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Genomic signal processing (GSP) methods which convert DNA data to numerical values

have recently been proposed, which would offer the opportunity of employing existing

digital signal processing methods for genomic data. One of the most used methods for

exploring data is cluster analysis which refers to the unsupervised classification of patterns

in data. In this paper, we propose a novel approach for performing cluster analysis of DNA

sequences that is based on the use of GSP methods and the K-means algorithm. We also

propose a visualization method that facilitates the easy inspection and analysis of the

results and possible hidden behaviors. Our results support the feasibility of employing the

proposed method to find and easily visualize interesting features of sets of DNA data.
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ABSTRACT10

Genomic signal processing (GSP) methods which convert DNA data to numerical values have recently

been proposed, which would offer the opportunity of employing existing digital signal processing methods

for genomic data. One of the most used method for exploring data is cluster analysis which refers to the

unsupervised classification of patterns in data. In this paper, we propose a novel approach for performing

cluster analysis of DNA sequences that is based on the use of GSP methods and the K-means algorithm.

We also propose a visualization method that facilitates the easy inspection and analysis of the results

and possible hidden behaviors. Our results support the feasibility of employing the proposed method to

find and easily visualize interesting features of sets of DNA data.
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INTRODUCTION19

Cluster analysis is one of the most common and useful tools in pattern recognition, statistical data analysis,20

and exploratory data mining. It has many applications such as image segmentation, recognition of objects,21

document retrieval and others (Jain et al., 1999). The main advantage of employing clustering techniques22

is the possibility of finding a hidden structure in the data without the requirement of prior information or23

knowledge about it. A clustering task consists of dividing a dataset into groups (i.e., clusters) that share24

common properties or that are related in some way, according to given criteria and similarity metrics25

(Bailey, 1994).26

The most popular method used to perform cluster analysis is the K-means algorithm (Jain, 2010).27

K-Means clustering is an iterative partition technique which finds mutual exclusive spherical groups (Joshi28

and Kaur, 2013). The main advantage of the K-means algorithm is its ease of implementing and its linear29

time complexity (Jain et al., 1999). However, the K-means algorithm rely on the frequent computation of30

similarity metrics between all of the elements to be clustered and the proposed centroids of each of the31

k-clusters. Therefore, its application in practice is limited to the type of data for which those similarity32

scores can be computed in a efficient way.33

In bioinformatics, traditional methods for computing the similarity scores between sequences consist34

of applying DNA and amino acid sequence alignment methods, whose main objective is to identify35

portions of successive nucleotide or amino acids that are common in two or more sequences. They are36

then rearranged to easily visualize those similar portions (White et al., 2010). The comparison of two37

sequences is known as pairwise sequence alignment (PSA). However, more than two sequences are38

compared, the process is known as multiple sequence alignment (MSA) (Sharma, 2008).39

One of the most popular applications of PSA is phylogenetic analysis. It consists of establishing an40

evolutionary relationship among nucleic acid or protein families sequences. It is generally depicted by the41

use of dichotomous trees, for which the branches represent organism separations. Branches that are close42

to each other, suggest a similar organism. By contrast, the farthest branches indicates large differences43

(David, 2001). Some of the most popular algorithms for MSA are ClustalW (Thompson et al., 1994),44

Muscle (Edgar, 2004), T-COFFEE (Notredame et al., 2000), MAFFT (Katoh et al., 2005), and K-Align45

(Lassmann and Sonnhammer, 2005).46
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However, since these methods require large computational times for determining similarity among47

sequences, the use of K-means is not feasible for this application. Therefore, other approaches for DNA48

clustering have been proposed based on the use of these similarity computation methods. Two of the most49

popular algorithms for clustering biological sequences are the CD-HIT (Li and Godzik, 2006) and the50

UCLUST (Edgar, 2010). Both algorithms use a greedy approach for identifying representative sequences51

that can be used as a ”seed” to group all of the sequences that have a similarity score above a certain52

threshold. However, the computational resources necessary to perform the multiple sequence alignments53

remain the main challenge which limits the number of sequences that can be clustered.54

More recently, an approach for the analysis of genomic data that has captured the attention of55

researchers in recent years, is the use of genomic signal processing (GSP) which is based on the use56

of digital signal processing (DSP) theory and algorithms to analyze DNA or protein sequences. GSP57

methods require the transformation or mapping of the biological sequences, usually represented as a string58

of characters (i.e., A, T, G and C) to a numeric representation (i.e., a signal) that can be processed using59

mathematical functions (Kwan and Arniker, 2009). Examples of the use of GSP methods include the60

identification of protein-coding regions in DNA sequences (Das and Turkoglu, 2017; Mabrouk, 2017;61

Das and Turkoglu, 2015; Inbamalar and Sivakumar, 2012; Marhon and Kremer, 2011; Akhtar et al., 2008,62

2007; Rushdi and Tuqan, 2006; Yin and Yau, 2005; Kotlar, 2003; Anastassiou, 2000), finding for genomic63

repeats (Sharma et al., 2004), determining the structural, thermodynamic, and bending properties of DNA64

(Gabrielian and Pongor, 1996), biological sequence querying (Ravichandran et al., 2010), estimating of65

DNA sequence similarity (Mendizabal-Ruiz et al., 2017; Hoang et al., 2016; Yin et al., 2014; Borrayo66

et al., 2014; Cheever et al., 1989), and sequence alignment (Skutkova et al., 2015).67

One of the main advantages of GSP methods is that the analysis of the genomic data can be performed68

very quickly because of the optimal coding of the algorithms and the processors that have been designed69

specifically for those tasks.70

Cluster analysis of DNA signals through the use of GSP methods have been previously proposed Zhao71

et al. (2011); Hoang et al. (2015). However, these methods are based on the computation of a number72

of features from the Fourier spectrum which may reduce the dimensionality of the data and perhaps its73

discriminative power as compared with the use of the whole raw spectrum. Moreover, these works employ74

an hierarchical clustering algorithm instead of the K-means which properties allow us to generate plots75

that are different from the traditional dendrograms and that facilitate the exploration of the results.76

In this paper, we propose an approach for performing cluster analysis of DNA sequences that is based77

on the use of GSP methods and the K-means algorithm. We also present a visualization method that78

allows us to easily inspect and analyze the results. Our results indicate the feasibility of employing the79

proposed method to find and easily visualize interesting features of sets of DNA data.80

MATERIALS AND METHODS81

DNA sequence to signal82

In order to be able to employ the DSP methods in genomic data, it is necessary to first perform a83

transformation or mapping of the DNA sequences to be analyzed into numerical values representing the84

information contained by them. There currently exist several proposed DNA numerical representations.85

However, one of the most popular of this DNA to signal mapping is the Voss representation, which86

employs four binary indicator vectors, each meant to denote the presence of a nucleotide of each type at a87

specific location within the DNA sequence (Voss, 1992).88

Given a DNA sequence α (e.g., α = AT TCGCAT...) we can employ the Voss representation to

compute its corresponding fourth-dimensional DNA signal X̂α by applying Eq. (1)

X̂1(i) =

{

1 ifX(i) = A

0 otherwise

X̂2(i) =

{

1 ifX(i) = G

0 otherwise

X̂3(i) =

{

1 ifX(i) =C

0 otherwise

X̂4(i) =

{

1 ifX(i) = T

0 otherwise

(1)
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By applying the Discrete Fourier transform to the DNA signal X̂α , it is possible to compute the89

power spectral density (PSD) Ŝα which describes how power of a signal or time series is distributed over90

frequency 1. In our case, the PSD is a descriptor of the nucleotide patterns that may be present within the91

DNA sequence (Borrayo et al., 2014).92

The relatedness or similarity score of any two given DNA sequences α and β , can then be estimated93

by comparing the components of their PSDs d(Ŝα
, Ŝβ ) using a similarity metric (Mendizabal-Ruiz et al.,94

2017).95

DNA signal clustering96

K-means is a two step algorithm which performs the partitioning of a given set of observations {O1,O2, ...,97

Om} represented as a n-dimensional vector, into K ≤ m clusters. Each cluster is represented by a centroid98

C j with j ∈ [1,2, ...,k], which is defined as a point in a n-dimensional space generated by computing the99

average of each element of the vectors of the observations that belong to that cluster. In the first step, an100

observation is assigned to the cluster C j that scores the highest similarity to the point represented by the101

observation’s vector, according to a specific metric. In the second step, the centroids of the k clusters are102

updated, according to the observations assigned to them in the previous step. The best groups and their103

centroids are obtained by the minimization of the total sum of the distances between the observations and104

their corresponding centroids.105

Consider a set of PSD Ω = [ω1,ω2, ...,ωm] corresponding to a number m of different DNA sequences.106

The K-means algorithm is applied to the data in Ω by considering the power spectra as the vector that107

describes the DNA sequence in a n-dimensional space. In this work, we chose the Euclidean distance108

between these vectors as the similarity metric to be employed by the K-means algorithm. Since the109

K-means results depends on the initial labels assigned to each entry, which are assigned randomly, we110

repeat the computation 50 times and keep the best convergence score. As a result, we obtain a label for111

each element of Ω which defines the assigned cluster.112

DNA clusters visualization113

The raw results of the clustering procedure may be difficult to analyze and interpret. Therefore, we114

propose to produce graphical representations of the results that can easily provide an insight into the DNA115

sequence clustering results. The generation of the proposed graphical representation (Fig. 1) from the116

K-means clustering result, consists of the following steps:117

1. Compute a main centroid point M in the n- dimensional space corresponding to the geometrical

center of the K centroids location computed as:

M[i] =
1

k

k

∑
j=1

C j[i] (2)

where i ∈ [1,2, ..,n].118

2. For each cluster j, compute the Euclidean distance d j of its centroid C j with respect to the main

centroid M:

d j =

√

n

∑
i=1

(C j[i]−M[i])2
. (3)

3. Each centroid of the k clusters is sorted according to its distance to the main centroid and an angle

is assigned to them, according to its index ι ∈ [0,1, ...,k] in the sorted array:

θι = ι
2π

k
(4)

4. The main centroid M and the clusters centroids Cι are mapped into a two dimensional space φ ,119

where the main centroid corresponds to the origin (i.e., the point with coordinates (x = 0,y = 0)).120

1For further details regarding the formal definition of a PSD refer to Stoica and Moses (2005)
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5. Each centroid Cι is plotted as a point around the main centroid M point, according to its distance121

and its angle as computed by:122

xι = dι cos(θι) (5)

yι = dι sin(θι) (6)

6. We sort each set of DNA sequences in Ω assigned to a specific centroid Cι , according to the distance123

δz of each sequence z, with respect to its assigned centroid. The angle θz is also computed similarly124

to step 3.125

7. Finally, each sequence z is then plotted into φ by computing their correspondent coordinates as:126

xz = δz cos(θz)+ xι (7)

yz = δz sin(θz)+ yι (8)

Figure 1. Depiction of the DNA cluster visualization results structure proposed plot for a value of k=8.

Experimental Data127

To assess our DNA signal clustering method and the proposed visualization technique, we employed128

a set of 141 DNA sequences corresponding to the Cytochrome c oxidase I gene (COXI) marker129

belonging to 131 different species obtained from the Kyoto Encyclopedia of Genes and Genomes130

(KEGG) K02256 (Kanehisa et al., 2017, 2016; Kanehisa and Goto, 2000). We selected the COXI131

marker because it performs a fundamental role in the terminal oxidative step for energy metabolism132

(Adkins and Honeycutt, 1994) and is a very well known marker commonly used for the identifica-133

tion of species (Patwardhan et al., 2014). In the selected set, a total of 112 organisms have only134

one copy. However, there are some species represented by more than one sequence. This is the135

case of the Yak, Bos grunniens (bom:102267288, bom:102278784, bom:22161768), a Bat, Myotis136
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davidii (myd:102771221, myd:22203924), the Spotted green pufferfish, the Pacific giant oyster, Cras-137

sostrea gigas (crg:109618508, crg:109618509, crg:808829), Tetraodon nigroviridis (tng:BAE79219,138

tng:GSTEN00036010G001), Yarrowia lipolytica (yli:YalifMp03, yli:YalifMp05, yli:YalifMp06), Loa loa,139

the parasite resonsible for filariasis disease (loa:COX1, loa:LOAG 19059), the Castor oil tree, Ricinus com-140

munis (rcu:10221395, rcu:8272741), and the picoplanktons, Chlamydomonas reinhardtii (ota:OstapMp24,141

ota:OstapMp40), Bathycoccus prasinos (bpg:BathyMg00110, bpg:BathyMg00240), and Micromonas142

commoda (mis:MicpuN mit45, mis:MicpuN mit7). It is important to note that all possible representations143

were considered during the experiments and that the selected organisms belong to the total spectrum of144

the Eukaryote domain.145

The selected organisms were manually organized according to their respective taxon, based on the146

Catalogue of Life (Roskov et al., 2017), and were divided into 7 kingdoms, 17 phyla, and 35 classes. To147

easily identify the different categories, we employed different colors and symbols as described in Fig. 2148

RESULTS149

We employed the proposed method to evaluate how the experimental dataset is clustered, when using150

different values of k. While there may be many different criteria to select the number of clusters to151

be employed, in this work, we examine the results that are obtained employing three values that we152

consider interesting: (i) k = 6 which correspond to the number of different kingdoms in the selected153

dataset, (ii) k = 17 which corresponds to the number of different phyla in the dataset, and (iii) k = 35154

which corresponds to the total number of classes in the selected dataset. The length of the PSD of each155

sequence to be compared was 4100.156

Figure 3 depicts the results obtained when the dataset was grouped into six clusters.157

It can be noted that the majority of the Chordates (blue-edge squares) are grouped together in C−2, a158

small proportion of them (the Bat Myotis davidii, two copies of the Yak Bos grunniens and the second159

copy of the Spotted Green Pufferfish Tetraodon nigroviridis, are grouped in C−4 along with a plant (the160

second copy of the Castor oil tree Ricinus communis), and the rest are scattered in C−3 and C−6. It is161

remarkable that all of the Tracheophytan plants (green-edge squares) with the exception of Castor Oil162

tree R. communis are grouped in C−1 while the Chlorophyta plants (mostly Picoplanktons defined by163

green-edge circles) are grouped in C−6 along with other organisms. The formation of two separated164

groups for the plants may be explained by the fact that despite belonging to the same kingdom, these phyla165

share very little morphology Simpson (2006). Note that the all of the Ascomycota fungi (yellow-edge166

squares) are grouped together in cluster C−3, while the single organism of the Basidiomycota phylum167

(yellow-edge circle) is clustered in a separate group.168

All Arthropods (blue-edge right oriented triangles) are contained in the cluster C−5. Note that the169

length of all of the organisms with respect to the centroid of the cluster are smaller in comparison with the170

other organisms and their corresponding centroids, which indicate that arthropods in the selected dataset171

are all very far away from every other organism, something that is consistent with the Hebert et al. (2003)172

findings on COXI divergence analysis.173

Figure 4 depicts the results obtained when the dataset was grouped into 17 clusters.174

Note that cluster C−6 is a refined version of C−5 in K = 6, since one of the Cnidarians the Fresh-175

water Polyp Hydra vulgaris (red-fill star), the Branchipod Water Flea Daphnia pulex (red-fill right-facing176

triangle), and the Hemichordate Acorn worm Saccoglossus kowalevskii (left-facing triangle) have moved177

to other clusters, leaving only insects in this group. The two Cnidarians and the Hemichordate are now178

together in C−4, while the Branchipod is in C−16179

Note that for this value of k, fungi grouped into three well-defined clusters (C−1, C−2, and C−15),180

with the exception of the Basidiomycota Corn smut Ustilago maydis (yellow-edge circle) which keeps its181

grouping with other organisms. It is interesting that the two members of C−1 are two of the copies of182

Yarrowia lipolytica (yellow-edge square), while the other fungi in C−15 are of heterogeneous classes.183

The Tracheophyta plants cluster C−7 remains with the same organisms of classes Magnoliopsida184

(green-edge squares) and Liliopsida (green-edge red-fill square), while the group of the Chlorophyta185

plants separated the two copies of the Picoplanktom Bathycoccus prasinos (green-edge red-fill circle) that186

end up together in C−10, and the Picoplankton Chlamydomonas reinhardtii (green-edge circle) which187

is grouped in C-4 with other organisms. The second copy of the Castor oil tree remained with the same188

organisms in C−14, which is exactly the same as C−4 in the K = 6.189
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Figure 2. Depiction of the selected organisms and their correspondence in the Tree of Life. The

respective hierarchic markings for each class is shown next to them. *These two organisms Galdieria

sulphuraria (gsl:JL72 p19) and Chondrus crispus (ccp:ChcroMp03), a Cyanoalgae thermoacidophilic

and Irish moss, respectively, do not have a reported Kingdom in the Tree of Life and were reported with

the same Kingdom label ’Unknown’. A detailed list of names and their KEGG entries is in Table S1
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Figure 3. DNA clustering for marker COXI with k = 6

The fact that the two copies of the Picoplankton B. prasinos (C−10) are both clustered together apart190

from the other plants is because they are either very recent orthologue duplications or have not been verified191

accurately, as they have both the same sequence entry in NCBI database (SequenceID:NC 023273.1)192

reported at different loci in its mitochondrial genome (GeneID:18158061 and GeneID:18158101).193

Chordates are separated into four clusters (C − 5, C − 8, C − 11, and C − 13) with all Hominids194

grouped together in C−5. C−8 is formed by two reptiles, one anfibious, and the fish, both Actinopterygii195

(blue-edge yellow-fill square) and Sacropterygii (blue-edge cyan-fill square), C−13 is formed with all196
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the birds (blue-edge red-fill square), some reptiles (blue-edge blue-fill square), and the Naked Mole-rat197

Heterocephalus glaber, and C−11 with the rest of the Chordates in a very compact group. Note that the198

result of the birds grouped with the reptiles may be explained by the evolutive theory that claim that the199

birds are descendant of ancient saurid reptiles. It is also interesting that reptiles tend to group with other200

organisms and not necessarily between them. This could be the result of high diversity of COXI among201

reptiles, as reported by Vasconcelos et al. (2016).202

Cluster C−9 contains two Secernentea patogens of the Onchocercidae order, Lymphatic Filaria Brugia203

malay and Eye Filaria Loa loa, both parasites of humans and other animals and have a clear evolutive204

difference defined by the enviroment in which they live in, compared with the other two Secernentea of205

the free-living Rhabditida order Caenorhabditis elegans and Caenorhabditis briggsae. Our results agree206

with those of Prosser et al. (2013), where successfull COXI operational taxonomic units were developed207

to differenciate between parasitic and free-living taxa.208

Note that one of the organisms with no assigned kingdom, the Cyanoalgae thermoacidophillic209

Galdieria sulphuraria generated its own cluster C−12.210

It is interesting that some clusters are more compact than others (e.g., C−11 and C−6, vs. C−13211

and C−7). The compactness of a cluster indicates the degree of relationship of the organisms belonging212

to it with respect to a common reference (i.e., how similar they are between them).213

Figure 5 depicts the results obtained when the dataset was grouped into 35 clusters.214

Note that with some exceptions, most of the data in K = 35 is more clearly clustered together by their215

respective class and some were downright to their order or even lower phylogenies. For the plants, new216

clusters were generated: C−12 with the two copies of Pikoplanctom M. commoda, C−34 with the two217

copies of Picoplancton Ostreococcus tauri in the other, C−10 with the Japanese rice Oryza sativa japonica218

and the Moss Physcomitrella patens, C−27 with the Picoplankton C. reinhardtii (which previously was219

the only plant clustered in C−4 for k = 17). Originally in K = 6, Picoplanktons were grouped together220

with other organisms, but isolated from the other plants. At this level of cluster decompositio, we can221

observe that Picoplanktons are all separated, probably because they are unicellular organisms and will222

present large variation in the COXI marker (Lin et al., 2009).223

C−17 and C−33 are well defined clusters of birds. C−20 is a group of flies from the Diptera class,224

the remaining non-fly Diptera, Lepidoptera and Hemiptera are grouped in C−3, while C−32 includes225

the Red Flour Beetle Tribolium castaneum and the Red Fire Ant Solenopsis invicta.226

C−13 contains five out of the seven Artiodactylians, C−22 corresponds to the hominidies which227

did not change since K = 7 and the first and closest compact cluster C− 26 corresponds to all of the228

remaining mammals.229

A very interesting feature is that C−29 is the same multi-class cluster that appeared in K = 17 and K =230

6 conformed by the Bat M. davidii, both Yak B. grunniens copies, the second Castor oil tree R. communis231

copy, and the Spotted Green Pufferfish T. nigroviridis. When we explored the characteristics of those gene232

sequences, we found that all of them are significantly below the average gene size 1,545.8±124.5bp.233

The NCBI database reported that all of them are not mitochondrial genes, but the product of nuclear234

genomic sequencing where scaffold primary assembly showed those fractions with alignment homology235

reported to COXI, but not proven genetic activity. We also found that both the second and third copies of236

Y. lipolytica in C−4 are significantly above the average COX1 gene size. These last two genes correspond237

to coxI-i5 and coxI-i7 that contain unusually large exons 5 and 7 respecively (NCBI GeneID:802596238

Sequence entry:NC 002659.1 https://www.ncbi.nlm.nih.gov/gene/802596), which gives them the extra239

sequence length in the KEGG database.240

The two Alligators A. sinensis and A. mississippiensis (blue-edge blue-fill squares) generated their241

own cluster in C−16. The fellow Reptiles, the Green Sea Turtle Chelonia mydas, the Burmese Python242

Python bivittatus and the Lizzard Anolis carolinensis, clustered together with both frogs Xenopus laevis243

and Silurana tropicalis, the Zebrafish Danio rerio and the cartilaginous fish Australian ghostshark244

Callorhinchus milii (blue-edge magenta-fill square) in C−30, leaving C−19 as a better defined cluster245

with most ray-finned fish and only the Gekko japonicus barging in the group. The Chinese Softshell Turtle246

Pelodiscus sinensis created its own cluster in C−25.247

Clusters C−18, C−6, C−11, C−27, C−2, C−9, C−25 and C−7 are one-organism clusters. That248

may be explained because these organisms are the most external with respect to their classes or phyla.249

For instance, in C− 18 we find the Cyanoalgae thermoacidophillic G. sulphuraria, while in C− 6 we250

find the most outside group of the Metazoans that correspond to Porifera phyla, the Sponge Amphimedon251
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Figure 4. DNA clustering for marker COXI with k = 17

queenslandica. Moreover, K = 35 cluster distance spans from 276 to 653; just before the second half of252

the average distance, at 448 lies all of the lone clusters and most of the two-sequence cluster with the sole253

exception of the unpaired COX1 gene sequence size C−29.254

An interesting property observed in our experiments, is that as we increase the number of groups, the255

data corresponding to the kingdoms are separated at different rates. Figure 6 depicts how the kingdoms256

are decomposed into a number of groups with respect to the number of clusters. Note that Metazoans257

separate faster as compared to Fungi and Plants. This may be explained by the large number of organisms258
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Figure 5. DNA clustering for marker COXI with k = 35

belonging to this kingdom which have a greater chance to group together due to their high class similarities.259

Note that the second largest kingdom of Plants decompose faster than Fungi, which is the third largest260

group.261

To determine the validity of the results, we computed centroids for true kingdoms and we compare262

these centroids to those discovered with our method. Figure 7 depicts the mean square distances between263

each cluster centroid and the sequences assigned to that cluster by the proposed method using K = 6, and264

the mean square distances between a cluster centroid generated with the sequences corresponding to each265
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Figure 6. K-means decomposition analysis

of the six kingdoms were compared. Note that the sequences belonging to the plants kingdom has a large266

similarity with respect to C−1 which contains most of the plants. Similarly, the Metazonans kingdom267

have a large similarity with C − 2 which is conformed by the majority of the Chordates. The Fungi268

kingdom depicts a large similarity with respect to C−3 which contains most of the fungi. Moreover, note269

that the other kingdoms depict a larger distance with respect to the all the clusters.270

20
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120
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Metazoa

Fungi

Plant

SAR

Chromista

Kingdom 4

Figure 7. Mean square distances between each cluster centroid and the sequences assigned to that

cluster by the proposed method using K = 6, and the mean square distances between a cluster centroid

generated with the sequences corresponding to each of the six kingdoms.
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Table 1. Performance comparison of STARS with respect to ClustalW and UCLUST on sets of different

sizes of COXI sequences.

Number

of sequences

STARS

K = 6

(s)

STARS

K = 17

(s)

STARS

K = 35

(s)

ClustalW

(s)

UCLUST

(s) / No. of resulting clusters

8 0.034 - - 2.8 1 / 8

17 0.038 0.071 - 9.85 1 / 17

35 0.071 0.098 0.167 32.68 1 / 35

70 0.160 0.188 0.279 130.91 1 / 70

141 0.383 0.655 0.770 485.02 1 / 138

Table 2. Performance comparison of STARS with respect to UCLUST on sets of different sequences.

Dataset
Number

of sequences

Average

sequence length

Number

of clusters

Sequence

to PSD transform

(s)

STARS

(s)

UCLUST

(s)

A 31 16,695 6 1.92 0.70 1

B 38 1,407 4 0.27 0.03 1

C 116 7,154 17 3.05 1.69 1

D 34 27,567 12 3.38 1.23 12

E 30 3,361,393 8 392.98 281.70 -

Comparison with other cluster methods271

We evaluated the performance of the MATLAB implementation of proposed algorithm ”Signal Tool for272

the Analysis of the Relationship between Sequences” (i.e., STARS) in terms of computational time with273

respect to ClustalW and UCLUST. While ClustalW is not strictly a clustering method, we used it for274

comparison because it is one of the most commonly used tools to evaluate the similarity of multiple275

sequences. We employed a CPU Intel XEON E5-1650 at 3.50GHz with 16 GB RAM 2. Table 1 list the276

processing time in seconds for the three methods for sets of 8, 17, 35, 70, and 141 sequences of COXI.277

The time required to transform the 141 sequences from strings of characters to their corresponding PSDs278

was 0.921 seconds and it is not considered in Table 1 since this is performed only one time. Note that279

the time required by STARS is significantly smaller with respect to ClustalW. UCLUST is time-constant280

at 1 second for every experiment, however, note that the number of clusters generated by this method281

was practically the same number of sequences (i.e., the method assigns a cluster to each sequence). This282

is because UCLUST requires a sequences identity range of at least 40% for amino acids and 65% for283

nucleotides (Edgar, 2010).284

Table 2 list the processing times of five datasets of different number of sequences with different length285

where UCLUST generated a number of clusters different from one cluster for each sequence. Dataset A286

consisted of 31 sequences of Mammals with average length of 16,695 nucleotides labeled into to 7 groups;287

Dataset B consisted of 38 sequences of Influenza A viruses with average length of 1,407 nucleotides288

labeled into to six groups; Dataset C consisted of 116 sequences of Human Rhinovirus with average length289

of 7,154 nucleotides labeled into four groups; Dataset D consisted of 34 Coronavirus sequences with290

average length of 27,567 nucleotides labeled into six groups; and Dataset E consisted of 30 sequences of291

Bacteria with average length of 3,361,393 labeled into 8 groups. Note that the computational time required292

for performing the clustering of the sequences’ PSD data is smaller when compared with UCLUST for293

the same number of clusters for datasets A, B, and D. In the case of dataset E, we could not achieve a294

result using UCLUST (i.e., the program throws a fatal error) indicating that the data was too big.295

2When analyzing the processing times of the compared methods, it is important to consider that the STARS was implemented

in MATLAB without any parallelization, in comparison with the highly optimized implementations of ClustalW and parallelized

UCLUST
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DISCUSSION296

Numerous reports have discussed the use of different molecular markers to determine the appropriate297

phylogenetic divergence at many levels of the tree of life. For our experiments, we considered molecular298

markers previously employed in phylogenetic analysis for the evaluation of the differentiation capability299

of DNA sequences (Hoang et al., 2015) (e.g., COXI, mtDNA, influenza A virus, human rhinovirus,300

coronavirus and bacterial genomes). In this work, we focused on the Mitochondrial Cytochrome C301

Oxidase Subunit I (COXI) coding gene as a marker to evaluate our approach for group clustering of302

relevant similar sequences. The COXI gene has been proposed as one of the most relevant marker genes303

for molecular taxonomy (Patwardhan et al., 2014). While no single gene is even close to establishing the304

systematic classification of organisms, the COXI gene is one of the most closely related to the consensus305

evolutionary divergence. Therefore, it is important to wrap our results not as how the Catalogue of Life306

(Roskov et al., 2017) classification should become, but as how accurate our marker could be. The selection307

(COXI) was based on three criteria: (i) the marker must code for proteins since it has been already proven308

that these type of markers have steadier mutation rates, (ii) the marker should have already been employed309

in a wide range of the tree of life, at least for eukaryotes, and should be able to discriminate for the310

intended groups, and (iii) the marker should have a homogeneous length and have a minimum number311

of reported copies in the selected database, since both duplication events and large indels may bias new312

cluster formation. To rule out any bias in the clustering of organisms with respect to their downloaded313

sequences, we incorporated all of their stored copies.314

A possible expected result was that the clusters generated for each selected value of k would correspond315

to the organization depicted in Fig. 2. However, since the K-means method promote the generation of316

centroids in highly populated regions of the feature space, it is more likely to obtain clusters of organisms317

that are highly related among them, instead of organisms related by possible common ancestors or groups318

with a small number of less homogeneous organisms (e.g., primates formed a cluster early in small k319

values and kept together at larger numbers of k).320

The COXI gene is one of the most accepted general markers to establish divergence (Patwardhan321

et al., 2014). It spans from Phylum to Class, and when using introns in selected species, it has been shown322

to properly classify Genera and Species (Zardoya and Meyer, 1996). Our results were remarkably good323

in clustering up to the Family level by using only the coding region and without the need to pretreat or324

manually curate the sequences.325

Hebert et al. (2003) established a divergence rate from 0.01% to 64 % with a median of 8 % across a326

number of species on 11 Metazoan phyla. In that study, Arthropod (with the exception of Lepidoptera327

and Diptera class) and Plathelminth phyla displayed the greatest divergences, while Chordata showed the328

second lowest divergence. Our results showed high cohesiveness, particularly for Chordates, where they329

quickly established stable, compact clusters, predominantly with their own classes. Since the downloaded330

data for each phylum or class was not balanced, we had the opportunity to evaluate how the sequences331

are clustered in a real-life condition. For example, when sampling whole ecosystems (i.e. microbiomes),332

bacterial populations will not be balanced across their species, but will show predominant phylogenetic333

diversity toward certain groups. Our results show that our presented method is very sensitive to both,334

the relative abundance of tight clusters, and the K-number. Far from being a disadvantage, we found335

that changing the number of clusters in an experiment may provide new insights about the relationship336

between the various sequences.337

Sequence mutations of COXI coding regions have not been shown to distribute bias towards any338

segment or region, something like what happens to other markers such as the ribosomal 16S gene, where339

changes on highly conserved regions are very few and slow, while changes on hypervariable regions340

show rapid changes that can determine divergence along several phylogenetic groups, according to which341

hypervariable region is being evaluated. If this would be the case, K-Means clustering may be adapted to342

steps of low mutation rates before high mutation rate regions. COXI gene mutations spanning all of the343

sequence may increase the amount of spurious clustering due to converging hotspots.344

The presence of a spurious cluster that is gathered together by their size, is an indication of the345

need to filter out sequences with large indels. Despite such mishaps, the proposed method is capable of346

performing an analysis of relationships between multiple DNA sequences with minimum handling and347

without the need of sequence alignment, which results in less human and computational time compared to348

traditional methods. We tested this method with a number of markers (i.e. mammal mtDNA, influenza349

A virus, human rhinovirus, coronavirus, and bacterial genomes) previously employed for Fourier DNA350
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spectra phylogenetic analysis (Hoang et al., 2015), the results are shown in the supplementary material of351

this article. Briefly, most sequences evaluated under our method cluster properly and consistently with352

previous reports (Hoang et al., 2015). Also consistent with COXI results, the most evident aspect is the353

tendency to prioritize division of heavily populated groups.354

The proposed method may be used to evaluate the capability of a marker or gene to differentiate355

between organisms at different levels, to identify subgroups within a set of organisms, and perform356

classification of organisms with respect to known sequences or classification of sections of a DNA357

sequence. Furthermore, this method can also be used to perform similar analysis with amino acid358

sequences.359

We have demonstrated that it is possible to group DNA sequences based on their frequency components.360

It is the subject of future work to identify whether distinct frequency bands amount to greater weight in361

the clustering of sequences.362

The proposed method has been coded and executed in MATLAB. The source code and the datasets363

employed for the results presented in this paper are available at Github364

CONCLUSION365

We have presented a method for performing cluster analysis of DNA sequences that is based on the use366

of GSP methods and the K-means algorithm. We also proposed a visualization method that allows us367

to easily inspect and analyze the results and possible nontrivial relationships. Our results indicate the368

feasibility of employing the proposed method to find and easily visualize interesting features of sets of369

DNA data.370
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