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Owing to their great diversity and abundance, ammonites and belemnites represented key

elements in Mesozoic food webs. Because of their extreme ontogenetic size increase by up

to three orders of magnitude, their position in the food webs likely changed during

ontogeny. Here, we reconstruct the number of eggs laid by adult females of these

cephalopods and discuss these developmental shifts in their ecologic roles. Based on

similarities in conch morphology, size, habitat and abundance, we suggest that juvenile

ammonites and belemnites were ecologically replaced by holoplanktonic gastropods after

the Cretaceous/ Palaeogene mass extinction. As primary consumers, these extinct

cephalopod groups were important constituents of the plankton and a principal food

source for planktivorous organisms. As victims or, respectively, profiteers of this case of

ecological replacement, filter feeding chondrichthyans and cetaceans likely filled the

niches formerly occupied by large pachycormid fish during the Jurassic and Cretaceous.
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12 ABSTRACT

13 Owing to their great diversity and abundance, ammonites and belemnites represented key 

14 elements in Mesozoic food webs. Because of their extreme ontogenetic size increase by up to 

15 three orders of magnitude, their position in the food webs likely changed during ontogeny. Here, 

16 we reconstruct the number of eggs laid by adult females of these cephalopods and discuss these 

17 developmental shifts in their ecologic roles. Based on similarities in conch morphology, size, 

18 habitat and abundance, we suggest that juvenile ammonites and belemnites were ecologically 

19 replaced by holoplanktonic gastropods after the Cretaceous/ Palaeogene mass extinction. As 

20 primary consumers, these extinct cephalopod groups were important constituents of the plankton 

21 and a principal food source for planktivorous organisms. As victims or, respectively, profiteers 

22 of this case of ecological replacement, filter feeding chondrichthyans and cetaceans likely filled 

23 the niches formerly occupied by large pachycormid fish during the Jurassic and Cretaceous.

24 __________________________________________________________________________
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26 Subjects  Palaeontology, Developmental Biology, Evolutionary Studies, Marine Biology, 

27 Zoology

28 Keywords  Ammonoidea, Belemnitida, Pachycormiformes, Holoplanktonic Gastropoda, 

29 Fecundity, Mass Extinctions, Cretaceous, Palaeogene, Filter Feeders

30

31 INTRODUCTION

32 The fate of individual groups of marine organisms at mass extinction intervals is often well-

33 studied (Jablonski & Raup, 1994; Jablonski, 2008). By contrast, the disappearance of entire 

34 communities or ecological associations or food webs or important parts of any of these structures 

35 from the geologic past still requires a lot of palaeontological research (Hautmann, 2014; 

36 Hoffmann et al., 2014; Roopnarine & Angielczyk 2015). Extinctions of entire communities or 

37 ecosystems are most conspicuous during the great mass extinctions, when usually vast new 

38 ecospace was freed and thereby, new ecological niches could form.

39 Although it is not the most severe of the Big Five, the end-Cretaceous mass extinction is 

40 likely the most famous among those with the greatest severity (McGhee et al., 2013). This fame 

41 roots in the facts that popular groups of organisms such as dinosaurs (Sloan et al., 1986; 

42 Archibald & Fastovsky, 2004) and ammonites (Goolaerts, 2010; Kennedy, 1993; Landman et al., 

43 2015) were erased by the consequences of an impact in Mexico and flood-basalt-eruptions in 

44 India (Keller et al., 2009; Miller et al., 2010; Schulte et al., 2010; Tobin et al., 2012).

45 Marine communities were heavily affected as reflected in the partial or total disappearance of 

46 major groups such as ammonoids and belemnites (Doyle, 1992; Marshall & Ward, 1996; Iba et 

47 al., 2011; Olivero, 2012; Landman et al. 2014) as well as foraminifers (Alvarez et al., 1980; 

48 Smit, 1982) and bivalves (Jablonski & Raup, 1994). Ammonoids were both highly diverse and 
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49 evolved a great disparity in the course of the Cretaceous (Ward & Signor, 1983; Ward, 1996); 

50 some of the most bizarre forms such as Nipponites, Diplomoceras and Didymoceras appeared. 

51 Additionally, the largest ammonoids of all times, members of the family Puzosiidae, also lived 

52 during Cretaceous times (Landois, 1895; Olivero & Zinsmeister, 1989; Kennedy & Kaplan, 

53 1995). Puzosiids are not only gigantic but they also occurred worldwide and in great numbers. 

54 The great abundance, wide geographical distribution, extreme diversity, middle to giant size 

55 in combination with the likely high fecundity of ammonites raises questions (i) for Cretaceous 

56 marine food webs that partially relied on the adults as planktotrophic consumers, but particularly 

57 on their minute offspring as food source and (ii) what groups might have replaced ammonites, 

58 belemnites and their predators or had similar ecological roles including their positions in post-

59 Cretaceous food webs.

60

61 METHODS

62 We estimated the fecundity of large Cretaceous ammonites such as Parapuzosia seppenradensis 

63 using the following facts, assumptions and measurements. (i) We know that the major part of 

64 egg-development happened in the body chamber (De Baets et al., 2015; Mironenko & Rogov, 

65 2015); (ii) there is good evidence that the ammonitella represents the embryonic part of the 

66 conch (De Baets et al., 2015); (iii)we suggest that egg-size only slightly exceeded ammonitella-

67 size because of their dense packing in fossils with embryos preserved in the body chamber (De 

68 Baets et al., 2015; Mironenko & Rogov, 2015); and (iv) we followed the proportion of 8% of the 

69 soft body volume being occupied by the gonads according to the proportions known from Recent 

70 Nautilus (Tanabe & Tsukahara, 1987; Korn & Klug, 2007; De Baets et al., 2015). As far as (iv) 

71 is concerned, there is some uncertainty because the proportions of the ovaries are poorly known 
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72 from ammonoids due to the extremely rare and fragmentary preservation of soft parts 

73 (Mironenko & Rogov, 2015; Lehmann, 1981; Lehmann, 1985; Klug & Lehmann, 2015; Klug et 

74 al., 2012). When regarding the specimens figured by Mironenko & Rogov (2015), one tends to 

75 assume that the gonads filled a much larger portion of the body chamber. This hypothesis finds 

76 further support in symmetric bulges in the posterior body chamber in mature Pachydesmoceras 

77 (Fig. 1) and scaphitid conchs (Kennedy, 1989). These bulges may have offered space for the 

78 growing ovaries. Owing to these materials and morphological adult modifications of ammonoid 

79 conchs, we calculated alternative maximum egg-numbers using a body chamber volume 

80 proportion occupied by gonads of 30%. 

81 The largest specimen of the largest ammonite species Parapuzosia seppenradensis is 

82 incomplete (Landois, 1895; Kennedy & Kaplan, 1995). We estimated the adult body chamber 

83 volume and the surface area of the terminal aperture assuming a body chamber length of about 

84 180 degrees because of shell traces of the missing conch part along the umbilical seam. 

85 Accordingly, the maximum diameter dm can be reconstructed to have reached 2200 mm with a 

86 whorl height wh of about 800 mm and a whorl width ww of about 500 mm. The radiuses would 

87 then measure 1250 mm (r1) at the terminal aperture and 950 mm (r2) on the opposite side. Using 

88 the wh and ww values, we reconstructed a whorl cross section in CorelDraw and measured the 

89 area; accordingly, the cross section area K amounts to almost 320’000 mm2. 

90 As demonstrated by De Baets et al. (2012), derived ammonoids likely had a high fecundity. 

91 This is corroborated by the great differences between embryo size and adult conch size. For 

92 example, in the largest specimen of Parapuzosia seppenradense from the Late Cretaceous of 

93 Germany, the embryonic conch measured about one millimeter in diameter at hatching, while the 

94 adult conch exceeded two meters in diameter (Kennedy & Kaplan 1995; De Baets et al., 2012; 
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95 De Baets et al., 2015; Korn & Klug, 2007; Landman et al., 1996; Tanabe et al., 2008). This 

96 implies a factor of at least 2000 in diameter increase between embryos and adult macroconchs. 

97 Embryonic conch size (ammonitella size) is well documented for most ammonoid clades (De 

98 Baets et al., 2015). In Cretaceous ammonoids, ammonitella size ranges between 0.5 and 1.5 mm 

99 with the average being smaller than 1 mm (De Baets et al., 2015).

100 In order to estimate the absolute gonad volume, we determined the body chamber volume 

101 VBC, which can be achieved by applying an equation introduced by Raup & Chamberlain 

102 (1967) and also used by De Baets et al. (2012): 

103 (1) VBC = 2 / 3 * π * (K * Ra / lnW) * (1 − W−3θ/2π)

104 with K − area of the last aperture, Ra − distance coiling axis to center of mass (estimated 200 

105 mm based on comparisons with species with similar conch shape: Tajika et al. 2015; Naglik et 

106 al., 2016), θ − angular length of the body chamber in radians (equals π here, because the body 

107 chamber is about 180° long), the whorl expansion rate for this particular body chamber length

108 (2) W = (r1 / r2) 2π / θ

109 with r1 − maximum conch diameter and r2 – conch diameter 180° behind the aperture. 

110

111 RESULTS

112 Estimating ammonoid fecundity

113 Applying the data and calculations listed in the methods section to the lectotype of Parapuzosia 

114 seppenradense, we obtain a whorl expansion rate W of 1.73 and then an according body chamber 

115 volume VBC of 137’075’470 mm2. Depending on the proportion of the gonads (between 8 and 

116 30%; see discussion in methods), we obtain gonad volumes varying between about 10’000’000 

117 mm2 and 40’000’000 mm2. Assuming an egg-volume of 1 mm2, we obtain numbers of 
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118 10’000’000 to 40’000’000 eggs per adult female Parapuzosia seppenradensis if they were 

119 semelparous. If we assume iteroparity, these numbers increase by the factor of the number of 

120 reproductive cycles. Also, if we assume that the eggs and embryos continued to grow after they 

121 were laid, ammonoid fecundity would further increase, but evidence for this is missing in 

122 ammonoids (Mironenko & Rogov, 2015). For an adult female of half the diameter, we would 

123 obtain egg-numbers of between 3’000’000 (8% gonad volume) and 10’000’000 eggs (30% 

124 gonad volume) at semelparity. Puzosiids and other large Cretaceaous ammonoids in the size 

125 range between 500 and 1000 mm are quite common worldwide (e.g. Pachydesmoceras).

126

127 The role of r-strategy in ammonite and belemnite ecology

128 Depending on the proportional gonad size and whether or not ammonites were semelparous or 

129 iteroparous, it appears likely that adult females of the largest puzosiid ammonites such as 

130 Parapuzosia seppenradensis laid between 10’000’000 and 100’000’000 eggs and ammonoids 

131 about half the size still over 1’000’000 eggs. The simple calculation above itself highlights the 

132 likelihood that derived ammonites were extreme r-strategists, which produced vast amounts of 

133 offspring, likely contributing an important part of the plankton in size at the limit from micro- to 

134 macroplankton. High fecundity corresponded with high mortality and it is likely that hatchlings 

135 and juveniles of ammonites formed a major source of food in the marine realm. 

136 As far as belemnites are concerned, their global abundance had decreased in the Late 

137 Cretaceous already, freeing ecospace for, e.g., other coleoids (Iba et al., 2011). Nevertheless, 

138 coleoids with conical phragmocones such as belemnites, diplobelids, Groenlandibelus or Naefia 

139 share a small initial chamber and likely small embryonic conchs (Bandel et al., 1984). 

140 Accordingly, we can assume that their fecundity was also high, although much lower than those 
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141 of the puzosiid ammonites because of the much lower size difference between adults and 

142 embryos (about 100 to 1000 eggs per female).

143

144 Which animals ate ammonites? 

145 Evidence for successful and unsuccessful predation on medium to large-sized ammonites is not 

146 rare but identifying the actual predator is possible only in very few cases (Keupp, 2012; 

147 Hoffmann & Keupp, 2015). Additionally, most hard parts of ammonites (conch and lower jaw) 

148 were likely crushed by the predators and quickly dissolved in the digestive tract, making 

149 ammonites as fossilized stomach contents improbable, although a few cases have been reported 

150 where juvenile ammonoid remains are preserved in stomachs of Jurassic ammonites (Klug & 

151 Lehmann, 2015). It is even more difficult to find evidence for predators that fed on hatchlings 

152 and neanic juveniles of ammonites (dm < 10 mm), which must have occurred in vast numbers in 

153 the world’s oceans of the Mesozoic. These early post-hatching developmental stages probably 

154 lived in the water column because their conchs already had functional phragmocones and they 

155 are often found in black shales, which were deposited under hypoxic to anoxic bottom water 

156 conditions and therefore, a strictly benthic mode of life was impossible (Nützel & Mapes, 2001; 

157 Mapes & Nützel, 2008). Thus, pelagic nektonic animals (including older growth stages of 

158 ammonites) are the likeliest candidates as predators feeding on these young ammonites (Fig. 2). 

159 For abundant and easy prey like juvenile ammonites, a broad range of predators can be 

160 hypothesized. Like plankton today, these masses of juvenile ammonites represent perfect food 

161 sources for medium-sized to large suspension feeders (invertebrates and vertebrates). From the 

162 Cretaceous, giant planktivorous bony fishes (pachycormids: Friedman et al., 2010) have been 

163 suggested to be nektonic suspension feeders, which might have fed on plankton comprising a 
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164 wealth of juvenile ammonites. In the SOM of their paper, Friedman et al. (2010) show a 

165 fragment of the gill rakers; their filaments have a spacing of about 1 mm, which is suitable to 

166 filter out hatchlings and juvenile ammonites with conchs of a few millimeter diameter (Fig. 3). 

167 This trophic relationship is further corroborated by the extinction of this group synchronous with 

168 the demise of the Ammonoidea and Belemnitida but direct evidence is missing. Taking the direct 

169 fossil evidence from the Jurassic into account, it appears likely that ammonites also played a role 

170 as micropredators feeding on early juvenile ammonite offspring (Klug & Lehmann, 2015; Keupp, 

171 2012; Kruta et al. 2011). 

172 The extreme differences in size (up to three orders in magnitude) between adults and juveniles 

173 in large ammonites indicate that the range of potential predators changed significantly 

174 throughout the life history of these cephalopods. As hatchlings and small juvenile planktonic 

175 forms, moderate-sized to large suspension feeders and small predators likely used them as a food 

176 source but for adult puzosiids, only large predators such as mosasaurs, pliosaurs and large fishes 

177 can be considered, although the seeming direct evidence for such a trophic relationship is still 

178 under debate (Kauffman & Kesling 1960). Late Cretaceous ammonites were probably not the 

179 primary food source of ichthyosaurs since the latter became extinct already in the Cenomanian 

180 whereas ammonites persisted to be diverse and abundant; in spite of a better link of their demise 

181 with the extinction of belemnites in the North Pacific near the end of the Early Cretaceous (Iba et 

182 al. 2011), belemnite decline in the Tethys at the CTB (Doyle, 1992; Christensen, 2002) and 

183 direct evidence for a trophic relationship between phragmocone-bearing coleoids and 

184 ichthyosaurs (Kear et al., 1995, and references therein), Acikkol (2015) suggested that a link 

185 between the severe reduction of belemnite diversity and ichthyosaur extinction is unlikely.

186
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187 Which groups filled the ecospace freed by the extinction of ammonite hatchlings 

188 and planktivorous actinopterygians? 

189 Association of the extinctions of large marine reptiles, large planktivorous fish and those of 

190 ammonites suggest trophic relationships between these groups; their extinction freed ecospace 

191 for both small zooplankton and suspension feeders. This association coincides with other major 

192 changes in the planktonic realm, especially the rise of holoplanktonic gastropods. Although a 

193 few Early Jurassic to Cretaceous heteropods are known (Bandel & Hemleben, 1995; Nützel, 

194 2014; Teichert & Nützel, 2015; Nützel et al. 2016), the major expansion of heteropods and 

195 ‘pteropods’ falls into the Cenozoic (Tracey et al., 1993). 

196 In size and their coiled form, many fossil Limacinidae (Thecosomata, planktonic 

197 opisthobranch gastropods) resemble ammonites. Similarly, the conchs of fossil Creseidae 

198 morphologically and in size (at least roughly) correspond to hatchlings of belemnites, diplobelids 

199 and other phragmocone-bearing coleoids of the Cretaceous (Bandel et al., 1984; Lokho & 

200 Kumar, 2008). In addition to these morphologic similarities, these groups shared the planktonic 

201 habitat. According to Janssen & King (1988, 2013), ‘pteropods’ were already present as early as 

202 the latest Palaeocene. A number of Eocene pteropod occurrences is known worldwide (Bristow 

203 et al., 1980; King, 1981; Curry, 1982; Zorn, 1991; Hodgkinson et al., 1992; Janssen et al., 

204 2007; Lokho & Kumar, 2008; Ando et al., 2009; Cahuzac & Janssen, 2010). An early 

205 Palaeogene origin is supported by a combination of palaeontological and molecular clock data 

206 published by Corse et al. (2013). The latter authors even compare the uncoiling of the conch of 

207 Thecosomata with the coiling of ammonites, but they did not discuss macroecological 

208 implications. As far as abundance of these fossils is concerned, pteropods are much less frequent 

209 than subadult to adult ammonites and belemnites, while their hatchlings are similarly rare. This is 
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210 probably due to the combination of their small body size as well as their thin and fragile 

211 aragonitic shells (Janssen & King, 1988), which did not provide a high fossilization potential. 

212 The great majority of these thin aragonitic shells was undoubtedly rapidly dissolved during early 

213 diagenesis and as a consequence not fossilized. Nevertheless, the fact that quite a few pteropods 

214 have been reported from the Eocene implies that they were abundant and widely distributed since 

215 that period of time.

216 Similarities in size, overall morphology, habitat, abundance as well as the timing of their 

217 respective extinction and origination suggest that hatchlings and small individuals of ammonites 

218 as well as belemnites were ecologically replaced by planktonic opisthobranchs (Thecosomata) 

219 and other holoplanktonic gastropods. In turn, the ecological instalment of the Thecosomata 

220 contributed to the dietary basis for the evolution of new groups of large planktivorous suspension 

221 feeders. As suggested by Friedman et al. (2010), the Cretaceous ‘giant planktivorous bony 

222 fishes’ found an ecological replacement in both large suspension-feeding chondrichthyans and 

223 baleen whales. Several of these groups are known to take in important amounts of planktonic 

224 gastropods, although not exclusively. Today, thecosomes may contribute up to 50% of the 

225 zooplanktonic biomass and thus are ecologically important (Mackas & Galbraith, 2012). 

226 However, today’s Manta rays (Mobulidae) are known to feed predominantly on small 

227 Crustaceans and the same holds true for several baleen whales. Nevertheless, it is somewhat 

228 unclear what these early Palaeogene suspension feeders ate, but at least the filter mesh spacing of 

229 both planktivorous chondrichthyans and several baleen whales fits well with the size range of 

230 thecosomes.

231

232 CONCLUSIONS
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233 Large late Cretaceous ammonites such as puzosiids reached sizes exceeding two meters in 

234 diameter. Their offspring has a conch size that is in stark contrast to the adult size; the embryonic 

235 conchs of many Cretaceous ammonites measure only about 1 mm in diameter at the time of 

236 hatching. This size relationship, conch geometry and anatomical proportions allow estimates of 

237 the number of offspring per female. Accordingly, the largest females might have laid between 

238 10’000’000 (semelparity, small gonads) and 100’000’000 eggs (iteroparity, large gonads). Apart 

239 from this extreme example, the great abundance of ammonites, many of them of considerable 

240 size as adults, throughout the Mesozoic and the generally small size of their offspring implies 

241 that juvenile ammonites and belemnites played a fundamental role near the base of Mesozoic 

242 food webs, both as primary consumers and as food source for secondary consumers. We assume 

243 that Mesozoic oceans were full of small hatchlings and juveniles of ammonites and belemnites in 

244 the mm to cm size range. This part of the planktonic food chain vanished with the extinction of 

245 ammonites and belemnites but may have enabled the evolutionary and ecological rise of 

246 holoplanktonic gastropod, which occupy a similar size range, conch morphologies (coiled and 

247 straight) and trophic role. This underlines the importance of ecological differentiation between 

248 different ontogenetic stages. Gill raker filament spacing in huge pachycormids correspond in size 

249 to these juvenile ammonites, suggesting a trophic link in the light of the synchronous extinction 

250 at the end of the Cretaceous. 

251 Here, we suggest that the ecospace formerly occupied by ammonite and belemnite juveniles 

252 was filled during the post-Mesozoic rise of holoplanktonic gastropods like, e.g., the Palaeocene 

253 expansion of the Thecosomata (holoplanktonic heterobranchs). As far as the incumbent 

254 replacement of the pachycormids is concerned, it is a bit more difficult. During the early 

255 Palaeogene, three important large planktivorous lineages of chondrichthyans occur; however, 
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256 modern mobulids (Manta rays), for instance, are known to feed on planktonic Crustaceans. 

257 Perhaps, stomach contents of exceptionally preserved specimens of Palaeogene planktivorous 

258 chondrichthyans will shed more light on the suspension feeders that, at least in their function as 

259 primary consumers, profited from the thecosomes that ecologically replaced juvenile ammonites. 

260 Independent of the filter feeder-side, we conclude that in r-strategists, the young offspring can 

261 play a more important ecological role than their large adults. This case of incumbent replacement 

262 underlines the significance of differences at which developmental stage the acme in ecological 

263 importance of an organism occurs.
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496 Figure Captions

497 Figure 1  Adult ammonites (A-C), juvenile ammonites (D, E), and an embryonic belemnite 

498 (F) compared to fossil conchs of Thecosomata from the Eocene of India (G-J). 0.1 mm-scale 

499 bare applies to figures D to J. Photo in A courtesy C. Steinweg, L. Schöllmann and J.-O. Kriegs 

500 (all Münster); D and E from Tanabe et al. (2008); F from Bandel et al. (1984); G to J from 

501 Lokho & Kumar (2008). A. Parapuzosia seppenradensis, Campanian, Seppenrade. B, C. 

502 Pachydesmoceras sp., Campanian, Hokkaido, diameter 1.3 m, D. Aiba (Mikasa) for scale. Note 

503 the symmetrical bulges in the posterior body chamber in C. D, juvenile conch of Scaphites 

504 whitfieldi, AMNH 44833, Turonian, U.S.A. E, embryonic conch of Aconeceras cf. trautscholdi, 

505 UMUT MM 29439–4, Aptian, Russia. F, embryonic conch of Hibolithes sp., GPIT Ce 1599, 

506 Callovian, Lithuania. G to J, Upper Disang Formation, Phek District, Nagaland. G, H, 

507 Limacinidae spp. I, J, Creseidae spp.

508

509 Figure 2  Occurrences, extinctions, originations and diversity changes in plankton and 

510 large planktotrophic suspension feeders from the Cretaceous to the Palaeogene (mass 

511 extinction marked by red bar). Data from Friedmann et al. (2010), Bristow et al. (1980), 

512 Corse et al. (2013), Yacobucci (2015) and Jarman (2001).

513

514 Figure 3  Zooplankton size ranks and filter mesh spacing of planktivorous filter feeders. 

515 Modified after Vinther et al. (2014), using data from Lokho & Kumar (2008), Friedman et al. 

516 (2010) and De Baets et al. (2015). 

517
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Adult ammonites (A-C), juvenile ammonites (D, E), and an embryonic belemnite (F)

compared to fossil conchs of Thecosomata from the Eocene of India (G-J).

Figure 1 Adult ammonites (A-C), juvenile ammonites (D, E), and an embryonic belemnite (F)

compared to fossil conchs of Thecosomata from the Eocene of India (G-J).

0.1 mm-scale bare applies to figures D to J. Photo in A courtesy C. Steinweg, L. Schöllmann and J.-O. Kriegs

(all Münster); D and E from Tanabe et al. (2008); F from Bandel et al. (1984); G to J from Lokho & Kumar

(2008). A. Parapuzosia seppenradensis, Campanian, Seppenrade. B, C. Pachydesmoceras sp., Campanian,

Hokkaido, diameter 1.3 m, D. Aiba (Mikasa) for scale. Note the symmetrical bulges in the posterior body

chamber in C. D, juvenile conch of Scaphites whitfieldi, AMNH 44833, Turonian, U.S.A. E, embryonic conch of

Aconeceras cf. trautscholdi, UMUT MM 29439–4, Aptian, Russia. F, embryonic conch of Hibolithes sp., GPIT

Ce 1599, Callovian, Lithuania. G to J, Upper Disang Formation, Phek District, Nagaland. G, H, Limacinidae

spp. I, J, Creseidae spp.
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Zooplankton size ranks and filter mesh spacing of planktivorous filter feeders.

Figure 3 Zooplankton size ranks and filter mesh spacing of planktivorous filter

feeders. Modified after Vinther et al. (2014), using data from Lokho & Kumar (2008),

Friedman et al. (2010) and De Baets et al. (2015).
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Occurrences, extinctions, originations and diversity changes in plankton and large

planktotrophic suspension feeders from the Cretaceous to the Palaeogene

Figure 2 Occurrences, extinctions, originations and diversity changes in plankton and large

planktotrophic suspension feeders from the Cretaceous to the Palaeogene (mass extinction

marked by red bar).

Data from Friedmann et al. (2010), Bristow et al. (1980), Corse et al. (2013), Yacobucci (2015) and Jarman

(2001).
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