
Forecasting biodiversity in breeding birds using best practices

David J Harris Corresp.,   1  ,  Shawn D Taylor  2  ,  Ethan P White  1 

1 Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, United States

2 School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States

Corresponding Author: David J Harris

Email address: dave@harris-research.me

Biodiversity forecasts are important for conservation, management, and evaluating how

well current models characterize natural systems. While the number of forecasts for

biodiversity is increasing, there is little information available on how well these forecasts

work. Most biodiversity forecasts are not evaluated to determine how well they predict

future diversity, fail to account for uncertainty, and do not use time-series data that

captures the actual dynamics being studied. We addressed these limitations by using best

practices to explore our ability to forecast the species richness of breeding birds in North

America. We used hindcasting to evaluate six different modeling approaches for predicting

richness. Hindcasts for each method were evaluated annually for a decade at 1,237 sites

distributed throughout the continental United States. All models explained more than 50%

of the variance in richness, but none of them consistently outperformed a baseline model

that predicted constant richness at each site. The best practices implemented in this study

directly influenced the forecasts and evaluations. Stacked species

distribution models and "naive" forecasts produced poor estimates of uncertainty and

accounting for this resulted in these models dropping in the relative performance

compared to other models. Accounting for observer effects improved model performance

overall, but also changed the rank ordering of models because it did not improve the

accuracy of the "naive" model. Considering the forecast horizon revealed that the

prediction accuracy decreased across all models as the time horizon of the forecast

increased. To facilitate the rapid improvement of biodiversity forecasts, we emphasize the

value of specific best practices in making forecasts and evaluating forecasting methods.
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Abstract10

Biodiversity forecasts are important for conservation, management, and evaluating how11

well current models characterize natural systems. While the number of forecasts for12

biodiversity is increasing, there is little information available on how well these13

forecasts work. Most biodiversity forecasts are not evaluated to determine how well14

they predict future diversity, fail to account for uncertainty, and do not use time-series15

data that captures the actual dynamics being studied. We addressed these limitations by16

using best practices to explore our ability to forecast the species richness of breeding17

birds in North America. We used hindcasting to evaluate six different modeling18

approaches for predicting richness. Hindcasts for each method were evaluated annually19

for a decade at 1,237 sites distributed throughout the continental United States. All20

models explained more than 50% of the variance in richness, but none of them21

consistently outperformed a baseline model that predicted constant richness at each site.22

The best practices implemented in this study directly influenced the forecasts and23

evaluations. Stacked species distribution models and “naive” forecasts produced poor24

estimates of uncertainty and accounting for this resulted in these models dropping in the25

relative performance compared to other models. Accounting for observer effects26

improved model performance overall, but also changed the rank ordering of models27

because it did not improve the accuracy of the “naive” model. Considering the forecast28

horizon revealed that the prediction accuracy decreased across all models as the time29

horizon of the forecast increased. To facilitate the rapid improvement of biodiversity30

forecasts, we emphasize the value of specific best practices in making forecasts and31

evaluating forecasting methods.32

Introduction33

Forecasting the future state of ecological systems is increasingly important for planning34

and management, and also for quantitatively evaluating how well ecological models35
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capture the key processes governing natural systems (Clark et al. 2001, Dietze 2017,36

Houlahan et al. 2017). Forecasts regarding biodiversity are especially important, due to37

biodiversity’s central role in conservation planning and its sensitivity to anthropogenic38

effects (Cardinale et al. 2012, Díaz et al. 2015, Tilman et al. 2017). High-profile studies39

forecasting large biodiversity declines over the coming decades have played a large role40

in shaping ecologists’ priorities (as well as those of policymakers; e.g. IPCC 2014), but41

it is inherently difficult to evaluate such long-term predictions before the projected42

biodiversity declines have occurred.43

Previous efforts to predict future patterns of terrestrial species richness, and diversity44

more generally, have focused primarily on building species distributions models (SDMs;45

Thomas et al. 2004, Thuiller et al. 2011, Urban 2015). In general, these models46

describe individual species’ occurrence patterns as functions of the environment. Given47

forecasts for environmental conditions, these models can predict where each species48

will occur in the future. These species-level predictions are then combined (“stacked”)49

to generate forecasts for species richness (e.g. Calabrese et al. 2014). Alternatively,50

models that directly relate spatial patterns of species richness to environment conditions51

have been developed and generally perform equivalently to stacked SDMs (Algar et al.52

2009, Distler et al. 2015). This approach is sometimes referred to as “macroecological”53

modeling, because it models the larger-scale pattern (richness) directly (Distler et al.54

2015).55

Despite the emerging interest in forecasting species richness and other aspects of56

biodiversity (Jetz et al. 2007, Thuiller et al. 2011), little is known about how effectively57

we can anticipate these dynamics. This is due in part to the long time scales over which58

many ecological forecasts are applied (and the resulting difficulty in assessing whether59

the predicted changes occurred; Dietze et al. 2016). What we do know comes from a60

small number of hindcasting studies, where models are built from different time periods61

and evaluated on their ability to predict biodiversity patterns in contemporary (Algar et62
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al. 2009, Distler et al. 2015) or historic (Blois et al. 2013, Maguire et al. 2016) periods63

not used for model fitting. These studies are a valuable first step, but lack several64

components that are important for developing forecasting models with high predictive65

accuracy, and for understanding how well different methods can predict the future.66

These “best practices” for effective forecasting and evaluation (Box 1) broadly involve:67

1) expanding the use of data to include biological and environmental time-series68

(Tredennick et al. 2016); 2) accounting for uncertainty in observations and processes,69

(Yu et al. 2010, Harris 2015); and 3) conducting meaningful evaluations of the forecasts70

by hindcasting, archiving short-term forecasts, and comparing forecasts to baselines to71

determine whether the forecasts are more accurate than assuming the system is basically72

static (Perretti et al. 2013).73

In this paper, we attempt to forecast the species richness of breeding birds at over 1,20074

of sites located throughout North America, while following best practices for ecological75

forecasting (Box 1). To do this, we combine 32 years of time-series data on bird76

distributions from annual surveys with monthly time-series of climate data and77

satellite-based remote-sensing. Datasets that span a time scale of 30 years or more have78

only recently become available for large-scale time-series based forecasting. A dataset79

of this size allows us to model and assess changes a decade or more into the future in80

the presence of shifts in environmental conditions on par with predicted climate change.81

We compare traditional distribution modeling based approaches to spatial models of82

species richness, time-series methods, and two simple baselines that predict constant83

richness for each site, on average (Figure 1). All of our forecasting models account for84

uncertainty and observation error, are evaluated across different time lags using85

hindcasting, and are publicly archived to allow future assessment. We discuss the86

implications of these practices for our understanding of, and confidence in, the resulting87

forecasts, and how we can continue to build on these approaches to improve ecological88

forecasting in the future.89
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Figure 1: Example predictions from six forecasting models for a single site. Data

from 1982 through 2003, connected by solid lines, were used for training the models;

the remaining points were used for evaluating the models’ forecasts. In each panel,

point estimates for each year are shown with lines; the darker ribbon indicates the 68%

prediction interval (1 standard deviation of uncertainty), and the lighter ribbon indicates

the 95% prediction interval. A. Single-site models were trained independently on each

site’s observed richness values. The first two models (“average” and “naive”) served

as baselines. B. The environmental models were trained to predict richness based on

elevation, climate, and NDVI; the environmental models’ predictions change from year

to year as environmental conditions change.
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Methods90

We evaluated 6 types of forecasting models (Table 1) by dividing the 32 years of data91

into 22 years of training data and 10 years of data for evaluating forecasts using92

hindcasting. Here we use definitions from meteorology, where a hindcast is generally93

any prediction for an event that has already happened, while forecasts are predictions94

for actual future events (Jolliffe and Stephenson 2003). We also made long term95

forecasts by using the full data set for training and making forecasts through the year96

2050. For both time frames, we made forecasts using each model with and without97

correcting for observer effects, as described below.98

Data99

Richness data. Bird species richness was obtained from the North American Breeding100

Bird Survey (BBS) (Pardieck et al. 2017) using the Data Retriever Python package101

(Morris and White 2013, Senyondo et al. 2017) and rdataretriever R package (McGlinn102

et al. 2017). BBS observations are three-minute point counts made at 50 fixed locations103

along a 40km route. Here we denote each route as a site and summarize richness as the104

total species observed at all 50 locations in each surveyed year. Prior to summarizing105

the data was filtered to exclude all nocturnal, cepuscular, and aquatic species (since106

these species are not well sampled by BBS methods; Hurlbert and White 2005), as well107

as unidentified species, and hybrids. All data from surveys that did not meet BBS108

quality criteria were also excluded.109

We used observed richness values from 1982 (the first year of complete environmental110

data) to 2003 to train the models, and from 2004 to 2013 to test their performance. We111

only used BBS routes from the continental United States (i.e. routes where climate data112

was available PRISM Climate Group (2004)), and we restricted the analysis to routes113

that were sampled during 70% of the years in the training period (i.e., routes with at114

least 16 annual observations). The resulting dataset included 34,494 annual surveys of115
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1,279 unique sites, and included 385 species. Site-level richness varied from 8 to 91116

with an average richness of 51 species.117

Past environmental data. Environmental data included a combination of elevation,118

bioclimatic variables and a remotely sensed vegetation index (the normalized difference119

vegetation index; NDVI), all of which are known to influence richness and distribution120

in the BBS data (Kent et al. 2014). For each year in the dataset, we used the 4 km121

resolution PRISM data (PRISM Climate Group 2004) to calculate eight bioclimatic122

variables identified as relevant to bird distributions (Harris 2015): mean diurnal range,123

isothermality, max temperature of the warmest month, mean temperature of the wettest124

quarter, mean temperature of the driest quarter, precipitation seasonality, precipitation125

of the wettest quarter, and precipitation of the warmest quarter. These variables were126

calculated for the 12 months leading up to the annual survey (July-June) as opposed to127

the calendar year. Satellite-derived NDVI, a primary correlate of richness in BBS data128

(Hurlbert and Haskell 2002), was obtained from the NDIV3g dataset with an 8 km129

resolution (Pinzon and Tucker 2014) and was available from 1981-2013. Average130

summer (April, May, June) and winter (December, January, Feburary) NDVI values131

were used as predictors. Elevation was from the SRTM 90m elevation dataset (Jarvis et132

al. 2008) obtained using the R package raster (Hijmans 2016). Because BBS routes are133

40-km transects rather than point counts, we used the average value of each134

environmental variable within a 40 km radius of each BBS route’s starting point.135

Future environmental projections. In addition to the analyses presented here, we136

have also generated and archived long term forecasts from 2014-2050. This will allow137

future researchers to assess the performance of our six models on longer time horizons138

as more years of BBS data become available. Precipitation and temperature were139

forecast using the CMIP5 multi-model ensemble dataset (Brekke et al. 2013). 37140

downscaled model runs (Brekke et al. 2013, see Table S1) using the RCP6.0 scenario141

were averaged together to create a single ensemble used to calculate the bioclimatic142
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variables for North America. For NDVI, we used the per-site average values from143

2000-2013 as a simple forecast. For observer effects (see below), each site was set to144

have zero observer bias. The predictions have been archived at (Harris et al. 2017b).145

Accounting for observer effects146

Observer effects are inherent in large data sets collected by different observers, and are147

known to occur in BBS (Sauer et al. 1994). For each forecasting approach, we trained148

two versions of the corresponding model: one with corrections for differences among149

observers, and one without (Figure 2). We estimated the observer effects (and150

associated uncertainty about those effects) using a linear mixed model, with observer as151

a random effect, built in the Stan probabilistic programming language (Carpenter et al.152

2017). Because observer and site are strongly related (observers tend to repeatedly153

sample the same site), site-level random effects were included to ensure that inferred154

deviations were actually observer-related (as opposed to being related to the sites that a155

given observer happened to see). The resulting model is described mathematically and156

with code in Supplement S1. The model partitions the variance in observed richness157

values into site-level variance, observer-level variance, and residual variance158

(e.g. variation within a site from year to year).159

Across our six modeling approaches (described below), we used estimates from the160

observer model in three different ways. First, the expected values for site-level richness161

were used directly as our “average” baseline model (see below). For the two models that162

made species-level predictions, the estimated observer effects were included alongside163

the environmental variables as predictors. Finally, we trained the remaining models to164

predict observer-corrected richness values (i.e. observed richness minus the observer165

effect, or the number of species that would have been recorded by a “typical” observer).166

Since the site-level and observer-level random effects are not known precisely, we167

represented the range of possible values using 500 Monte Carlo samples from the168
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posterior distribution over these effects. Each downstream model was then trained 500169

times using different possible values for the random effects.170

Figure 2: A. Model predictions for Pennsylvania route 35 when all observers are treated

the same (black points). B. Model predictions for the same route when accounting

for systematic differences between observers (represented by the points’ colors). In

this example most models are made more robust to observer turnover by including an

observer model. Note that the “naive” model is less sensitive to observer turnover, and

does not benefit as much from modeling it.

Models: site-level models171

Three of the models used in this study were fit to each site separately, with no172

environmental information (Table 1). These models were fit to each BBS route twice:173

once using the residuals from the observer model, and once using the raw richness174

values. When correcting for observer effects, we averaged across 500 models that were175

fit separately to the 500 Monte Carlo estimates of the observer effects, to account for176
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Table 1: Six forecasting models. Single-site models were trained site-by-site, without

environmental data. Environmental models were trained at the continental scale, using

only environmental variables (as opposed to site or time series information) as predictors.

Most of the models were trained to predict richness directly. This mirrors the standard

application of these techniques. Separate random forest SDMs were fit for each species

and used to predict the probability of that species occurring at each site. The species-

level probabilities at a site were summed to predict richness. The mistnet JSDM was

trained to predict the full species composition at each site, and the number of species in

its predictions was used as an estimate of richness.

Predictors

Model Response variable Site id Time Environment

Single-site models

Average baseline richness X

Naive baseline richness X X

Auto-ARIMA richness X X

Environmental models

GBM richness richness X

Stacked SDMs species-level presence X

Mistnet JSDM species composition X

our uncertainty in the true values of those effects. All of these models use a Gaussian177

error distribution (rather than a count distribution) for reasons discussed below (see178

“Model evaluation”).179

Baseline models. We used two simple baseline models as a basis for comparison with180

the more complex models (Figure 2A). The first baseline, called the “average” model,181

treated site-level richness observations as uncorrelated noise around a site-level182

constant:183

yt = µ + ǫt.

Predictions from the “average” model are thus centered on µ, which could either be the184

mean of the raw training richness values, or an output from the observer model. This185

model’s confidence intervals have a constant width that depends on the standard186
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deviation of ǫ, which can either be the standard deviation of the raw training richness187

values, or σresidual from the observer model; see supplement).188

The second baseline, called the “naive” model (Hyndman and Athanasopoulos 2014),189

was a simple autoregressive process with a single year of history, i.e. an ARIMA(0,1,0)190

model:191

yt = yt−1 + ǫt,

where the standard deviation of ǫ is a free parameter for each site. In contrast to the192

“average” model, whose predictions are based on the average richness across the whole193

time series, the “naive” model predicts that future observations will be similar to the194

final observed value (e.g., in our hindcasts the value observed in 2003). Moreover,195

because the ǫ values accumulate over time, the confidence intervals expand rapidly as196

the predictions extend farther into the future. Despite these differences, both models’197

richness predictions are centered on a constant value, so neither model can anticipate198

any trends in richness or any responses to future environmental changes.199

Time series models. We used Auto-ARIMA models (based on the auto.arima200

function in the package forecast; Hyndman 2017) to represent an array of different201

time-series modeling approaches. These models can include an autoregressive202

component (as in the “naive” model, but with the possibility of longer-term203

dependencies in the underlying process), a moving average component (where the noise204

can have serial autocorrelation) and an integration/differencing component (so that the205

analysis could be performed on sequential differences of the raw data, accommodating206

more complex patterns including trends). The auto.arima function chooses whether207

to include each of these components (and how many terms to include for each one)208

using AICc (Hyndman 2017). Since there is no seasonal component to the BBS209

time-series, we did not include a season component in these models. Otherwise we used210

the default settings for this function (See supplement for details).211
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Models: environmental models212

In contrast to the single-site models, most attempts to predict species richness focus on213

using correlative models based on environmental variables. We tested three common214

variants of this approach: direct modeling of species richness; stacking individual215

species distribution models; and joint species distribution models (JSDMs). Following216

the standard approach, site-level random effects were not included in these models as217

predictors, meaning that this approach implicitly assumes that two sites with identical218

Bioclim, elevation, and NDVI values should have identical richness distributions. As219

above, we included observer effects and the associated uncertainty by running these220

models 500 times (once per MCMC sample).221

“Macroecological” model: richness GBM. We used a boosted regression tree model222

using the gbm package (Ridgeway et al. 2017) to directly model species richness as a223

function of environmental variables. Boosted regression trees are a form of tree-based224

modeling that work by fitting thousands of small tree-structured models sequentially,225

with each tree optimized to reduce the error of its predecessors. They are flexible226

models that are considered well suited for prediction (Elith et al. 2008). This model was227

optimized using a Gaussian likelihood, with a maximum interaction depth of 5,228

shrinkage of 0.015, and up to 10,000 trees. The number of trees used for prediction was229

selected using the “out of bag” estimator; this number averaged 6,700 for the230

non-observer data and 7,800 for the observer-corrected data.231

Species Distribution Model: stacked random forests. Species distribution models232

(SDMs) predict individual species’ occurrence probabilities using environmental233

variables. Species-level models are used to predict richness by summing the predicted234

probability of occupancy across all species at a site. This avoids known problems with235

the use of thresholds for determining whether or not a species will be present at a site236

(Pellissier et al. 2013, Calabrese et al. 2014). Following Calabrese et al. (2014), we237

calculated the uncertainty in our richness estimate by treating richness as a sum over238
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independent Bernoulli random variables: σ2

richness
=

∑

i pi(1 − pi), where i indexes239

species. By itself, this approach is known to underestimate the true community-level240

uncertainty because it ignores the uncertainty in the species-level probabilites241

(Calabrese et al. 2014). To mitigate this problem, we used an ensemble of 500 estimates242

for each of the species-level probabilities instead of just one, propagating the243

uncertainty forward. We obtained these estimates using random forests (Liaw and244

Wiener 2002), a common approach in the species distribution modeling literature.245

Random forests are constructed by fitting hundreds of independent regression trees to246

randomly-perturbed versions of the data (Cutler et al. 2007, Caruana et al. 2008). When247

correcting for observer effects, each of the 500 trees in our species-level random forests248

used a different Monte Carlo estimate of the observer effects as a predictor variable.249

Joint Species Distribution Model: mistnet. Joint species distribution models250

(JSDMs) are a new approach that makes predictions about the full composition of a251

community instead of modeling each species independently as above (Warton et al.252

2015). JSDMs remove the assumed independence among species and explicitly account253

for the possibility that a site will be much more (or less) suitable for birds in general (or254

particular groups of birds) than one would expect based on the available environmental255

measurements alone. As a result, JSDMs do a better job of representing uncertainty256

about richness than stacked SDMs (Harris 2015, Warton et al. 2015). We used the257

mistnet package (Harris 2015) because it is the only JSDM that describes species’258

environmental associations with nonlinear functions.259

Model evaluation260

We defined model performance for all models in terms of continuous Gaussian errors,261

instead of using discrete count distributions. Variance in species richness within sites262

was lower than predicted by several common count models, such as the Poisson or263

binomial (i.e. richness was underdispersed for individual sites), so these count models264
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would have had difficulty fitting the data (cf. Calabrese et al. 2014). The use of a265

continuous distribution is adequate here, since richness had a relatively large mean (51)266

and all models produce continuous richness estimates. When a model was run multiple267

times for the purpose of correcting for observer effects, we used the mean of those runs’268

point estimates as our final point estimate and we calculated the uncertainty using the269

law of total variance (i.e. Var(ȳ) + E

[

Var(y)
]

, or the variance in point estimates plus270

the average residual variance).271

We evaluated each model’s forecasts using the data for each year between 2004 and272

2013. We used three metrics for evaluating performance: 1) root-mean-square error273

(RMSE) to determine how far, on average, the models’ predictions were from the274

observed value; 2) the 95% prediction interval coverage to determine how well the275

models predicted the range of possible outcomes; and 3) deviance (i.e. negative 2 times276

the Gaussian log-likelihood) as an integrative measure of fit that incorporates both277

accuracy and uncertainty. In addition to evaluating forecast performance in general, we278

evaluated how performance changed as the time horizon of forecasting increased by279

plotting performance metrics against year. Finally, we decomposed each model’s280

squared error into two components: the squared error associated with site-level means281

and the squared error associated with annual fluctuations in richness within a site. This282

decomposition describes the extent to which each model’s error depends on consistent283

differences among sites versus changes in site-level richness from year to year.284

All analyses were conducted using R (R Core Team 2017). Primary R packages used in285

the analysis included dplyr (Wickham et al. 2017), tidyr (Wickham 2017), gimms286

(Detsch 2016), sp (Pebesma and Bivand 2005, Bivand et al. 2013), raster (Hijmans287

2016), prism (PRISM Climate Group 2004), rdataretriever (McGlinn et al. 2017),288

forecast (Hyndman and Khandakar 2008, Hyndman 2017), git2r (Widgren and others289

2016), ggplot (Wickham 2009), mistnet (Harris 2015), viridis (Garnier 2017), rstan290

(Stan Development Team 2016), yaml (Stephens 2016), purrr (Henry and Wickham291
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2017), gbm (Ridgeway et al. 2017), randomForest (Liaw and Wiener 2002). Code to292

fully reproduce this analysis is available on GitHub293

(https://github.com/weecology/bbs-forecasting) and archived on Zenodo (Harris et al.294

2017a).295

Results296

The site-observer mixed model found that 70% of the variance in richness in the297

training set could be explained by differences among sites, and 21% could be explained298

by differences among observers. The remaining 9% represents residual variation, where299

a given observer might report a different number of species in different years. In the300

training set, the residuals had a standard deviation of about 3.6 species. After correcting301

for observer differences, there was little temporal autocorrelation in these residuals302

(i.e. the residuals in one year explain 1.3% of the variance in the residuals of the303

following year), suggesting that richness was approximately stationary between 1982304

and 2003.305

When comparing forecasts for richness across sites all methods performed well (Figure306

3; all R2 > 0.5). However SDMs (both stacked and joint) and the macroecological307

model all failed to successfully forecast the highest-richness sites, resulting in a notable308

clustering of predicted values near ~60 species and the poorest model performance309

(R2=0.52-0.78, versus R2=0.67-0.87 for the within-site methods).310

While all models generally performed well in absolute terms (Figure 3), none311

consistently outperformed the “average” baseline (Figure 4). The auto-ARIMA was312

generally the best-performing non-baseline model, but in many cases (67% of the time),313

the auto.arima procedure selected a model with only an intercept term (i.e. no314

autoregressive terms, no drift, and no moving average terms), making it similar to the315

“average” model. All five alternatives to the “average” model achieved lower error on316

some of the sites in some years, but each one had a higher mean absolute error and317
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Figure 3: Performance of six forecasting models for predicting species richness one year

(2004) and ten years into the future (2013). Plots show observed vs. predicted values

for species richness. Models were trained with data from 1982-2003. In general, the

single-site models (A) outperformed the environmental models (B). The accuracy of the

predictions generally declined as the timescale of the forecast was extended from 2004

to 2013.
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higher mean deviance (Figure 4).318

Figure 4: Difference between the forecast error of models and the error of the average

baseline using both absolute error (A.) and deviance (B.). Differences are taken for each

site and testing year so that errors for the same forecast are directly compared. The

error of the average baseline is by definition zero and is indicated by the horizontal

gray line. None of the five models provided a consistent improvement over the average

baseline. The absolute error of the models was generally similar or larger than that of

the “average” model, with large outliers in both directions. The deviance of the models

was also generally higher than the “average” baseline.

Most models produced confidence intervals that were too narrow, indicating319

overconfident predictions (Figure 5C). The random forest-based SDM stack was the320

most overconfident model, with only 72% of observations falling inside its 95%321

confidence intervals. This stacked SDM’s narrow predictive distribution caused it to322

have notably higher deviance (Figure 5B) than the next-worst model, even though its323

point estimates were not unusually bad in terms of RMSE (5A). As discussed elsewhere324
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Figure 5: Change in performance of the six forecasting models with the time scale of

the forecast (1-10 years into the future). A. Root mean square error (rmse; the error in

the point estimates) shows the three environmental models tending to show the largest

errors at all time scales and the models getting worse as they forecast further into the

future at approximately the same rate. B. Deviance (lack of fit of the entire predictive

distribution) shows the stacked species distribution models with much higher error than

other models and shows that the “naive” model’s deviance grows relatively quickly. C.

Coverage of a model’s 95% confidence intervals (how often the observed values fall

inside the predicted range; the black line indicates ideal performance) shows that the

“naive” model’s predictive distribution is too wide (capturing almost all of the data) and

the stacked SDM’s predictive distribution is too narrow (missing almost a third of the

observed richness values by 2014).
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(Harris 2015), this overconfidence is a product of the assumption in stacked SDMs that325

errors in the species-level predictions are independent. The GBM-based326

“macroecological” model and the mistnet JSDM had the best calibrated uncertainty327

estimates (Figure 5B)and therefore their relative performance was higher in terms of328

deviance than in terms of RMSE. The “naive” model was the only model whose329

confidence intervals were too wide (Figure 5C), which can be attributed to the rapid rate330

at which these intervals expand (Figure 1).331

Partitioning each model’s squared error shows that the majority of the residual error was332

attributed to errors in estimating site-level means, rather than errors in tracking333

year-to-year fluctuations (Figure 6). The “average” model, which was based entirely on334

site-level means, had the lowest error in this regard. In contrast, the three environmental335

models showed larger biases at the site level, though they still explained most of the336

variance in this component. This makes sense, given that they could not explicitly337

distinguish among sites with similar climate, NDVI, and elevation. Interestingly, the338

environmental models had higher squared error than the baselines did for tracking339

year-to-year fluctuations in richness as well.340

Accounting for differences among observers generally improved measures of model fit341

(Figure 7). Improvements primarily resulted from a small number of forecasts where342

observer turnover caused a large shift in the reported richness values. The naive343

baseline was less sensitive to these shifts, because it largely ignored the richness values344

reported by observers that had retired by the end of the training period (Figure 1). The345

average model, which gave equal weight to observations from the whole training period,346

showed a larger decline in performance when not accounting for observer effects –347

especially in terms of coverage. The performance of the mistnet JSDM was notable348

here, because its prediction intervals retained good coverage even when not correcting349

for observer differences, which we attribute to the JSDM’s ability to model this350

variation with its latent variables.351
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Figure 6: Partitioning of the squared error for each model into site and year components.

The site-level mean component shows consistent over or under estimates of richness

at a site across years. The annual fluctuation component shows errors in predicting

fluctuations in a site’s richness over time. Both components of the mean squared error

were lower for the single-site models than for the environmental models.
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Figure 7: Controlling for differences among observers generally improved each model’s

predictions, on average. The magnitude of this effect was negligible for the Naive

baseline, however.
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Discussion352

Forecasting is an emerging imperative in ecology; as such, the field needs to develop353

and follow best practices for conducting and evaluating ecological forecasts (Clark et al.354

2001). We have used a number of these practices (Box 1) in a single study that builds355

and evaluates forecasts of biodiversity in the form of species richness. The results of356

this effort are both promising and humbling. When comparing predictions across sites,357

many different approaches produce reasonable forecasts (Figure 3). If a site is predicted358

to have a high number of species in the future, relative to other sites, it generally does.359

However, none of the methods evaluated reliably determined how site-level richness360

changes over time (Figure 6), which is generally the stated purpose of these forecasts.361

As a result, baseline models, which did not attempt to anticipate changes in richness362

over time, generally provided the best forecasts for future biodiversity. While this study363

is restricted to breeding birds in North America, its results are consistent with a growing364

literature on the limits of ecological forecasting, as discussed below.365

The most commonly used methods for forecasting future biodiversity, SDMs and366

macroecological models, both produced worse forecasts than time-series models and367

simple baselines. This weakness suggests that predictions about future biodiversity368

change should be viewed with skepticism unless the underlying models have been369

validated temporally, via hindcasting and comparison with simple baselines. Since370

site-level richness is relatively stable, spatial validation is not enough: a model can have371

high accuracy across spatial gradients without being able to predict changes over time.372

This gap between spatial and temporal accuracy is known to be important for373

species-level predictions (Rapacciuolo et al. 2012, Oedekoven et al. 2017); our results374

indicate that it is substantial for higher-level patterns like richness as well. SDMs’ poor375

temporal predictions are particularly sobering, as these models have been one of the376

main foundations for estimates of the predicted loss of biodiversity to climate change377

over the past decade or so (Thomas et al. 2004, Thuiller et al. 2011, Urban 2015). Our378
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results also highlight the importance of comparing multiple modeling approaches when379

conducting ecological forecasts, and in particular, the value of comparing results to380

simple baselines to avoid over-interpreting the information present in these forecasts381

[Box 1]. Disciplines that have more mature forecasting cultures often do this by382

reporting “forecast skill”, i.e., the improvement in the forecast relative to a simple383

baseline (Jolliffe and Stephenson 2003). We recommend following the example of384

Perretti et al. (2013) and adopting this approach in future ecological forecasting385

research.386

When comparing different methods for forecasting our results demonstrate the387

importance of considering uncertainty (Box 1; Clark et al. 2001, Dietze et al. 2016).388

Previous comparisons between stacked SDMs and macroecological models reported389

that the methods yielded equivalent results for forecasting diversity (Algar et al. 2009,390

Distler et al. 2015). While our results support this equivalence for point estimates, they391

also show that stacked SDMs dramatically underestimate the range of possible392

outcomes; after ten years, more than a third of the observed richness values fell outside393

the stacked SDMs’ 95% prediction intervals. Consistent with Harris (2015) and Warton394

et al. (2015), we found that JSDMs’ wider prediction intervals enabled them to avoid395

this problem. Macroecological models appear to share this advantage, while being396

considerably easier to implement.397

We have only evaluated annual forecasts up to a decade into the future, but forecasts are398

often made with a lead time of 50 years or more. These long-term forecasts are difficult399

to evaluate given the small number of century-scale datasets, but are important for400

understanding changes in biodiversity at some of the lead times relevant for401

conservation and management. Two studies have assessed models of species richness at402

longer lead times (Algar et al. 2009, Distler et al. 2015), but the results were not403

compared to baseline or time-series models (in part due to data limitations) making404

them difficult to compare to our results directly. Studies on shorter time scales, such as405

23

PeerJ reviewing PDF | (2017:09:20345:1:1:NEW 15 Dec 2017)

Manuscript to be reviewed

Reviewer
Replace

Reviewer
Replace
with

Reviewer
Strikeout

Reviewer
Strikeout



ours, provide one way to evaluate our forecasting methods without having to wait406

several decades to observe the effects of environmental change on biodiversity (Petchey407

et al. 2015, Dietze et al. 2016, Tredennick et al. 2016), but cannot fully replace408

longer-term evaluations (Tredennick et al. 2016). In general, drivers of species richness409

can differ at different temporal scales (Rosenzweig 1995, White 2004, 2007, Blonder et410

al. 2017), so different methods may perform better for different lead times. In particular,411

we might expect environmental and ecological information to become more important412

at longer time scales, and thus for the performance of simple baseline forecasts to413

degrade faster than forecasts from SDMs and other similar models. We did observe a414

small trend in this direction: deviance for the auto-ARIMA models and for the average415

baseline grew faster than for two of the environmental models (the JSDM and the416

macroecological model), although this growth was not statistically significant for the417

average baseline.418

While it is possible that models that include species’ relationships to their environments419

or direct environmental constraints on richness will provide better fits at longer lead420

times, it is also possible that they will continue to produce forecasts that are worse than421

baselines that assume the systems are static. This would be expected to occur if richness422

in these systems is not changing over the relevant multi-decadal time scales, which423

would make simpler models with no directional change more appropriate. Recent424

suggestions that local scale richness in some systems is not changing directionally at425

multi-decadal scales supports this possibility (Brown et al. 2001, Ernest and Brown426

2001, Vellend et al. 2013, Dornelas et al. 2014). A lack of change in richness may be427

expected even in the presence of substantial changes in environmental conditions and428

species composition at a site due to replacement of species from the regional pool429

(Brown et al. 2001, Ernest and Brown 2001). On average, the Breeding Bird Survey430

sites used in this study show little change in richness (site-level SD of 3.6 species, after431

controlling for differences among observers; see also La Sorte and Boecklen 2005). The432

absence of rapid change in this dataset is beneficial for the absolute accuracy of433
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forecasts across different sites: when a past year’s richness is already known, it is easy434

to estimate future richness. Ward et al. (2014) found similar patterns in time series of435

fisheries stocks, where relatively stable time series were best predicted by simple436

models and more complex models were only beneficial with dynamic time series. The437

site-level stability of the BBS data also explains why SDMs and macroecological438

models perform relatively well at predicting future richness, despite failing to capture439

changes in richness over time.440

The relatively stable nature of the BBS richness time-series also makes it difficult to441

improve forecasts relative to simple baselines, since those baselines are already close to442

representing what is actually occurring in the system. It is possible that in systems443

exhibiting directional changes in richness and other biodiversity measures that models444

based on spatial patterns may yield better forecasts. Future research in this area should445

determine if regions or time periods exhibiting strong directional changes in446

biodiveristy are better predicted by these models and also extend our forecast horizon447

analyses to longer timescales where possible. Our results also suggest that future efforts448

to understand and forecast biodiversity should incorporate species composition, since449

lower-level processes are expected to be more dynamic (Ernest and Brown 2001,450

Dornelas et al. 2014) and contain more information about how the systems are changing451

(Harris 2015). More generally, determining the forecastability of different aspects of452

ecological systems under different conditions is an important next step for the future of453

ecological forecasting.454

Future biodiversity forecasting efforts also need to address the uncertainty introduced455

by the error in forecasting the environmental conditions that are used as predictor456

variables. In this, and other hindcasting studies, the environmental conditions for the457

“future” are known because the data has already been observed. However, in real458

forecasts the environmental conditions themselves have to be predicted, and459

environmental forecasts will also have uncertainty and bias. Ultimately, ecological460
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forecasts that use environmental data will therefore be more uncertain than our current461

hindcasting efforts, and it is important to correctly incorporate this uncertainty into our462

models (Clark et al. 2001, Dietze 2017). Limitations in forecasting future463

environmental conditions—particularly at small scales—will present continued464

challenges for models incorporating environmental variables, and this may result in a465

continued advantage for simple single-site approaches.466

In addition to comparing and improving the process models used for forecasting it is467

important to consider the observation models. When working with any ecological468

dataset, there are imperfections in the sampling process that have the potential to469

influence results. With large scale surveys and citizen science datasets, such as the470

Breeding Bird Survey, these issues are potentially magnified by the large number of471

different observers and by major differences in the habitats and species being surveyed472

(Sauer et al. 1994). Accounting for differences in observers reduced the average error in473

our point estimates and also improved the coverage of the confidence intervals. In474

addition, controlling for observer effects resulted in changes in which models performed475

best, most notably improving most models’ point estimates relative to the naive baseline.476

This demonstrates that modeling observation error can be important for properly477

estimating and reducing uncertainty in forecasts and can also lead to changes in the best478

methods for forecasting [Box 1]. This suggests that, prior to accounting for observer479

effects, the naive model performed well largely because it was capable of480

accommodating rapid shifts in estimated richness introduced by changes in the observer.481

These kinds of rapid changes were difficult for the other single-site models to482

accommodate. Another key aspect of an ideal observation model is imperfect detection.483

In this study, we did not address differences in detection probability across species and484

sites (Boulinier et al. 1998) since there is no clear way to address this issue using North485

American Breeding Bird Survey data without making strong assumptions about the data486

(i.e., assuming there is no biological variation in stops along a route; White and Hurlbert487

2010), but this would be a valuable addition to future forecasting models.488
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The science of forecasting biodiversity remains in its infancy and it is important to489

consider weaknesses in current forecasting methods in that context. In the beginning,490

weather forecasts were also worse than simple baselines, but these forecasts have491

continually improved throughout the history of the field (McGill 2012, Silver 2012,492

Bauer et al. 2015). One practice that lead to improvements in weather forecasts was that493

large numbers of forecasts were made publicly, allowing different approaches to be494

regularly assessed and refined (McGill 2012, Silver 2012). To facilitate this kind of495

improvement, it is important for ecologists to start regularly making and evaluating real496

ecological forecasts, even if they perform poorly, and to make these forecasts openly497

available for assessment (McGill 2012, Dietze et al. 2016). These forecasts should498

include both short-term predictions, which can be assessed quickly, and mid- to499

long-term forecasts, which can help ecologists to assess long time-scale processes and500

determine how far into the future we can successfully forecast (Dietze et al. 2016,501

Tredennick et al. 2016). We have openly archived forecasts from all six models through502

the year 2050 (Harris et al. 2017b), so that we and others can assess how well they503

perform. We plan to evaluate these forecasts and report the results as each new year of504

BBS data becomes available, and make iterative improvements to the forecasting505

models in response to these assessments.506

Making successful ecological forecasts will be challenging. Ecological systems are507

complex, our fundamental theory is less refined than for simpler physical and chemical508

systems, and we currently lack the scale of data that often produces effective forecasts509

through machine learning. Despite this, we believe that progress can be made if we510

develop an active forecasting culture in ecology that builds and assesses forecasts in511

ways that will allow us to improve the effectiveness of ecological forecasts more rapidly512

(Box 1; McGill 2012, Dietze et al. 2016). This includes expanding the scope of the513

ecological and environmental data we work with, paying attention to uncertainty in both514

model building and forecast evaluation, and rigorously assessing forecasts using a515

combination of hindcasting, archived forecasts, and comparisons to simple baselines.516
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Box 1: Best practices for making and evaluating ecological forecasts526

1. Compare multiple modeling approaches527

Typically ecological forecasts use one modeling approach or a small number of related528

approaches. By fitting and evaluating multiple modeling approaches we can learn more529

rapidly about the best approaches for making predictions for a given ecological quantity530

(Clark et al. 2001, Ward et al. 2014). This includes comparing process-based (e.g.,531

Kearney and Porter 2009) and data-driven models (e.g., Ward et al. 2014), as well as532

comparing the accuracy of forecasts to simple baselines to determine if the modeled533

forecasts are more accurate than the naive assumption that the world is static (Jolliffe534

and Stephenson 2003, Perretti et al. 2013).535

2. Use time-series data when possible536

Forecasts describe how systems are expected to change through time. While some areas537

of ecological forecasting focus primarily on time-series data (Ward et al. 2014), others538

primarily focus on using spatial models and space-for-time substitutions (Blois et al.539
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2013). Using ecological and environmental time-series data allows the consideration of540

actual dynamics from both a process and error structure perspective (Tredennick et al.541

2016).542

3. Pay attention to uncertainty543

Understanding uncertainty in a forecast is just as important as understanding the544

average or expected outcome. Failing to account for uncertainty can result in545

overconfidence in uncertain outcomes leading to poor decision making and erosion of546

confidence in ecological forecasts (Clark et al. 2001). Models should explicitly include547

sources of uncertainty and propagate them through the forecast where possible (Clark et548

al. 2001, Dietze 2017). Evaluations of forecasts should assess the accuracy of models’549

estimated uncertainties as well as their point estimates (Dietze 2017).550

4. Use predictors related to the question551

Many ecological forecasts use data that is readily available and easy to work with.552

While ease of use is a reasonable consideration it is also important to include predictor553

variables that are expected to relate to the ecological quantity being forecast.554

Time-series of predictors, instead of long-term averages, are also preferable to match555

the ecologial data (see #2). Investing time in identifying and acquiring better predictor556

variables may have at least as many benefits as using more sophisticated modeling557

techniques (Kent et al. 2014).558

5. Address unknown or unmeasured predictors559

Ecological systems are complex and many biotic and abiotic aspects of the environment560

are not regularly measured. As a result, some sites may deviate in consistent ways from561

model predictions. Unknown or unmeasured predictors can be incorporated in models562
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using site-level random effects (potentially spatially autocorrelated) or by using latent563

variables that can identify unmeasured gradients (Harris 2015).564

6. Assess how forecast accuracy changes with time-lag565

In general, the accuracy of forecasts decreases with the length of time into the future566

being forecast (Petchey et al. 2015). This decay in accuracy should be considered when567

evaluating forecasts. In addition to simple decreases in forecast accuracy the potential568

for different rates of decay to result in different relative model performance at different569

lead times should be considered.570

7. Include an observation model571

Ecological observations are influenced by both the underlying biological processes572

(e.g. resource limitation) and how the system is sampled. When possible, forecasts573

should model the factors influencing the observation of the data (Yu et al. 2010,574

Hutchinson et al. 2011, Schurr et al. 2012).575

8. Validate using hindcasting576

Evalutating a model’s predictive performance across time is critical for understanding if577

it is useful for forecasting the future. Hindcasting uses a temporal out-of-sample578

validation approach to mimic how well a model would have performed had it been run579

in the past. For example, using occurance data from the early 20th century to model580

distributions which are validated with late 20th century occurances. Dense time series,581

such as yearly observations, are desirable to also evalulate the forecast horizon (see #6),582

but this is not a strict requirement.583
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9. Publicly archive forecasts584

Forecast values and/or models should be archived so that they can be assessed after new585

data is generated (McGill 2012, Silver 2012, Dietze et al. 2016). Enough information586

should be provided in the archive to allow unambiguous assessment of each forecast’s587

performance (Tetlock and Gardner 2016).588

10. Make both short-term and long-term predictions589

Even in cases where long-term predictions are the primary goal, short-term predictions590

should also be made to accommodate the time-scales of planning and management591

decisions and to allow the accuracy of the forecasts to be quickly evaluated (Dietze et al.592

2016, Tredennick et al. 2016).593
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