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Background: The recent proliferation of large amounts of biodiversity transcriptomic data has resulted

in an ever-expanding need for scalable and user-friendly tools capable of answering large scale molecular

evolution questions. FUSTr identifies gene families involved in the process of adaptation. This is a tool

that finds genes in transcriptomic datasets under strong positive selection that automatically detects

isoform designation patterns in transcriptome assemblies to maximize phylogenetic independence in

downstream analysis.

Results: When applied to previously studied spider transcriptomic data as well as simulated data, FUSTr

successfully grouped coding sequences into proper gene families as well as correctly identified those

under strong positive selection in relatively little time.

Conclusions: FUSTr provides a useful tool for novice bioinformaticians to characterize the molecular

evolution of organisms throughout the tree of life using large transcriptomic biodiversity datasets and

can utilize multi-processor high-performance computational facilities.
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AbstUact

BackgUound:  The recent  proliferation of large amounts of  biodiversity transcriptomic

data  has  resulted  in  an  ever-expanding  need  for  scalable  and  user-friendly  tools  capable  of

answering large scale molecular evolution questions. FUSTr identifies gene families involved in

the process of adaptation. This is a tool that finds genes in transcriptomic datasets under strong

positive  selection  that  automatically  detects  isoform  designation  patterns  in  transcriptome

assemblies to maximize phylogenetic independence in downstream analysis.

Results:  When  applied  to  previously  studied  spider  transcriptomic  data  as  well  as

simulated data, FUSTr successfully grouped coding sequences into proper gene families as well

as correctly identified those under strong positive selection in relatively little time.

Conclusions: FUSTr provides a useful tool for novice bioinformaticians to characterize

the  molecular  evolution  of  organisms  throughout  the  tree  of  life  using  large  transcriptomic

biodiversity datasets and can utilize multi-processor high-performance computational facilities.
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Elucidating  patterns  and  processes  involved  in  the  adaptive  evolution  of  genes  and

genomes of organisms is fundamental to understanding the vast phenotypic diversity found in

nature.  Recent  advances  in  RNA-Seq  technologies  have  played  a  pivotal  role  in  expanding

knowledge of molecular evolution through the generation of an abundance of protein coding

sequence data across all levels of biodiversity (Todd, Black & Gemmell, 2016). In non-model

eukaryotic systems, transcriptomic experiments have become the de facto approach for functional

genomics in lieu of whole genome sequencing. This is due largely to lower costs, better targeting

of  coding  sequences,  and  enhanced  exploration  of  posttranscriptional  modifications  and

differential gene expression (Wang, Gerstein & Snyder, 2009). This influx of transcriptomic data

has resulted in a need for scalable tools capable of elucidating broad evolutionary patterns in

large biodiversity datasets.

Billions of years of evolutionary processes gave rise to remarkably complex genomic

architectures  across  the  tree  of  life.  Numerous  speciation  events  along  with  frequent  whole

genome duplications have given rise to a myriad of multigene families with varying roles in the

processes of adaptation (Benton, 2015). Grouping protein encoding genes into their respective

families  de novo has remained a difficult task computationally. This typically entails homology

searches in large amino acid sequence similarity networks with graph partitioning algorithms to

cluster  coding  sequences  into  transitive  groups  (Andreev  &  Racke,  2006).  This  is  further

complicated in  eukaryotic  transcriptome datasets  that  contain several  isoforms via alternative

splicing (Matlin, Clark & Smith, 2005). Further exploration of Darwinian positive selection in

these  families  is  also  nontrivial,  requiring  robust  Maximum  Likelihood  and  Bayesian

phylogenetic approaches. 

Here  we  present  a  fast  tool  for  finding  Families  Under  Selection  in  Transcriptomes

(FUSTr),  to  address  the  difficulties  of  characterizing  molecular  evolution  in  large-scale

transcriptomic datasets. FUStr can be used to classify selective regimes on homologous groups of
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phylogenetically independent coding sequences in transcriptomic datasets and has been verified

using large transcriptomic datasets and simulated datasets. The presented pipeline implements

simplified user experience with minimized third-party dependencies, in an environment robust to

breaking changes to maximize long-term reproducibility. 

While FUSTr fills a novel niche among sequence evolution pipeline, a recent tool, VESPA

(Webb et al., 2017), performs several similar functions. Our tool differs in that it can accept de

novo transcriptome assemblies that are not predicted ORFs. VESPA requires nucleotide data to be

in complete coding frames, and does not filter isoforms or utilize transitive clustering to deal with

domain chaining. Additionally, VESPA makes use of slow maximum likelihood methods for tests

of selection and provides no information about purifying selection, whereas FUSTr utilizes a Fast

Unconstrained  Bayesian  Approximation  (FUBAR)  (Murrell  et  al.,  2013)  to  analyze  both

pervasive and purifying regimes of selection.

Implementation

FUSTr is written in Python with all data filtration, preparation steps, and command line

arguments/parameters  for  external  programs  contained  in  the  workflow  engine  Snakemake

(Köster  &  Rahmann,  2012).  Snakemake  allows  FUSTr  to  operate  on  high  performance

computational facilities, while also maintaining ease of reproducibility. FUSTr and all third-party

dependencies  are  distributed  as  a  Docker  container  (Merkel,  2014).   FUSTr  contains  ten

subroutines that takes transcriptome assembly FASTA formatted files from any number of taxa as

input and infers gene families that are either under diversifying or purifying selection. A graphical

overview of this workflow and parallelization scheme has been outlined in Fig. 1.

Data Preprocessing The first subroutine of FUSTr acts as a quality check step to ensure

input files are in valid FASTA format. Spurious special characters resulting from transferring text
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files  between  multiple  operating  system architectures  are  detected  and  removed  to  facilitate

downstream analysis. 

Isoform detection Header patterns are analyzed to auto-detect whether the given assembly

includes  isoforms  by detecting  naming  convention  redundancies  commonly  used  in  isoform

designations, in addition to comparing the header patterns to common assemblers such as Trinity

de  novo assemblies  (Haas  et  al.,  2013)  and  Cufflinks  reference  genome  guided  assemblies

(Trapnell et al., 2014). 

Gene  prediction  Coding  sequences  are  extracted  from transcripts  using  Transdecoder

v3.0.1 (Haas et al., 2013). Transdecoder predicts Open Reading Frames (ORFs) using likelihood-

based approaches.  A single  best  ORFs for  each transcript  with predicted  coding sequence is

extracted  providing  nucleotide  coding  sequences  (CDS)  and  complementary  amino  acid

sequences. This facilitates further analyses requiring codon level sequences while using the more

informative amino acid sequences for homology inferences and multiple sequence alignments. If

the data contain several isoforms of the same gene, at this point only the longest isoform is kept

for further analysis  to ensure phylogenetic independence.  The user may customize the use of

Transdecoder  by changing minimum coding sequence  length  (default:  30  codons)  or  strand-

specificity (default: off). Users also have the option to only retain ORFs with homology to known

proteins through a BLAST search against Uniref90 or Swissprot in addition to searching PFAM

to identify common protein domains.

Homology  search  All  coding  sequences  are  assigned  a  unique  identifier  and  then

concatenated into one FASTA file.  Homology of peptide sequences  is  assessed via BLASTP

acceleration through DIAMOND (v.0.9.10) with an e-value cutoff of 10-5. 

Gene Family inference  The resulting homology network is grouped into putative gene

families using transitive clustering with SiLiX v.1.2.11, which is faster and has better memory

allocation than other clustering algorithms such as MCL, and greatly reduces the problem of
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domain chaining (Miele, Penel & Duret, 2011). Sequences are only added to a family with 35%

minimum identity, 90% minimum overlap, with minimum length to accept partial sequences in

families as 100 amino acids, and minimum overlap to accept partial sequences of 50%. These are

the optimal configurations of SiLiX (Bernardes et al., 2015), but the user is free to configure

these options. 

Multiple  sequence  alignment  and  phylogenetic  reconstruction  Multiple  amino  acid

sequence  alignments  of  each  family  are  then  generated  using  the  appropriate  algorithm

automatically detected using MAFFT v7.221 (Katoh & Standley, 2013). Spurious columns in

alignments  are removed with Trimal  v1.4.1’s  gappyout  algorithm (Capella-Gutiérrez & Silla-

Martínez,  2009).  Phylogenetic  reconstruction  of  each  family’s  untrimmed  protein  multiple

sequence  alignment  using  FastTree  v2.1.9  (Price,  Dehal  &  Arkin,  2010).  Trimmed  multiple

sequence codon alignments are then generated by reverse translation of the amino acid alignment

using the CDS sequences. 

Tests for selective regimes Families containing at least 15 sequences have the necessary

statistical power for tests of adaptive evolution (Wong et al., 2004). Tests of pervasive positive

selection at site specific amino acid level are implemented with FUBAR (Murrell et al., 2013).

Unlike codeml, FUBAR allows for tests of both positive and negative selection using an ultra-fast

Markov chain Monte Carlo routine that averages over numerous predefined site-classes. When

compared to codeml, FUBAR performs as much as 100 times faster (Murrell et al, 2013). Default

settings for FUBAR, as used in FUSTr, include twenty grid points per dimension, five chains of

length 2,000,000, with the first 1,000,000 used as burn-in, 100 samples drawn from each chain,

and concentration parameter of the Dirichlet prior set to 0.5.

Users have the option to also run tests for pervasive selection using the much slower

CODEML v4.9 (Yang, 2007) with the codon alignments and inferred phylogeny. Log-likelihood

values of codon substitution models that allow positive selection are then compared to respective
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nested  models  not  allowing positive  selection  (M0/M3,  M1a/M2a,  M7/M8, M8a/M8),  Bayes

Empirical  Bayes  (BEB)  analysis  then  determines  posterior  probabilities  that  the  ratio  of

nonsynonymous to synonymous substitutions (dN/dS) exceeds one for individual amino acid sites.

Final output and results The final output is a summary file describing what gene families 

were detected, and those that are under strong selection and the average dN/dS per family. A CSV 

file for each family under selection is generated giving the following details per codon position of

the family alignment : alpha mean posterior synonymous substitution rate at a site; beta mean 

posterior non-synonymous substitution rate at a site; mean posterior beta-alpha; posterior 

probability of negative selection at a site; posterior probability of positive selection at a site; 

Empiricial Bayes Factor for positive selection at a site; potential scale reduction factor; and 

estimated effective sample site for the probability that beta exceeds alpha.

Validation

We tested FUSTr on six published whole body transcriptome sequences from an adaptive

radiation  of  Hawaiian  Tetragnatha spiders  (NCBI  Short  Read  Archive  Assesion  numbers:

SRX612486, SRX612485, SRX612477, SRX612466, SRX559940,  SRX559918)  assembled

using the same methods from the original publication (Brewer et  al.,  2015).  Spider genomes

contain numerous gene duplications lending to gene family rich transcriptomes. Additionally, this

adaptive radiation has been shown to facilitate strong, positive, sequence-level selection in these

transcriptomes (Brewer et al., 2015). This dataset provides an ideal case use for FUSTr. 

A total of 273,221 transcripts from all six Tetragnatha samples were provided as input for

FUSTr, a total of 4,258 isoforms were removed leaving 159,464 coding sequences for analysis

after gene prediction. The entire analysis ran in 13.7 core hours, completing within an hour when

executed  on  a  24-core  server. Time  of  completion  and  memory usage  for  each  of  FUSTr’s
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subroutines performance in this analysis is reported in Table 1. FUSTr recovered 134 families

containing at least 15 sequences, of these 46 families contained sites under pervasive positive

selection while all  families also contained sites under strong purifying selection.  This can be

contrasted to the analysis by Brewer et al.  (2015) which found 2,647 one-to-one six-member

orthologous loci (one ortholog per each of the same samples), with 65 loci receiving positive

selection based on branch-specific analysis. The original analysis did not allow paralogs whereas

FUSTr does not reconstruct one-to-one orthogroups but entire putative gene families, and the

selection  analysis  utilized  by  FUSTr is  site-specific  and  not  branch-specific.  Thus,  it  is  not

expected  that  the  results  from FUSTr  would  perfectly  match  up  with  the  original  analysis,

however five of the 46 families FUSTr found to be under selection included loci from Brewer et

al.’s (2015) original 65 under selection based on branch-specific analysis.

The same 273,221 transcripts were entered as input for VESPA as a comparative analysis.

Because VESPA cannot filter Open Reading Frames in transcripts, it was unable to infer proper

coding sequences. In its first phase of cleaning input fasta files, 86,269 transcripts were wrongly

removed for having “internal stop codons” via improper reading frame inference, and 182,000

transcripts  were  removed  due  to  “abnormal  sequence  length”.  Approximately  98%  of  the

transcripts were removed in the first phase of VESPA with no gene predictions, rendering further

analysis unnecessary for proper comparison of the performance of the two pipelines.   

We further validated FUSTr by utilized coding sequences from simulated gene families

with predetermined selective  regimes.  We used EvolveAGene (Hall,  2007)  on 3,000 random

coding sequences of a random length of 300-500 codons to generate gene families containing 16

sequences  evolved  along  a  symmetric  phylogeny  each  with  average  branch  lengths  chosen

randomly between 0.01-0.20 evolutionary units. Selective regimes with a selection modifier of

3.0 were randomly chosen for each family so that a random 10% partition of the family receive

pervasive  positive  selection,  purifying  selection,  or  constant  selection.  All  other  settings  for
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EvolveAGene were left as their defaults: the probability of accepting an insertion was set to the

default 0.1, the probability of accepting a deletion defaulted to 0.025, the probability of accepting

a  replacement  was  left  at  0.016,  no  recombination  was  allowed.  A visual  schema  for  these

simulations can be found in Fig. 2.

  The  resulting  48,000  simulated  sequences  were  used  as  input  for  FUSTr  with

Transdecoder set to be strand-specific. FUSTr correctly recovered all 3,000 families, and all 975

that  were randomly selected to  undergo strong positive selection were correctly classified as

receiving pervasive positive selection. Additionally, the families selected to undergo purifying

selection  were  correctly  classified,  and  families  not  selected  receive  constant  selection  were

classified as not having any specific sites undergoing purifying or pervasive positive selection.

Scripts for these simulations can be found at https://github.com/tijeco/FUSTr  .

Conclusions

Current  advances  in  RNA-seq  technologies  have  allowed  for  a  rapid  proliferation  of

transcriptomic  datasets  in  numerous  non-model  study  systems.  It  is  currently  the  only  tool

equipped to deal with the nuances of transcriptomic data, allowing for proper prediction of gene

sequences  and  isoform  filtration.  FUSTr  provides  a  fast  and  useful  tool  for  novice

bioinformaticians to detect gene families in transcriptomes under strong selection.  Results from

this tool can provide information about candidate genes involved in the processes of adaptation,

in addition to contributing to functional genome annotation. 

Availability: FUSTr  is  freely  available  under  a  GNU  license  and  can  be  downloaded  at

https://github.com/tijeco/FUSTr  .
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Figure 1(on next page)

Parallelization scheme and workflow of FUSTr.

Color coding denotes functional subroutines in the pipeline: preparation and open reading

frame prediction (red); homology inferenece and gene family clustering (green); multiple

sequence alignment, phylogenetics, and selection detection (brown); and model selection

and reconciliation (blue).
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Figure 2(on next page)

Schematice used for EvolveAGene.

Randomly generated sequence is evolved along a symmetric phylogeny of a given selective

regime.
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Table 1(on next page)

Benchmarks for each subroutines’ time and memory used for the Tetragnatha

transcriptome assembly analysis.

Red highlighted row represents subroutine consuming the most memory and time per task,

blue highlighted row represents subroutine consuming the most memory and time in total.
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1

2

3

4

5

6

7

subroutine tasks

x̄ seconds 

per task

total 

seconds

x̄ RAM per 

task (MiB)

total RAM 

(MiB)

Clean fastas 6 1.40 8.38 46.5 278.9

New headers 6 1.65 9.90 43.6 261.5

Long isoform 6 0.512 3.07 51.5 309.13

Transdecoder 1 10,436.7 10,436.7 3,249.8 3,249.8

Diamond 1 32.1 32.1 234.0 234.0

SiLiX 1 4.51 4.51 22.8 22.8

Mafft 135 3.24 437.8 18.3 2,466.5

FastTree 135 3.09 417.4 18.5 2,491.3

TrimAL 135 1.87 252.2 17.9 2,415.6

FUBAR 135 278.6 37,605.5 28.8 3,886.2

8
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