of maximum sustainable yield (MSY) and
95 recovery times, requiring distinct management tools during different seasons and geographic
96 scales. In NW Mexico, *Octopus bimaculatus* could potentially be sympatric with *O.*
97 *bimaculoides* in the NW of the Baja California Peninsula (BCP), while *O. bimaculatus* could

98 potentially overlap with *O. hubbsorum* within the Gulf of California (Table 1). The reproductive
99 season is different for each species, and the three species differ in their fecundity, egg size and
100 planktonic larval duration (PLD) (Table 1). *Octopus bimaculoides* lays hundreds of large eggs
101 and lacks a paralarval stage and planktonic larval dispersal. *Octopus hubbsorum* lays thousands
102 of smaller-sized eggs and a PLD probably similar to *Octopus vulgaris* based on the size of its
103 eggs (~60 days, Iglesias et al. 2007). *Octopus bimaculatus* lays thousands of medium-sized eggs
104 and shows a longer PLD (up to 90 days) (Table 1). All three species have similar short life spans
105 between 1.5 and 2 years and size at sexual maturity is smaller for males than females (Table 1).

106 Our main hypothesis is that differences in the life history among three species of octopus
107 from Northwestern Mexico could translate into distinct patterns of genetic diversity, population
108 dynamics, structure and connectivity that could be relevant for sustainable fisheries management.
109 To infer differences in population parameters and evolutionary processes that are important
110 within species, we used two mitochondrial markers and seven nuclear microsatellite loci
111 informative for the three species. We first established the geographic distribution of each species
112 through genetic identification of tissue samples collected over the study region. We then tested
113 four a priori hypotheses within each species derived from theoretical and empirical population
114 genetic studies regarding expected effective population size, genetic diversity, genetic
115 relatedness within populations (kinship) and population structure, based on the fecundity and
116 potential for larval dispersal of each species reported in the scientific literature (Table 1). We
117 discuss the implications of our results for the fisheries management of the three species.

118 MATERIALS & METHODS

119 *Sample collection and DNA extraction*

120 We obtained 316 samples of octopus (arm tissue) from 20 localities in both coasts of
121 BCP, including the Gulf of California (Fig.1) and collected between 2008 and 2013. The
122 sampling took place at fishing communities with help of small-scale fishers. Samples were
123 collected at seven ~~localities~~ along the Eastern coast of BCP, (Ejido Erendira close to Ensenada B.
124 C. down to El Conejo in Baja California Sur) and 13 sites from the central (Santa Rosalía) and
125 northern Gulf of California (from the northern tip of Bahía de Los Angeles and Isla Tiburón up
126 to Puerto Peñasco), including the Midriff islands. The Midriff islands include many islands and
127 islets in the northern Gulf of California (Fig. 1). Some of these are very remote and access is
128 difficult, which is reflected in smaller samples sizes, while others localities with low number of
129 samples reflect the difficult of catch octopuses outside their reproductive season. **We identified**
130 **only three organisms based on morphology (one of each species).** We distinguished between *O.*
131 *bimaculatus* and *O. bimaculoides* using mature females from which distinctive characteristics of
132 the gonads of each species have been described (Pickford & MacConaughey 1949). For *O.*
133 *hubbsorum* we followed morphological traits described previously by Domínguez-Contreras et
134 al. (2013) and original descriptions of Berry (1953). Tissue samples were stored in 96% ethanol
135 and in the lab they were preserved at -20 °C. We extracted DNA using the DNeasy blood and
136 tissue kit (QIAGEN, Valencia, CA, U. S. A) following the manufacturer specifications.

137

138 ***Mitochondrial DNA sequencing***

139 For a **subset of the samples** (97 individuals from 13 localities, including 8 samples from
140 each locality except from Puerto Refugio where only one sample was analyzed), we amplified
141 two fragments of the mitochondrial genome: the large ribosomal subunit rDNA (16S) employing

142 primers L1987 5'-GCCTCGCCTGTTACCAAAAAC-3' and H2609 5'-
143 CGGTCTGAACTCAGATCACGT-3' (Palumbi et al. 1991) and the Cytochrome Oxidase
144 subunit 1 (COI) with primers LCO 1490 5'-GGTCAAACAAATCATAAAGATATTGG-3' and
145 HCO2198 5'-TAAAATTCAAGGTGACCAAAAAATCA-3' (Folmer et al. 1994), For both
146 markers, we used 25µL volume PCRs with 15 - 40 ng genomic DNA, 1× PCR buffer, 0.2 mM
147 each dNTP, 2 mM MgCl₂, 0.2% BSA, 1 U Taq DNA polymerase (Invitrogen) and 0.5 µM of
148 each primer. PCR protocol consisted of denaturation at 94 °C for 2 min, 30 cycles of 94 °C for
149 1min, annealing at 51 °C (COI) or 45.5 °C (16s rDNA) for 1 min, and extension at 72 °C for 2
150 min, followed by a final extension of 72 °C for 7 min. PCR products were purified using
151 ExoSAP (Affimetrix, INC). PCR products were sequenced from both strands on an Applied
152 Biosystems 3730XL DNA Analyzer at the University of Arizona Genetics Core (UAGC).

153 ***Genotyping of microsatellites markers***

154 We employed seven unlinked microsatellites (*Ocbi25*, *Ocbi35*, *Ocbi39*, *Ocbi41*, *Ocbi47*,
155 *Ocbi48*, and *Ocbi50*) that were shared and proved informative among the three octopus species
156 (Domínguez-Contreras et al. 2014). We genotyped the 316 samples following PCR methods
157 previously described (Domínguez-Contreras et al. 2014). PCR products were sized on an
158 Applied Biosystems 3730XL DNA Analyzer at the UAGC. Microsatellite electropherograms
159 were scored using GeneMarker Version 2.6.0 (SoftGenetics LLC). Allele sizes were assigned
160 bins using FLEXIBIN (Amos et al. 2007). Deviations from Hardy-Weinberg equilibrium (HWE)
161 were estimated using GENEPOP 4.2 (Raymond & Rousset 1995). We used MICROCHECKER
162 2.2.3 to test for genotyping errors and presence of null alleles (Van Oosterhout et al. 2004).

163 ***Species assignment***

164 We used the mitochondrial sequences and microsatellite genotypes to assign individuals
165 to species using phylogenetic analyses of sequence data and Bayesian assignment analyses of
166 microsatellite genotypes, respectively. The 16S rDNA and COI sequences were corrected by eye
167 using Chromas Pro Version 1.6 and aligned using MUSCLE multiple alignment tools
168 implemented in Mega6 (Tamura et al. 2013). We used JmodelTest 2 (Guindon & Gascuel 2003;
169 Darriba et al. 2012) to select the best fit model of nucleotide substitution for phylogenetic
170 analysis, according to Akaike and Bayesian information criteria. We applied the Jukes-Cantor
171 (JC) model with 1,000 bootstraps to estimate genetic distances and constructed a Neighbor-
172 joining (NJ) tree using 10,000 bootstraps replications in MEGA (Tamura et al. 2013).

173 We ran STRUCTURE version 2.3.4 (Pritchard et al. 2000) with the microsatellite
174 genotypes using admixture and without prior location information, with allele frequencies
175 correlated among populations. We used a length of the burning period of 1×10^6 , a number of
176 MCMC repeats after burning of 2×10^6 , with 10 iterations for each number of genetic clusters
177 (K), and K assumed to vary between 1 and 20. To determine the optimal number of K, we
178 selected the number of cluster by looking at the highest likelihood values (mean of 10 iterations)
179 as well as the highest ΔK value implemented in the online software CLUMPAK (Kopelman et al.
180 2015). We used both values because some evidence has suggested the likelihood method is not
181 always accurate (Evanno et al. 2005). The value of ΔK is based on the rate of change in the log
182 probability of data between successive K values, which provides a better estimate of the number
183 of genetic clusters (Evanno et al. 2005).

184

185 ***Genetic diversity and effective population size within species***

186 According to the neutral theory of molecular evolution (Kimura 1983), in a population of
187 constant size genetic diversity should be proportional to the effective size of the population (N_e ,
188 or the size of an idealized population that would show the same amount of genetic diversity as a
189 population of interest). This is because in an idealized, panmictic population the strength on the
190 loss of neutral alleles via genetic drift is inversely proportional to the population size
191 (Charlesworth 2009). Based on recent comparative studies, we expect that highly fecund species
192 that release high numbers of small eggs into the environment (*O. bimaculatus* and *O.*
193 *hubbsorum*) will show higher diversity and effective population size than low-fecundity species
194 that produce a small number of relatively large offspring (*O. bimaculoides*) (Table 1) (Romiguier
195 et al. 2014; Ellegren & Galtier 2016). To evaluate genetic diversity from the microsatellite data,
196 we calculated the number of alleles (N_A), effective number of alleles (N_E , which takes into
197 account different sample sizes among localities), expected heterozygosity (H_E) and observed
198 heterozygosity (H_O) with GENALEX 6.501 (Peakall & Smouse 2012). Allelic richness (R_A) was
199 estimated using HP-Rare to correct for differences in sample size among localities (Kalinowski
200 2005).

201 Private alleles, or alleles that are unique to one population, are expected to be more frequent in
202 genetically isolated populations, while their frequency should be reduced in well connected sites
203 (Beger et al. 2014; Munguía-Vega et al. 2015). If we extend this process to populations within
204 each species, then populations of species with narrow opportunities for dispersal (direct
205 developer, *O. bimaculoides*) should show higher frequency of private alleles than species with a
206 pelagic larval stage (Table 1). Private allelic richness (R_{PA}) was estimated using HP-Rare to
207 correct for different sample sizes. We estimated a global contemporary effective size (N_e) for
208 each species via the linkage disequilibrium method with a bias correction and a lower allele

209 frequency of 0.05 and 0.02, and with the molecular coancestry method as implemented in the
210 software NE-ESTIMATOR V2 (Do et al. 2014).

211

212 ***Genetic structure within species***

213 Species with a long PLD are expected to disperse further than species with short or absent
214 PLD (e.g. direct developers) (Shanks 2009). Consequently, the species with direct development
215 (PLD = 0, *O. bimaculoides*) should show higher genetic structure (e.g. global F_{ST}) (Riginos &
216 Liggins 2013), than species with short PLD (*O. hubbsorum*) and particularly compared to species
217 with long PLD (*O. bimaculatus*) (Table 1) (Selkoe & Toonen 2011; Selkoe et al. 2014). To
218 estimate genetic structure, we conducted a hierarchical analysis of molecular of variance
219 (AMOVA) using 999 permutations in GENALEX 6.501(Peakall & Smouse 2012) to estimate the
220 genetic differences observed within and between populations. Both pairwise F_{ST} and F^*_{ST} values
221 were calculated using the software GENODIVE 2.0b24 (Meirmans & Van Tienderen 2004) as
222 recommended to account for loci with high polymorphism such as microsatellites (Meirmans &
223 Hedrick 2011). Additionally, we used FreeNA to measure the effect of null alleles on F_{ST}
224 estimates of population structure, taking into account the frequency of null alleles estimated with
225 the expectation maximization method (EM) (Chapuis & Estoup 2007).

226

227 ***Genetic relatedness within populations of each species***

228 The magnitude of local larval retention, or the proportion of larvae produced within a site
229 that remain in that site, is expected to increase the degree of genetic relatedness within
230 populations (Christie et al. 2010; Burgess et al. 2014). We expect that species with direct

231 development (PLD = 0, *O. bimaculoides*) should have a higher probability for individuals to
232 remain near their natal site, and thus to show higher levels of genetic relatedness or kinship
233 within populations than the other two species with a dispersive pelagic larval stage (Table 1).
234 Since local retention is expected to decrease with increasing PLD (Byers & Pringle 2006), we
235 expect that genetic relatedness within populations will be lower in the species with the longest
236 PLD (*O. bimaculatus*). We calculated pairwise relatedness to describe the number of alleles
237 shared between pairs of individuals using Queller & Goodnight (1989) relatedness metric and
238 then calculated the average within each population as implemented in GenAlex 6.2 (Peakall &
239 Smouse 2012). Statistical significance was assessed by 9,999 permutations and 10,000 bootstraps
240 to estimate 95% confidence intervals around the hypothesis of random mating.

241

242 RESULTS

243 *Species assignment*

244 A total of 1054 bp were sequenced for each individual sample, including 473 bp from the
245 16S rDNA gene and 581 bp from the COI gene (GenBank Accession number KY985098 –
246 KY985194 for 16S, and KY985005 – KY985097 for COI). The optimum model of substitution
247 according to the Akaike and Bayesian criteria was JC for both 16S rDNA and COI. The resulting
248 NJ trees showed the monophyletic status of the three species *O. bimaculatus*, *O. bimaculoides*
249 and *O. hubbsorum* according to the topology of both 16S rDNA and COI trees (Fig 2 A). *O.*
250 *bimaculoides* was present in locations from the Pacific coast of BCP (Ejido Erendira, San
251 Quintin, and Bahía Magdalena), but absent in the Gulf of California. *O. bimaculatus* was present
252 at only one locality from the Pacific coast of the BCP (Malarrimo) and in samples from the
253 Northern Gulf of California including Puerto Peñasco, Puerto Refugio, Puerto Lobos, San Luis

254 Gonzaga, Bahía de los Ángeles and only one individual from Puerto Libertad for 16S rDNA, (no
255 data was obtained for the COI sequence of this individual). *O. hubbsorum* was present in some
256 localities from the Northern Gulf of California (Puerto Libertad, Isla San Lorenzo, and Bahía
257 Kino) and also in the Central Gulf of California (Santa Rosalía) (Fig 2 A). Nucleotide divergence
258 between the three species ranged from 3.3 – 7.1% for the 16S rDNA gene and from 6.3 – 10.4%
259 for the COI gene (Table 2). *Octopus bimaculoides* showed less divergence with *O. bimaculatus*
260 (3.3% and 6.3%, respectively) than with *O. hubbsorum* (6.3% and 10.0%, respectively), while
261 the largest divergence was observed between *O. bimaculatus* and *O. hubbsorum* (7.1% and
262 10.4%, respectively).

263 We genotyped seven microsatellite loci in 316 samples from 20 localities and observed
264 an average frequency of missing data of 3.75% (range 1.26 – 7.27) by locus, and 3.84% (range 0
265 – 28.5) by sample. Hardy-Weinberg tests suggested significant deviations at only 7 out of 140
266 unique loci/locality combinations tested without any clear pattern observed within localities or
267 species (after Bonferroni correction $P = 0.00036$). Only *Ocbi39*, *Ocbi41* and *Ocbi50* were
268 significant deviated in 1, 2 and 4 localities from the 20 tested, respectively ($P = 0.00036$). Two
269 loci were monomorphic (*Ocbi41* and *Ocbi50*) in 1 and 6 localities, respectively (Table S1).
270 Except for two loci (*Ocbi35* and *Ocbi41*), all other loci showed null alleles in at least one
271 locality, with *Ocbi39* showing null alleles in 8 localities. The average frequency of null alleles
272 among loci varied from 0.000 – 0.108 for *O. bimaculatus* 0.025, for *O. bimaculoides* 0.026, and
273 for *O. hubbsorum* 0.041, according to EM method (Table S2).

274 The STRUCTURE analysis showed a modal frequency that supported the presence of at
275 least two clusters or species ($\Delta K = 2$, Fig. S1A) according to the ΔK method (Evanno et al.
276 2005). However the highest mean value of the ln probability of data for $K = 2$ (average ln [K] = -

277 8362.29, Fig. S1B) was very close to $K = 3$ (average $\ln [K] = -8086.16$, Fig. S1B) in 10/10
278 repetitions, and in both cases the matrix of similarity scores produced by Clumpak between runs
279 aligned were identical 0.999 (Fig. S1C). The STRUCTURE bar plots (Fig 2 B) showed that $K =$
280 3 clearly distinguished the three clusters or species previously identified in the phylogenetic
281 analyses of the mitochondrial markers and corresponding to *O. bimaculoides*, *O. bimaculatus*
282 and *O. hubbsorum* among the 20 localities from NW Mexico (Fig 2 B). All localities assigned to
283 each species using 16S rDNA and COI sequences (Fig. 2 A) were correctly assigned using
284 microsatellites (Fig. 2 B). Based on the STRUCTURE analysis, *O. bimaculoides* is only present
285 in the Pacific coast of BCP, while *O. bimaculatus* and *O. hubbsorum* are present on both the
286 Pacific coast of BCP and in the Gulf of California. On the Pacific coast of BCP, *O. bimaculoides*
287 is present in Ejido Erendira, San Quintin and Bahía Magdalena; *O. bimaculatus* in La Bocana,
288 Las Barrancas and Malarrimo, and *O. hubbsorum* in El Conejo. In the Gulf of California, *O.*
289 *bimaculatus* is present in Puerto Peñasco, San Luis Gonzaga, Isla Smith, Bahía de Los Angeles
290 and Puerto Lobos, while *O. hubbsorum* is present in Puerto Libertad, Isla San Lorenzo, Isla
291 Tiburon, Bahía Kino and Santa Rosalía (Fig. 2 C). In some localities like Las Barrancas in the
292 Pacific coast of BCP and Puerto Peñasco, Puerto Refugio and Isla Tiburón in the Northern Gulf
293 of California STRUCTURE suggested the presence of individuals from both *O. bimaculatus* and
294 *O. hubbsorum* (Fig. 2 B, C).

295

296 ***Genetic diversity and effective population size within species***

297 The seven loci were polymorphic for the three species (Table 3). Results generally
298 supported our prediction about higher allelic diversity and effective size in highly fecund species
299 with small eggs (*O. bimaculatus* and *O. hubbsorum*) than in species that are less fecund and have

300 larger eggs (*O. bimaculoides*). We observed lower average levels of allelic diversity in *O.*
301 *bimaculoides* ($N_E = 3.67 \pm 0.47$, $R_A = 4.56 \pm 0.45$) than in *O. bimaculatus* ($N_E = 5.93 \pm 0.28$, R_A
302 $= 5.05 \pm 0.05$), while results for *O. hubbsorum* were mixed and showed intermediate values for
303 one metric ($N_E = 4.75 \pm 0.45$), and similar values to *O. bimaculoides* in the other ($R_A = 4.47 \pm$
304 0.28).

305 We observed that the species with direct development (*O. bimaculoides*) had the largest
306 average frequency of private alleles ($P_{AR} = 1.71 \pm 0.43$), compared to the species with a pelagic
307 larval stage (Table 3). The lowest values were observed in *O. bimaculatus* ($P_{AR} = 0.28 \pm 0.05$),
308 while *O. hubbsorum* again showed intermediate values ($P_{AR} = 0.49 \pm 0.20$).

309 The highest contemporary effective population size Ne was calculated for *Octopus*
310 *bimaculatus* using both linkage disequilibrium and molecular ancestry methods (average LDNE
311 $= 261 - 265$, $M_C = 28$), followed by *O. hubbsorum* (LDNE $= 88 - 125$, $M_C = 23$). *Octopus*
312 *bimaculoides* had the lowest effective size according to the two methods (LDNE $= 5 - 10$, $M_C =$
313 11) (Table 4).

314 ***Genetic structure within species***

315 After pooling sampling locations according to the results of the species assignment (Fig
316 1), we found that the AMOVA results for the microsatellite data supported the prediction that
317 species with direct development (*O. bimaculoides*) show higher levels of genetic structure ($F_{ST} =$
318 0.19, $P = 0.000$), compared to species with pelagic larvae (Table 5). Also, we observed that the
319 species with the longest PLD had overall lower genetic structure (*O. bimaculatus*, $F_{ST} = 0.09$, P
320 $= 0.000$) compared to the species with shorter PLD (*O. hubbsorum*, $F_{ST} = 0.15$, $P = 0.000$).

321 The frequency of null alleles can affect the estimates of genetic differentiation, reducing
322 the genetic diversity and overestimating the F_{ST} values (Chapuis & Estoup 2007). In the present
323 study, the values of genetic differentiation with (Null F_{ST}) and without (F_{ST}) null alleles
324 estimated with FREENA were very similar within each species: *O. bimaculoides* (Null F_{ST} =
325 0.020 and F_{ST} = 0.020), *O. bimaculatus* (Null F_{ST} = 0.091 and F_{ST} = 0.089) and *O. hubbsorum*
326 (Null F_{ST} = 0.170 and F_{ST} = 0.163) (Table S3).

327 *O. bimaculoides* showed both higher and significant genetic differentiation between all
328 population pairs (range of F_{ST} = 0.174 – 0.232; F'_{ST} = 0.481 – 0.653, Table S4), with respect to
329 *O. hubbsorum* that showed only 60.7% of paired values that were moderated and significant (F_{ST}
330 = 0.086 – 0.258; F'_{ST} = 0.216 – 0.751, Table S5), and *O. bimaculatus* with 69.5% of paired
331 values that were significant and showed the lowest genetic differentiation (F_{ST} = 0.007 – 0.144;
332 F'_{ST} = -0.165 – 0.668, Table S6). We observed both high and low values of genetic
333 differentiation between localities from the Pacific coasts of BCP when compared to the Gulf of
334 California for *O. hubbsorum* and *O. bimaculatus*, Tables S5, S6).

335 ***Genetic relatedness within populations of each species***

336 The three species showed average levels of relatedness that were significantly greater
337 than expectations based on random mating (all values $p = 0.000$, Fig. 3). We found that the direct
338 developer (*O. bimaculoides*) had the highest average level of relatedness within populations ($R =$
339 0.244), followed by the species with the intermediate PLD (*O. hubbsorum*, $R = 0.104$), while the
340 species with the longest PLD had the lowest levels (*O. bimaculatus*, $R = 0.016$).

341

342 **DISCUSSION**

343 Our study employed both slow evolving haploid markers (mitochondrial DNA) and fast-
344 evolving and hypervariable nuclear markers (microsatellites) to establish the geographic
345 distribution of three species of octopus among fishing localities from NW Mexico and
346 corroborated that differences in the fecundity and potential for larval dispersal (or lack thereof)
347 affect the levels of genetic diversity and structure found within each species.

348 A minimum of 3% genetic divergence in the COI gene is considered a threshold to
349 differentiate different octopus species (Hebert et al. 2003). Our results showed a higher
350 divergence among the three species (6% – 10%), suggesting they are reproductively isolated
351 taxa. We observed a smaller nucleotide divergence between *O. bimaculoides* and *O. bimaculatus*
352 probably due to their more recent origin from a common ancestor (Hebert et al. 2003). The three
353 taxa studied are the most relevant species for small-scale fisheries from NW Mexico and our
354 results showed that, although their ranges sometimes overlap, most of the surveyed localities had
355 evidence for the presence of a single species, which seem to occur in different habitats. *Octopus*
356 *bimaculoides* prefers habitats with low wave energy as enclosed bays and coastal lagoons,
357 although it can also inhabit at 20 m depth over rocks and kelps forests (Forsythe & Hanlon 1988;
358 Sinn 2008). In the Pacific coast of the BCP exist at least 16 coastal lagoons located between
359 Ensenada BC and Bahía Magdalena BCS (Lankford 1977), which probably have been colonized
360 by stepping-stone events during rafting behavior (Gillespie et al. 2012). Rafting has been
361 documented for *O. bimaculoides* and *O. bimaculatus* on floating objects including macroalgae
362 (Thiel & Gutow 2005) and besides larval dispersal could help explain colonization events and
363 range expansions. Our study expanded the distribution of the three species in the Pacific coast of
364 BCP with regard to published records: ~800 km to the south for *O. bimaculoides*, ~400 km to the
365 south for *O. bimaculatus* and ~150 km to the north for *O. hubbsorum*. In the Gulf of California,

366 *Octopus bimaculatus* was restricted to the northern Gulf of California where its distribution
367 might be influenced by the geographic extent of a cyclonic (anti-clockwise) oceanographic gyre
368 that transports larvae during its spawning period in summer (Castellanos-Martínez 2008;
369 Marinone et al. 2008; Munguía-Vega et al. 2014). *O. bimaculatus* seems to show the pattern of
370 disjunct distribution reported for several temperate species of fishes that are present in the Pacific
371 coast of BCP, disappear in the Southern Gulf of California and reappear in the Northern Gulf of
372 California (Bernadi et al. 2003). The distribution of *O. hubbsorum* was redefined to include the
373 south of the Midriff Island region in the Gulf of California (López-Uriarte et al. 2005; Moreno-
374 Báez et al. 2012).

375 The three species were sympatric in the Pacific coast of the BCP around the Bahia
376 Magdalena region, while in the Gulf of California only *O. bimaculatus* and *O. hubbsorum* were
377 sympatric around Midriff Island region. Both regions have been considered transition zones
378 between template and tropical species (Briggs 1974; Brusca 2010; Briggs & Bowen 2012). In
379 this sense, it is possible that *O. bimaculatus* and *O. hubbsorum* could be sharing the same
380 shelters around the Midriff Islands region in different season along the year, with *O. bimaculatus*
381 being more frequent during the cold-temperate seasons, while *O. hubbsorum* prefers warm-
382 tropical water conditions. A pattern of alternate presence of the two species through the year
383 could explain why the octopus fishery is carried out yearlong in the Northern Gulf of California
384 (Moreno-Báez et al. 2012). Thus, at some localities in the Northern Gulf of California both
385 species could be the main target of the fishery according to the time of the year, and at least in
386 some localities where samples in our study were assigned to *O. bimaculatus* (e.g. Puerto Lobos)
387 there have been recent field observations were only *O. hubbsorum* individuals were recorded
388 (unpublish data J. F. D. C and A. M. V.), highlighting the need of a temporal sampling during

389 different seasons to complement our understanding of the species being captured and their
390 seasons, particularly near geographic transition zones.

391 The life history parameters differing among species played an important role on levels of
392 genetic diversity and structure within species, suggesting that significant differences in
393 population dynamics and connectivity are present. The direct developer *O. bimaculoides* had the
394 lower levels of effective population size and genetic diversity and showed higher levels of
395 relatedness within populations, more structure among populations and a higher proportion of
396 private alleles, compared to the two species with a planktonic larval stage. These observations
397 suggest that populations of *O. bimaculoides* are comparatively smaller and structured at a local
398 geographic scale, and are likely highly dependent upon local recruitment. In contrast, *O.*
399 *hubbsorum* and *O. bimaculatus* have higher fecundity and a planktonic life phase that increase
400 their dispersal potential and the opportunities for gene flow among populations (Villanueva et al.
401 2016), which is consistent with our hypotheses regarding a larger effective population size
402 associated to higher levels of genetic diversity and lower levels of genetic relatedness within
403 populations, less genetic structure among populations and fewer private alleles. These results
404 suggest that *O. hubbsorum* and *O. bimaculatus* might depend less on local larval retention and
405 more on larval dispersal among populations. However, *O. bimaculatus* had lower levels of
406 genetic differentiation between populations, and lower frequency of private alleles and genetic
407 relatedness within populations compared to *O. hubbsorum*. In addition, genetic diversity and
408 effective population size for *O. hubbsorum* were lower compared to *O. bimaculatus*. Although
409 no studies exist about the PLD of *O. hubbsorum*, our results are consistent with a shorter PLD
410 and less potential for dispersal compared to *O. bimaculatus*. This is also in line with a recent
411 study suggesting that for species with a planktonic stage, the duration of the planktonic phase

412 increases with hatchling size (*O. hubbsorum* = 1.2 mm ML *O. bimaculatus* = 2.6 mm ML
413 (Ambrose 1981; Alejo-Plata & Herrero-Alejo 2014; Villanueva et al. 2016).

414 An inability to properly identify biological species hampers any effort towards their
415 management and conservation (Bickford et al. 2007). The distinct geographic and habitat
416 distributions along with contrasting life history traits are expected to have strong direct effects
417 over population parameters that are key for establishing the spatial scale, location and timing of
418 management actions and rates of sustainable fishing for each species. Therefore, is not advisable
419 to continue with the current management that does not differentiate among the three species. A
420 species as *O. bimaculoides* with a lower effective population size, and with local populations that
421 are mostly self-sustaining and partially isolated from other nearby populations could be
422 susceptible to over exploitation, severe bottlenecks and long recovery times if fisheries
423 management erroneously considers all populations as a single stock and ignores the importance
424 of local population dynamics. We recommend that in *O. bimaculoides* management should take
425 place at the level of local populations, for instance, to assign catch quotes per individual bay. For
426 the species with higher fecundity and dispersal potential (*O. bimaculatus* and *O. hubbsorum*) the
427 implementation of management tools should consider metapopulation dynamics on a larger
428 geographic scale and the presence of larval dispersal among populations, identifying key larval
429 sources and larval dispersal routes during the PLD, spawning and hatching seasons for each
430 species.

431 An important consideration for management of the octopus fishery in the Northern Gulf
432 of California is the differences in the spawning season between *O. hubbsorum* (spring and fall)
433 and *O. bimaculatus* (summer) and its relationship to the direction of larval dispersal and its
434 impact on source-sink metapopulation dynamics. Patterns of oceanographic currents in the

435 Northern Gulf of California are highly directional or asymmetric driven by a cyclonic (anti-
436 clockwise) gyre during spring and summer (Marinone et al. 2008; Marinone 2012) when both *O.*
437 *hubbsorum* and *O. bimaculatus* spawn. However, *O. hubbsorum* also spawns during Fall-winter
438 (unpublish data J. F. D. C and A. M. V.), when the gyre reverses to an anti-cyclonic (clockwise)
439 direction (Lavin & Marinone 2003; Marinone 2012), effectively transforming key larval sources
440 during spring-summer into larval sinks during fall-winter. When implementing spatial
441 management tools in systems with strong asymmetry in the direction of the currents, including
442 marine reserves, it is advised that reserves are located upstream according to the main flow to
443 protect the sources of larvae that support multiple downstream fishing sites (Beger et al. 2014;
444 Munguía-Vega et al. 2014) These observations imply that the location of marine reserves for
445 octopus in the northern Gulf of California will have to consider the cyclonic phase of the
446 oceanographic gyre for both species in addition to the anti-cyclonic phase for *O. hubbsorum*.
447 Also, temporal fishing closures based on the spawning period of a single species, like the one
448 recently implemented in the northern Gulf of California based on *O. bimaculatus* (Opinión
449 Técnica No. RJL/INAPESCA/DGAIPP/1065/2015; DOF. 2016, 01 junio), might be only
450 partially effective for protecting the recruitment of the other species present in the same locations
451 but with a different spawning season (e. g., *O. hubbsorum*, López-Uriarte et al. 2005; Moreno-
452 Báez et al. 2012). Similarly, minimum sizes established based on size at sexual maturity for *O.*
453 *bimaculatus* might overestimate the minimum size required for *O. hubbsorum* (Table 1). Our
454 findings highlight that sustainable fisheries management will heavily depend upon establishing
455 management tools that match the geographic and habitat distribution, life history and population
456 dynamics of the biological entities targeted by multi-specific fisheries.

457

458 **ACKNOWLEDGEMENTS**

459 We thank several fishing cooperatives, civil society organizations and fisherman that helped
460 collecting octopus samples: Sociedades Cooperativas de Producción Pesquera: de La Purísima,
461 de Bahía Magdalena y de Puerto Chale, fisherman from San Quintin and Ejido Erendira, Dra.
462 Ivonne Posada, and partners of the PANGAS project including Centro Intercultural de Estudio de
463 Desiertos y Océanos A.C. (CEDO), Comunidad y Biodiversidad A.C, Pronatura Noroeste A.C.
464 and fishing cooperatives from the Northern Gulf of California. Karla Vargas and Stacy L. Sotak
465 helped us at various stages during microsatellite genotyping at the University of Arizona.

466 **Funding**

467 Fondo Institucional CONACYT-Fronteras de la Ciencia, proyecto 26/2016. "Estudio integrativo
468 de la biodiversidad y la conservación del Golfo de California, bajo un enfoque de paisaje
469 genético marino y conectividad"

470 This research was partially financed by SIP projects: 20120971, 20121594, 20130059,
471 20130089, 20140781, 20140465, 20150998, 20150117 and CONACyT 108230.

472 JFDC benefited from CONACyT doctoral (328943) and postdoctoral (291053 estancias
473 posdoctorales nacionales 2016-1) scholarships

474 This work was partially supported via the PANGAS Science Coordination by the David and
475 Lucile Packard Foundation grants #2013-39400, #2015- 62798.

476 **Competing Interests**

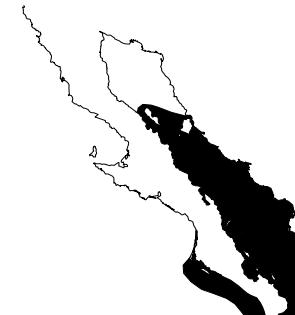
477 The authors declare there are no competing interests.

478 REFERENCES

- 479 Alejo-Plata M, and Gómez-Márquez JL. 2015. Reproductive biology of *Octopus hubbsorum*
480 (Cephalopoda: Octopodidae) from the coast of Oaxaca, Mexico. *American Malacological Bulletin*
481 33:89-100.
- 482 Alejo-Plata M, and Herrero-Alejo S. 2014. First description of eggs and paralarvae of green octopus
483 *Octopus hubbsorum* (cephalopoda: Octopodidae) under laboratory conditions. *American*
484 *Malacological Bulletin* 32:132-139.
- 485 Ambrose RF. 1981. Observations on the embryonic development and early post embryonic behavior of
486 *Octopus bimaculatus* (MOLLUSCA: CEPHALOPODA). *Veliger* 24:8.
- 487 Ambrose RF. 1990. *Octopus bimaculatus*. In: Land MA, and Hochberg FG, eds. *Proceedings of the*
488 *workshop on the fishery and market potential of octopus in California*. Washinton, DC:
489 Smithsonian Institution, 11-22.
- 490 Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, and Hill AVS. 2007. Automated binning of
491 microsatellite alleles: problems and solutions. *Mol Ecol Notes* 7:10-14.
- 492 Arkhipkin AI, Rodhouse PGK, Pierce GJ, Sauer W, Sakai M, Allcock L, Arguelles J, Bower JR, Castillo G,
493 Ceriola L, Chen C-S, Chen X, Diaz-Santana M, Downey N, González AF, Granados Amores J, Green
494 CP, Guerra A, Hendrickson LC, Ibáñez C, Ito K, Jereb P, Kato Y, Katugin ON, Kawano M, Kidokoro
495 H, Kulik VV, Laptikhovsky VV, Lipinski MR, Liu B, Mariátegui L, Marin W, Medina A, Miki K,
496 Miyahara K, Moltschanivskyj N, Moustahfid H, Nabhitabhata J, Nanjo N, Nigmatullin CM, Ohtani
497 T, Pecl G, Perez JAA, Piatkowski U, Saikliang P, Salinas-Zavala CA, Steer M, Tian Y, Ueta Y, Vijai D,
498 Wakabayashi T, Yamaguchi T, Yamashiro C, Yamashita N, and Zeidberg LD. 2015. World Squid
499 Fisheries. *Reviews in Fisheries Science & Aquaculture* 23:92-252.
- 500 Beger M, Selkoe KA, Trembl EA, Barber PH, von der Heyden S, Crandall ED, Toonen RJ, and Riginos C.
501 2014. Evolving coral reef conservation with genetic information. *Bulletin of Marine Science*
502 90:159-185.
- 503 Bernadi G, Findley L, and Rocha-Olivares A. 2003. VICARIANCE AND DISPERSAL ACROSS BAJA
504 CALIFORNIA IN DISJUNCT MARINE FISH POPULATIONS. *Evolution* 7:1599-1609.
- 505 Berry SS. 1953. Preliminary diagnoses of six west american species of octopus. *Leaflets in Malacology*
506 1:51-58.
- 507 Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, and Das I. 2007. Cryptic species
508 as a window on diversity and conservation. *Trends in Ecology & Evolution* 22:148-155.
- 509 Boyle PR, and vonBoletzky S. 1996. Cephalopod populations: Definition and dynamics. *Philosophical*
510 *Transactions of the Royal Society of London Series B-Biological Sciences* 351:985-1002.
- 511 Briggs JC. 1974. *Marine zoogeography*. USA: McGraw-Hill, Inc.
- 512 Briggs JC, and Bowen BW. 2012. A realignment of marine biogeographic provinces with particular
513 reference to fish distributions. *Journal of Biogeography* 39:12-30.
- 514 Brusca RC. 1980. *Common intertidal invertebrates of the Gulf of California*. Tucson, Arizona, USA: The
515 University of Arizona Press.
- 516 Brusca RC. 2010. *The Gulf of California: biodiversity and conservation*. USA: The University of Arizona
517 Press.
- 518 Burgess SC, Nickols KJ, Griesemer CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG,
519 White JW, and Botsford LW. 2014. Beyond connectivity: how empirical methods can quantify
520 population persistence to improve marine protected area design. *Ecological Applications*
521 24:257-270.
- 522 Byers JE, and Pringle JM. 2006. Going against the flow: retention, range limits and invasions in advective
523 environments. *Marine Ecology Progress Series* 313:27-41.

- 524 Cardenas-Robles ED. 2013. Fecundidad en el pulpo *Octopus bimaculatus* Verrill, 1883
525 (CEPHALOPODA:OCTOPODIDAE)en Bahía de Los Ángeles, Baja California, México. Bachelor.
526 Universidad Autonoma de Baja California Sur.
- 527 Castellanos-Martínez S. 2008. Reproducción del pulpo *Octopus bimaculatus* Verrill, 1883 en bahía de los
528 ángeles, baja california, méxico Master Master. Instituto politécnico Nacional.
- 529 CONAPESCA. 2014. *Anuario estadístico de acuacultura y pesca 2013*. México: Comisión Nacional de
530 Acuacultura y Pesca.
- 531 Chapuis MP, and Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation.
532 *Molecular Biology and Evolution* 24:621-631.
- 533 Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. *Nat
534 Rev Genet* 10:195-205.
- 535 Christie MR, Johnson DW, Stallings CD, and Hixon MA. 2010. Self-recruitment and sweepstakes
536 reproduction amid extensive gene flow in a coral-reef fish. *Molecular Ecology* 19:1042-1057.
- 537 Darriba D, Taboada GL, Doallo R, and Posada D. 2012. jModelTest 2: more models, new heuristics and
538 parallel computing. *Nat Meth* 9:772-772.
- 539 Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, and Ovenden JR. 2014. NeEstimator v2: re-
540 implementation of software for the estimation of contemporary effective population size (Ne)
541 from genetic data. *Molecular Ecology Resources* 14:209-214.
- 542 DOF. 2016, 01 junio. Acuerdo por el que se establece la veda temporal y tallas mínimas de captura para
543 la pesca de las especies de pulpo en Bahía de los Ángeles, Baja California. In: SAGARPA, editor.
544 Mexico.
- 545 Domínguez-Contreras JF. 2011. Reproducción del pulpo *Octopus hubbsorum* Berry, 1953 en Bahía
546 Magdalena, B.C.S, México. Master. UNAM.
- 547 Domínguez-Contreras JF, Ceballos-Vázquez BP, Hochberg FG, and Arellano-Martínez M. 2013. A new
548 record in a well-established population of *Octopus hubbsorum* (Cephalopoda: Octopodidae)
549 expands its known geographic distribution range and maximum size. *American Malacological
550 Bulletin* 31:95-99.
- 551 Domínguez-Contreras JF, Munguía-Vega A, Ceballos-Vázquez BP, Arellano-Martínez M, and Culver M.
552 2014. Characterization of microsatellite loci from two-spotted octopus *Octopus bimaculatus*
553 Verrill 1883 from pyrosequencing reads. *Conservation Genetics Resources* 6:465-468.
- 554 Doubleday ZA, Prowse TAA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, Lourenço S,
555 Quetglas A, Sauer W, and Gillanders BM. 2016. Global proliferation of cephalopods. *Current
556 Biology* 26:R406-R407.
- 557 Ellegren H, and Galtier N. 2016. Determinants of genetic diversity. *Nat Rev Genet* 17:422-433.
- 558 Evanno G, Regnaut S, and Goudet J. 2005. Detecting the number of clusters of individuals using the
559 software STRUCTURE: a simulation study. *Molecular Ecology* 14:2611-2620.
- 560 FAO. 2015. The state of world fisheries and aquaculture, Food and Agriculture. Organization of the
561 United Nations. Rome, Italy.
- 562 Finkbeiner EM. 2015. The role of diversification in dynamic small-scale fisheries: Lessons from Baja
563 California Sur, Mexico. *Global Environmental Change* 32:139-152.
- 564 Finkbeiner EM, and Basurto X. 2015. Re-defining co-management to facilitate small-scale fisheries
565 reform: An illustration from northwest Mexico. *Marine Policy* 51:433-441.
- 566 Folmer O, Black M, Hoeh W, Lutz R, and Vrijenhoek R. 1994. DNA primers for amplification of
567 mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol Mar
568 Biol Biotechnol* 3:294-299.
- 569 Forsythe JW, and Hanlon RT. 1988. Behavior, body patterning and reproductive biology of *Octopus
570 bimaculoides* from California. *Malacologia* 29:41-55.

- 571 Garcia-Vazquez E, Machado-Schiaffino G, Campo D, and Juanes F. 2012. Species misidentification in
572 mixed hake fisheries may lead to overexploitation and population bottlenecks. *Fisheries*
573 *Research* 114:52-55.
- 574 Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, and Roderick GK. 2012. Long-distance dispersal:
575 a framework for hypothesis testing. *Trends in Ecology & Evolution* 27:47-56.
- 576 Gotshall DW. 1998. *Marine Animals of Baja California: A guide to the common fishes and invertebrates*
577 *Baja California to Panama*. Monterey, California.
- 578 Guindon S, and Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by
579 maximum likelihood. *Syst Biol* 52:696-704.
- 580 Hanlon RT. 1988. Behavioral and body patterning characters useful in taxonomy and field identification
581 of cephalopods. *Malacologia* 29:19.
- 582 Hebert PD, Cywinski A, Ball SL, and deWaard JR. 2003. Biological identifications through DNA barcodes.
583 *Proc Biol Sci* 270:313-321.
- 584 Hochberg FG, and Fields WG. 1980. Cephalopoda: the squids and octopuses. In: Morris MH, Abbott DP,
585 and Haderlie EC, eds. *Intertidal invertebrates of California*. Stanford, California.: Stanford
586 University. Press, 429-444.
- 587 Hunsicker ME, Essington TE, Watson R, and Sumaila UR. 2010. The contribution of cephalopods to global
588 marine fisheries: can we have our squid and eat them too? *Fish and Fisheries* 11:421-438.
- 589 Iglesias J, Sánchez FJ, Bersano JGF, Carrasco JF, Dhont J, Fuentes L, Linares F, Muñoz JL, Okumura S, Roo
590 J, van der Meer T, Vidal EAG, and Villanueva R. 2007. Rearing of *Octopus vulgaris* paralarvae:
591 Present status, bottlenecks and trends. *Aquaculture* 266:1-15.
- 592 Jurado-Molina J. 2010. A Bayesian framework with implementation error to improve the management
593 of the red octopus (*Octopus maya*) fishery off the Yucatán Peninsula. *Ciencias Marinas* 36:1-14.
- 594 Kalinowski ST. 2005. HP-rare: a computer program for performing rarefaction on measures of allelic
595 diversity. *Molecular Ecology Notes* 5.
- 596 Kimura M. 1983. *The Neutral Theory of Molecular Evolution* Cambridge University Press.
- 597 Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, and Mayrose I. 2015. Clumpak: a program for
598 identifying clustering modes and packaging population structure inferences across K. *Molecular*
599 *Ecology Resources*.
- 600 Lankford RR. 1977. COASTAL LAGOONS OF MEXICO THEIR ORIGIN AND CLASSIFICATION. In: Wiley M, ed.
601 *Estuarine Processes*: Academic Press, 182-215.
- 602 Lavin MF, and Marinone SG. 2003. An overview of the physical oceanography of the gulf of California.
603 *Nonlinear Processes in Geophysical Fluid Dynamics*, 173-204.
- 604 López-Uriarte E, and Ríos-Jara E. 2009. Reproductive biology of *Octopus hubbsorum*
605 (Mollusca:Cephalopoda) along the central mexican Pacific coast. *Bulletin of Marine Science*
606 84:13.
- 607 López-Uriarte E, Ríos-Jara E, and Pérez-Peña M. 2005. Range extension for *Octopus hubbsorum*
608 (Cephalopoda: Octopodidae) in the Mexican Pacific. *Bull Mar Sci* 77:9.
- 609 Marinone SG. 2012. Seasonal surface connectivity in the Gulf of California. *Estuarine Coastal and Shelf*
610 *Science* 100:133-141.
- 611 Marinone SG, Ulloa MJ, Pares-Sierra A, Lavin MF, and Cudney-Bueno R. 2008. Connectivity in the
612 northern Gulf of California from particle tracking in a three-dimensional numerical model.
613 *Journal of Marine Systems* 71:149-158.
- 614 Marko PB, Lee SC, Rice AM, Gramling JM, Fitzhenry TM, McAlister JS, Harper GR, and Moran AL. 2004.
615 Fisheries: mislabelling of a depleted reef fish. *Nature* 430:309-310.
- 616 Meirmans PG, and Hedrick PW. 2011. Assessing population structure: FST and related measures.
617 *Molecular Ecology Resources* 11:5-18.


- 618 Meirmans PG, and Van Tienderen PH. 2004. genotype and genodive: two programs for the analysis of
619 genetic diversity of asexual organisms. *Molecular Ecology Notes* 4:792-794.
- 620 Moreno-Báez M, Cudney-Bueno R, Orr BJ, Shaw WW, Pfister T, Torre-Cosio J, Loaiza R, and Rojo M.
621 2012. Integrating the spatial and temporal dimensions of fishing activities for management in
622 the northern Gulf of California, mexico. *Ocean & Coastal Management* 55:111-127.
- 623 Munguía-Vega A, Jackson A, Marinone SG, Erisman B, Moreno-Baez M, Giron-Nava A, Pfister T, Aburto-
624 Oropeza O, and Torre J. 2014. Asymmetric connectivity of spawning aggregations of a
625 commercially important marine fish using a multidisciplinary approach. *PeerJ* 2:e511.
- 626 Munguía-Vega A, Sáenz-Arroyo A, Greenley AP, Espinoza-Montes JA, Palumbi SR, Rossetto M, and
627 Micheli F. 2015. Marine reserves help preserve genetic diversity after impacts derived from
628 climate variability: Lessons from the pink abalone in Baja California. *Global Ecology and*
629 *Conservation* 4:264-276.
- 630 Norman MD, and Hochberg FG. 2005. The current state of octopus taxonomy. *Phuket mar biol Cent Res*
631 *Bull* 66:28.
- 632 Palumbi SR, Martin AP, Romano SL, McMillan WO, Stacey L, and Grabowski G. 1991. *The Simple Fool's*
633 *Guide to PCR*. University of Hawaii, Honolulu.: Department of Zoology Special Publication.
- 634 Pauly D, Christensen V, Guenette S, Pitcher TJ, Sumaila UR, Walters CJ, Watson R, and Zeller D. 2002.
635 Towards sustainability in world fisheries. *Nature* 418:689-695.
- 636 Peakall R, and Smouse PE. 2012. GenAIEx 6.5: genetic analysis in Excel. Population genetic software for
637 teaching and research--an update. *Bioinformatics* 28:2537-2539.
- 638 Pickford GE, and MacConaughey BH. 1949. *The Octopus bimaculatus problem: a study in sibling*
639 *species*. Yale University: Peabody Museum of Natural History.
- 640 Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using multilocus
641 genotype data. *Genetics* 155:945-959.
- 642 Queller DC, and Goodnight KF. 1989. Estimating relatedness using genetic-markers. *Evolution* 43:258-
643 275.
- 644 Raymond M, and Rousset F. 1995. GENEPOP (Version 1.2): Population genetics software for exact tests
645 and ecumenicism. *Journal of Heredity* 86:248-249.
- 646 Riginos C, and Liggins L. 2013. Seascape Genetics: Populations, Individuals, and Genes Marooned and
647 Adrift. *Geography Compass* 7:197-216.
- 648 Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Dernat R, Duret L, Fairev
649 N, Loire E, Lourenco JM, Nabholz B, Roux C, Tsagkogeorga G, Weber AA, Weinert LA, Belkhir K,
650 Bierne N, Glemin S, and Galtier N. 2014. Comparative population genomics in animals uncovers
651 the determinants of genetic diversity. *Nature* 515:261-263.
- 652 Roper CFE, Sweeney MJ, and Hochberg FG. 1995. Cefalópodos. In: Fischer W, Krup F, Schneider W,
653 Sommer C, E CK, and Niem VH, eds. *Guía FAO para la identificación de especies para los fines de*
654 *la pesca Pacífico Centro-Oriental*. Roma: FAO, 305-353.
- 655 Sala E, Aburto-Oropeza O, Reza M, Paredes G, and López-Lemus LG. 2004. Fishing Down Coastal Food
656 Webs in the Gulf of California. *Fisheries* 29:19-25.
- 657 Selkoe KA, Gaggiotti OE, Bowen BW, and Toonen RJ. 2014. Emergent patterns of population genetic
658 structure for a coral reef community. *Molecular Ecology* 23:3064-3079.
- 659 Selkoe KA, and Toonen RJ. 2011. Marine connectivity: a new look at pelagic larval duration and genetic
660 metrics of dispersal. *Mar Ecol Prog Ser* 436:291-305.
- 661 Shanks AL. 2009. Pelagic Larval Duration and Dispersal Distance Revisited. *Biological Bulletin* 216:373-
662 385.
- 663 Sinn DL. 2008. Patterns of activity cycles in juvenile California two-spot octopuses (*Octopus*
664 *bimaculoides*). *American Malacological Bulletin* 24:65-69.

- 665 Tamura K, Stecher G, Peterson D, Filipski A, and Kumar S. 2013. MEGA6: Molecular Evolutionary
666 Genetics Analysis version 6.0. *Molecular Biology and Evolution* 30:2725-2729.
- 667 Thiel M, and Gutow L. 2005. The ecology of rafting in the marine environment. II. The rafting organisms
668 and community. *Oceanography and Marine Biology - an Annual Review*, Vol 43 43:279-418.
- 669 Van Oosterhout C, Hutchinson WF, Wills DPM, and Shipley P. 2004. micro-checker: software for
670 identifying and correcting genotyping errors in microsatellite data. *Mol Ecol Notes* 4:535-538.
- 671 Villanueva R, Vidal EA, Fernandez-Alvarez FA, and Nabhitabhata J. 2016. Early Mode of Life and
672 Hatchling Size in Cephalopod Molluscs: Influence on the Species Distributional Ranges. *PLoS One*
673 11:e0165334.
- 674 Watson R, and Pauly D. 2001. Systematic distortion in world fisheries catch trends. *Nature* 414:534-536.

675

Table 1(on next page)**Life history & Hypotheses**

Life history and hypotheses regarding levels of genetic diversity and structure in three species of octopus from Northwest Mexico. BCP = Baja California Peninsula, ML = Mantle Length.

Life history	<i>O. bimaculoides</i>	<i>O. hubbsorum</i>	<i>O. bimaculatus</i>	References
Geographic distribution				(2, 3, 4, and 11)
	From CA, USA to Bahia San Quintin in BC, Mexico.	From Bahia Magdalena, BCS to Oaxaca, including the Gulf of California.	From CA, USA to Bahia Vizcaino BCS, including the Gulf of California	
Reproductive period	Santa Barbara, CA, USA (Dec-May) San Quintin, BCP, Mexico (Oct-Jan)	Pacific coast of BCP (May-Oct) Gulf of California (Mar, Sep-Dec)	Pacific coast of BCP (Jan-Jun) Gulf of California (Jun-Sep)	(1, 2, 3, 5, and 9)
*Fecundity	Eggs laid in festoons 137 – 780	Clutch eggs 105,000 – 144,000 Ripe ovarian eggs 240,050 (range 22,447 – 545,444)	Clutch eggs >20,000 Ripe ovarian eggs $91,407 \pm 75,361$ SD (range 11,618 – 372,269)	(1, 2, 6, 10, 13 and 19)
*Egg size (length) and ripe ovarian eggs size	10 – 12 mm (range 9.5 – 16 mm)	1.66 ± 0.74 mm Ripe ovarian eggs 2.07 mm (range 0.7 – 3.7 mm)	4 – 7 mm Ripe ovarian eggs (range 1.8 – 4 mm)	(1, 2, 3, 10, 13, and 19)
Planktonic larval duration	absent, direct development to	Present but the time is uncertain (Probably ~ 60	2 – 3 months (60 to 90 days)	(1, 2, 3, and 13)

(paralarvae)	juvenile, benthic hatchlings	days)		
Size at sexual maturity	55 mm (ML) males 110 mm (ML) females	70 mm (ML) males 119.7 mm (ML) females	124.5 mm (ML) males 147.0 mm (ML) females	(2, 6, 9, and 19)
Lifespan (years)	Short (1.0 - 1.5)	Short (1.5)	Short (1.5 – 2.0)	(2, 3, and 6)
Hypotheses	<i>O. bimaculoides</i>	<i>O. hubbsorum</i>	<i>O. bimaculatus</i>	References
Effective population size (N_e)	Small	Medium	Large	(17 and 20)
Genetic diversity (allelic richness)	Low	Medium	High	(17 and 20)
Diversity of private alleles	High	Medium	Low	(14 and 18)
Genetic Structure	High	Medium	Low	(8, 12, and 15)
Genetic relatedness	High	Medium	Low	(7 and 16)

1 * = considering average, min and max reported value. (1) Ambrose (1981), (2) Forsythe & Hanlon (1988), (3) Ambrose (1990), (4) López-Uriarte et al. (2005),
 2 (5) Castellanos-Martínez (2008), (6) López-Uriarte & Rios-Jara (2009), (7) Christie et al. (2010), (8) Selkoe & Toonen (2011), (9) Domínguez-Contreras (2011),
 3 (10) Cardenas-Robles (2013), (11) Domínguez-Contreras et al. (2013), (12) Riginos & Liggins (2013), (13) Alejo-Plata & Herrero-Alejo (2014), (14) Beger et al.
 4 (2014), (15) Selkoe et al. (2014), (16) Burgess et al. (2014), (17) Romiguier et al. (2014), (18) Munguía-Vega et al. (2015) (19) Alejo-Plata & Gómez-Márquez
 5 (2015) and (20) Ellegren & Galtier (2016).

Table 2(on next page)

Nucleotide divergence of both: 16s rDNA gene and COI gene

Nucleotide divergence between species of octopus identified through the analysis of both the 16s rDNA gene (below the diagonal) and COI gene (above the diagonal). Standard error estimates are shown in parentheses.

	<i>O. bimaculoides</i>	<i>O. bimaculatus</i>	<i>O. hubbsorum</i>
<i>O. bimaculoides</i>	-	0.0632 (± 0.0104)	0.1005 (± 0.0142)
<i>O. bimaculatus</i>	0.0328 (± 0.0079)	-	0.1042 (± 0.0139)
<i>O. hubbsorum</i>	0.0629 (± 0.0113)	0.0708 (± 0.123)	-

1

Table 3(on next page)

Genetic variation within population

Genetic variation within populations of three species of octopus. Sample Size (N), Mean \pm Standard Error (SE) of the number of alleles (N_A), effective alleles (N_E), and observed (H_o), expected (H_E) heterozygosities, allelic richness (R_A) and private allelic richness (P_{AR}).

Species	Population	N	N _A	N _E	H _O	H _E	R _A	P _{AR}
<i>Octopus bimaculoides</i>	Ejido Erendira	14	5.00 ± 0.93	3.22 ± 0.58	0.77 ± 0.09	0.62 ± 0.07	4.15 ± 0.68	1.09 ± 0.33
	San Quintín	9	6.14 ± 1.49	4.44 ± 1.18	0.52 ± 0.12	0.62 ± 0.11	5.46 ± 1.23	2.53 ± 1.23
	Bahía Magdalena	9	4.29 ± 0.71	3.34 ± 0.62	0.91 ± 0.05	0.65 ± 0.05	4.08 ± 0.65	1.50 ± 0.58
	Mean ± SE		5.14 ± 0.62	3.67 ± 0.47	0.74 ± 0.06	0.63 ± 0.04	4.56 ± 0.45	1.71 ± 0.43
<i>Octopus hubbsorum</i>	Puerto Libertad	14	8.86 ± 1.18	5.85 ± 1.39	0.70 ± 0.10	0.72 ± 0.08	5.47 ± 0.71	1.84 ± 0.40
	Isla San Lorenzo	22	7.71 ± 2.11	5.17 ± 1.55	0.57 ± 0.15	0.61 ± 0.13	4.44 ± 0.96	0.30 ± 0.14
	Isla Tiburón	31	10.0 ± 2.35	5.89 ± 1.47	0.53 ± 0.12	0.69 ± 0.10	4.94 ± 0.85	0.39 ± 0.10
	Isla el Dátil	3	4.00 ± 0.31	3.23 ± 0.39	0.76 ± 0.06	0.66 ± 0.04	4.00 ± 0.31	0.33 ± 0.28
	Bahía Kino	32	10.0 ± 2.86	6.32 ± 1.77	0.70 ± 0.14	0.66 ± 0.13	4.79 ± 1.00	0.29 ± 0.19
	I. San Pedro Martir	3	2.86 ± 0.63	2.58 ± 0.56	0.41 ± 0.17	0.46 ± 0.13	2.86 ± 0.63	0.01 ± 0.01
	Santa Rosalía	8	6.57 ± 1.51	4.82 ± 1.14	0.75 ± 0.12	0.66 ± 0.11	5.00 ± 0.99	0.50 ± 0.20
	El Conejo	8	5.00 ± 1.31	4.09 ± 1.07	0.65 ± 0.12	0.60 ± 0.12	4.28 ± 0.98	0.27 ± 0.25
	Mean ± SE		6.89 ± 0.67	4.75 ± 0.45	0.63 ± 0.05	0.63 ± 0.04	4.47 ± 0.28	0.49 ± 0.20
<i>Octopus bimaculatus</i>	La Bocana	5	5.86 ± 0.51	4.73 ± 0.49	0.94 ± 0.06	0.77 ± 0.03	5.16 ± 0.42	0.06 ± 0.03
	Las Barrancas	5	5.43 ± 0.53	4.49 ± 0.61	0.72 ± 0.11	0.73 ± 0.07	5.09 ± 0.50	0.43 ± 0.24
	Malarrimo	32	11.71 ± 0.71	6.01 ± 0.79	0.79 ± 0.08	0.79 ± 0.06	4.90 ± 0.37	0.39 ± 0.16
	Puerto Peñasco	32	11.42 ± 0.87	7.29 ± 1.15	0.87 ± 0.06	0.81 ± 0.07	5.15 ± 0.48	0.34 ± 0.10
	San Luis Gonzaga	8	6.71 ± 1.02	5.21 ± 0.76	0.79 ± 0.14	0.71 ± 0.12	4.81 ± 0.66	0.10 ± 0.05
	Puerto Refugio	17	9.14 ± 1.20	6.11 ± 0.96	0.68 ± 0.11	0.77 ± 0.08	4.89 ± 0.52	0.25 ± 0.09
	Isla Smith	25	11.14 ± 1.24	6.76 ± 0.89	0.84 ± 0.06	0.81 ± 0.06	5.14 ± 0.41	0.39 ± 0.11
	B.de Los Ángeles	14	9.57 ± 0.75	6.20 ± 0.89	0.68 ± 0.10	0.78 ± 0.07	5.13 ± 0.44	0.19 ± 0.06
	Puerto Lobos	25	10.43 ± 0.75	6.66 ± 0.83	0.77 ± 0.08	0.82 ± 0.04	5.19 ± 0.34	0.39 ± 0.18
Mean ± SE			9.08 ± 0.40	5.93 ± 0.28	0.79 ± 0.03	0.78 ± 0.02	5.05 ± 0.05	0.28 ± 0.05

Table 4(on next page)

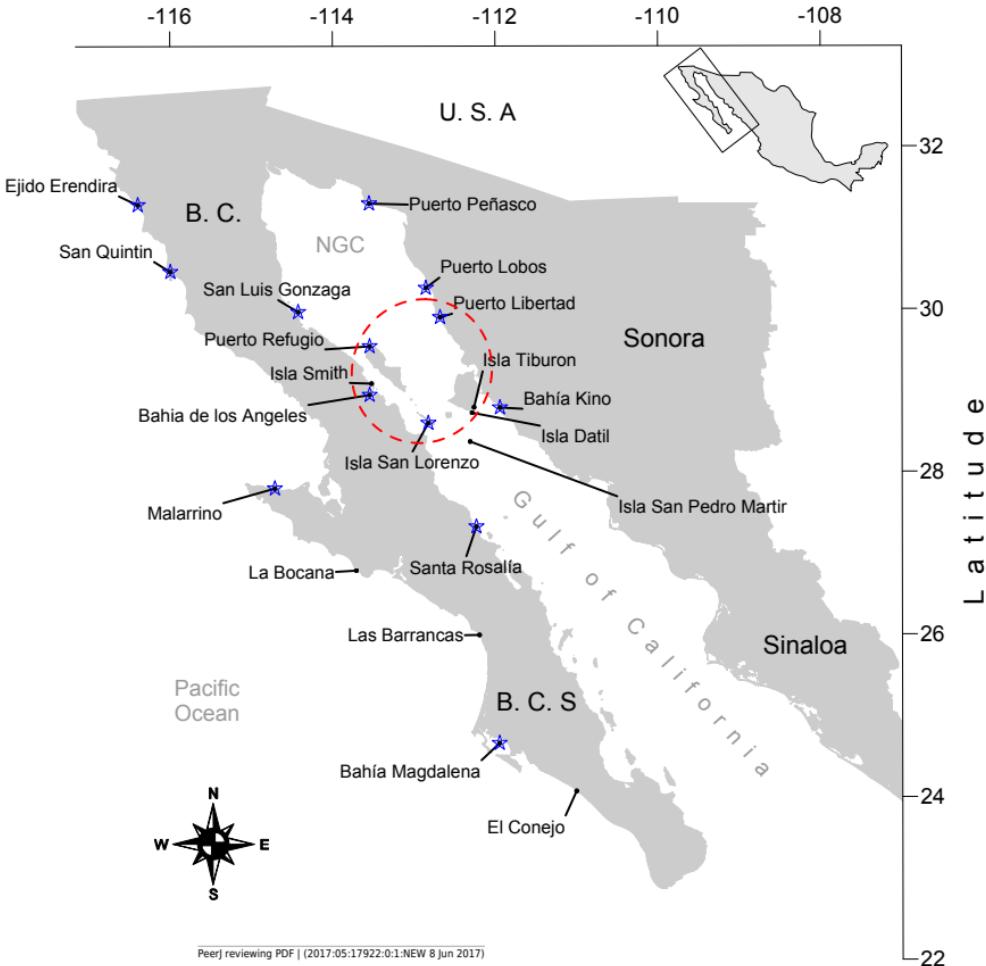
Contemporary effective population size

Average and 95% confidence intervals for the contemporary effective population size (N_e) for three species of octopus. Locations were pooled according to the results of the genetic assignment of species (Fig. 2). N_e was estimated with two methods, including linkage disequilibrium (LD; lowest allele frequency used 0.05 and 0.02 respectively) and Molecular coancestry (M_c).

	LDNE 0.05	LDNE 0.02	Molecular coancestry
<i>O. bimaculoides</i>	5.4 (3.4 - 8.8)	10.2 (7.4 - 13.8)	11.2 (3.0 - 24.4)
<i>O. hubbsorum</i>	88.0 (63.8 - 129.9)	125.5 (94.7 - 177.4)	22.9 (1.7 - 71.5)
<i>O. bimaculatus</i>	261.4 (173.6 - 472.9)	264.9 (194.7 - 395.8)	27.7 (13.3 - 47.4)

1

Table 5(on next page)Analysis of molecular variance


Analysis of molecular variance (AMOVA) from microsatellite data within three species of octopus from Northwest México.

Species	Source of Variation	Variance	df	Sum of squares	Means of squares	Estimated Variance	P Value
<i>Octopus bimaculoides</i>	Among Populations (F_{ST})	19%	2	28.865	14.432	0.592	0.000
	Among Indiv (F_{IS})	0%	29	61.401	2.117	0.000	0.995
	Within Indiv (F_{IT})	81%	32	81.500	2.547	2.547	0.001
	Total	100%	63	171.766		3.139	
<i>Octopus hubbsorum</i>	Among Populations (F_{ST})	15%	7	110.224	15.746	0.459	0.000
	Among Indiv (F_{IS})	13%	113	330.838	2.928	0.400	0.000
	Within Indiv (F_{IT})	71%	121	257.500	2.128	2.128	0.000
	Total	100%	241	698.562		2.987	
<i>Octopus bimaculatus</i>	Among Populations (F_{ST})	9%	8	103.068	12.884	0.283	0.000
	Among Indiv (F_{IS})	5%	154	467.367	3.035	0.162	0.000
	Within Indiv (F_{IT})	86%	163	442.000	2.712	2.712	0.000
	Total	100%	325	1012.436		3.156	

Figure 1(on next page)

Study area

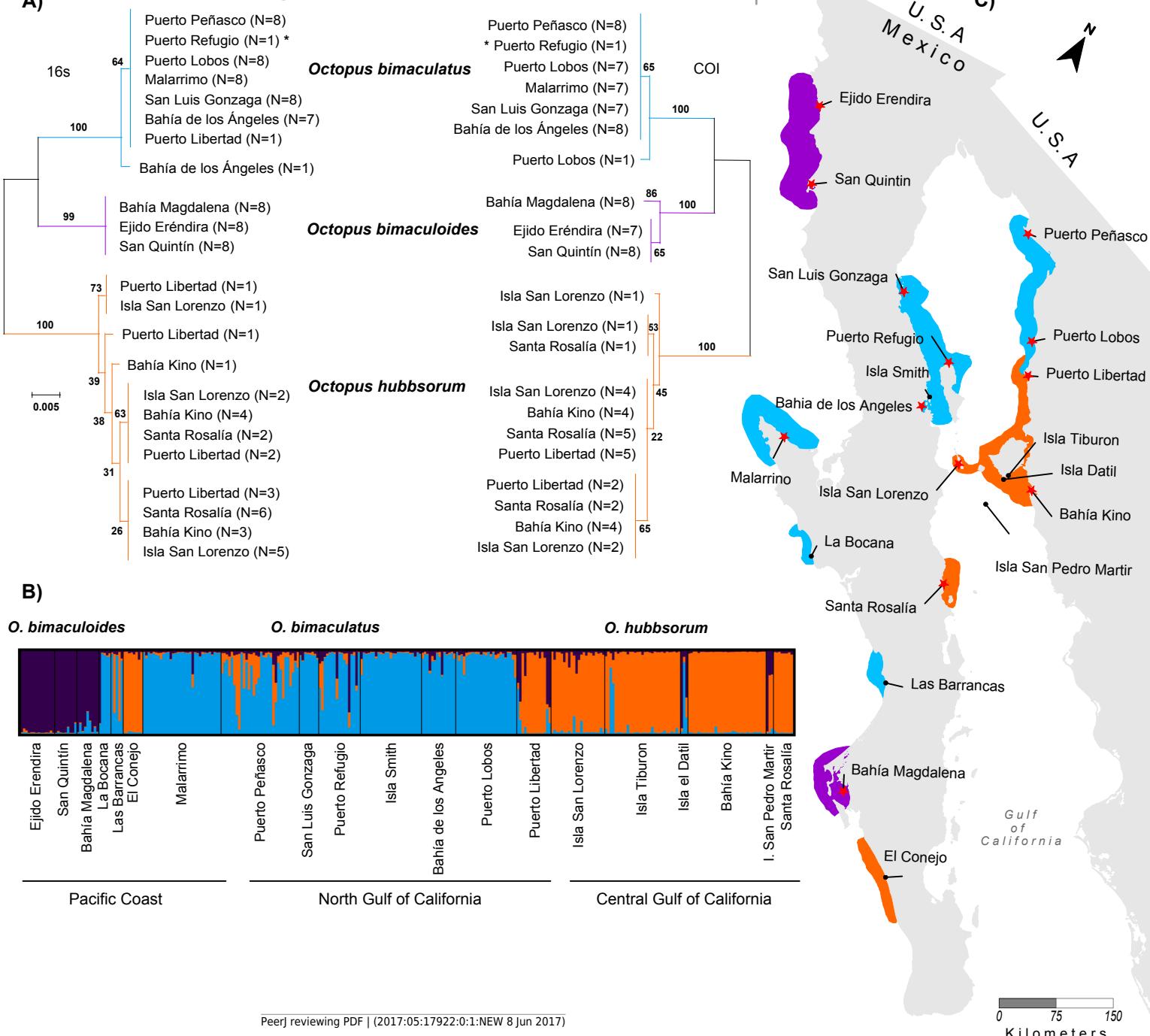

Locations of 20 octopus populations sampled from Northwest Mexico. B.C = Baja California. B. C. S = Baja California Sur. NGC = Northern Gulf of California. The blue stars represent main fishing locations, and the red circle represents the Midriff Island region.

Figure 2(on next page)

Genetic assignment of octopus samples in Northwest Mexico

Genetic assignment of octopus samples from fishery locations in Northwest Mexico to three species. Locations used for both 16s rDNA and COI are indicated with stars. All locations were used for microsatellites analysis. A) Neighbor-joining trees constructed with 97 haplotypes for both 16s rDNA and COI for *O. bimaculatus* (blue), *O. bimaculoides* (purple) and *O. hubbsorum* (orange). Bootstrap support >99% in 1000 replicates are shown for branches separating the three species. B) Bayesian cluster from STRUCTURE shows the probability of individual membership to three genetic clusters (K = 3, 316 individuals). C) Distribution of octopus species in 20 localities from Northwest Mexico according to phylogenetic and Bayesian analyses.

Table 6(on next page)

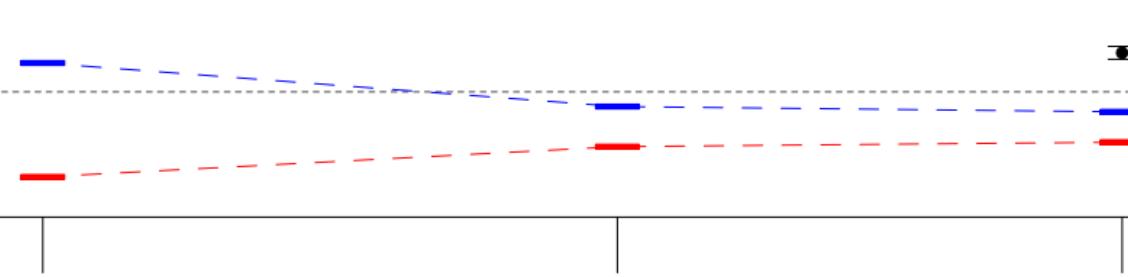
Relatedness within three octopus species

Mean pairwise relatedness (R) values ($\pm 95\%$ confidence intervals) within three octopus species, compared with bootstrapped upper (Blue) and lower (Red) 95% confidence intervals assuming random mating (10,000 bootstraps replicates).

Relatedness (R)

0.25

0.2


0.15

0.1

0.05

0

-0.05

*O. bimaculoides**O. hubbsorum**O. bimaculatus*