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ABSTRACT
Owing to their great diversity and abundance, ammonites and belemnites represented
key elements inMesozoic food webs. Because of their extreme ontogenetic size increase
by up to three orders of magnitude, their position in the food webs likely changed
during ontogeny. Here, we reconstruct the number of eggs laid by large adult females
of these cephalopods and discuss developmental shifts in their ecologic roles. Based on
similarities in conch morphology, size, habitat and abundance, we suggest that similar
niches occupied in the Cretaceous by juvenile ammonites and belemnites were vacated
during the extinction and later partially filled by holoplanktonic gastropods. As primary
consumers, these extinct cephalopod groups were important constituents of the plank-
ton and a principal food source for planktivorous organisms. As victims or, respectively,
profiteers of this case of ecological replacement, filter feeding chondrichthyans and
cetaceans likely filled the niches formerly occupied by large pachycormid fishes during
the Jurassic and Cretaceous.

Subjects Developmental Biology, Evolutionary Studies, Marine Biology, Paleontology, Zoology
Keywords Belemnitida, Ammonoidea, Cretaceous, Fecundity, Palaeogene, Filter feeders,
Holoplanktonic gastropoda, Pachycormiformes, Mass extinctions

INTRODUCTION
The fate of individual groups of marine organisms at mass extinctions is of considerable
interest (e.g., Jablonski & Raup, 1994; Jablonski, 2008). By contrast, the disappearance of
entire communities or ecological associations or food webs or important parts of any
of these structures from the geologic past still requires a lot of palaeontological research
(Hautmann, 2014; Hofmann et al., 2014; Roopnarine & Angielczyk, 2015). Extinctions of
entire communities or ecosystems are most conspicuous during the great mass extinctions
(e.g., Foster & Twitchett, 2014), when usually vast new ecospace was freed and thereby, new
ecological niches could form during recovery periods.

Although it is not the most severe of the Big Five, the end-Cretaceous mass extinction
is likely the most famous among those with the greatest severity (McGhee et al., 2013).
This fame roots in the facts that popular groups of organisms such as dinosaurs (Sloan
et al., 1986; Archibald & Fastovsky, 2004) and ammonites (Goolaerts, 2010; Kennedy, 1993;
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Landman et al., 2015) were erased by the consequences of an impact in Mexico and/or
flood basalt-eruptions in India (Keller et al., 2009; Miller et al., 2010; Schulte et al., 2010;
Tobin et al., 2012).

Marine communities were heavily affected as reflected in a significant reduction of
diversity or a partial or even total disappearance of major groups such as ammonoids and
belemnites (Doyle, 1992; Marshall & Ward, 1996; Iba et al., 2011; Olivero, 2012; Landman
et al., 2014) as well as planktonic foraminifers (Alvarez et al., 1980; Smit, 1982) and bivalves
(Jablonski & Raup, 1994). Before this extinction, ammonoids were both highly diverse and
had evolved a great disparity in the course of the Cretaceous (Ward & Signor, 1983; Ward,
1996); some of the most bizarre forms (heteromorphs) such as Nipponites, Diplomoceras
and Didymoceras appeared, some of which reached impressive sizes (e.g., Diplomoceras,
Emericiceras). Furthermore, members of the family Puzosiidae, which comprises the largest
ammonoids of all times, also lived during Cretaceous times (Landois, 1895; Olivero &
Zinsmeister, 1989; Kennedy & Kaplan, 1995). Puzosiids are not only gigantic but they also
abundantly occurred worldwide. In addition to this family, members of other ammonite
families reached sizes of around one meter in the Late Cretaceous as well.

The sometimes extreme variation in conch size and morphological disparity makes it
likely that their modes of life and habitats differed as well. This is reflected in hatchling
conch morphology, which may produce shapes unknown from adult ammonoid conchs
(Klug, De Baets & Korn, 2016). A further line of reasoning supporting ontogenetic changes
in ecology is the change in hydrodynamic properties due to size changes (Jacobs, 1992;
Jacobs & Chamberlain, 1996; Naglik et al., 2015).

The great abundance, wide geographical distribution, extreme diversity, middle to
giant size in combination with the likely high fecundity of ammonites raises a number of
questions: (i) what respective roles did juvenile and adult ammonites and belemnites play
in Cretaceous marine food webs? (ii) The adults were probably planktotrophic consumers,
but what was the role of their minute offspring? (iii) What groups filled the ecospace
occupied by ammonites, belemnites and their predators after the Cretaceous? (iv) How did
this ecological replacement occur?

METHODS
We estimated the fecundity of large Cretaceous ammonites such as Parapuzosia
seppenradensis (Fig. 1) using the following facts, assumptions and measurements, which
probably applied to all members of the Ammonoidea. (i) we know that the major part
of egg-development happened in the body chamber (De Baets, Landman & Tanabe, 2015;
Mironenko & Rogov, 2016); (ii) there is good evidence that the ammonitella represents the
embryonic part of the conch (De Baets, Landman & Tanabe, 2015); (iii) we suggest that egg-
size only slightly exceeded ammonitella-size because of their dense packing in fossils with
embryos preserved in the body chamber (De Baets, Landman & Tanabe, 2015; Mironenko
& Rogov, 2016); and (iv) we followed the proportion of 8% of the soft body volume
being occupied by the gonads according to the proportions known from Recent Nautilus
(Tanabe & Tsukahara, 1987; Korn & Klug, 2007; De Baets, Landman & Tanabe, 2015).
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Figure 1 Adult ammonites (A–C), juvenile ammonites (D, E), and an embryonic belemnite (F) com-
pared to fossil conchs of Thecosomata from the Eocene of India (G–J). 0.1 mm-scale bar applies to fig-
ures D to J. Photo in (A) courtesy C Steinweg, L Schöllmann and J-O Kriegs (all MÃĳnster); (D and E) re-
drawn after Tanabe, Kulicki & Landman (2008); (F) from Bandel et al. (1984); (G to J) redrawn after Lokho
& Kumar (2008). (A) Parapuzosia seppenradensis, Campanian, Seppenrade. (B) C. Pachydesmoceras sp.,
Campanian, Hokkaido, diameter 1.3 m, D. Aiba (Mikasa) for scale. Note the symmetrical bulges in the
posterior body chamber in C. (D) juvenile conch of Scaphites whitfieldi, AMNH 44833, Turonian, USA.
(E) embryonic conch of Aconeceras cf. trautscholdi, UMUTMM 29439–4, Aptian, Russia. (F) embryonic
conch of Hibolithes sp., GPIT Ce 1599, Callovian, Lithuania. (G) to (J), Upper Disang Formation, Phek
District, Nagaland. (G, H) Limacinidae spp. (I, J) Creseidae spp.

Full-size DOI: 10.7717/peerj.4219/fig-1

As far as (iv) is concerned, there is some uncertainty because the proportions of the
ovaries are poorly known from ammonoids due to the extremely rare and fragmentary
preservation of soft parts (Mironenko & Rogov, 2016; Lehmann, 1981; Lehmann, 1985; Klug
& Lehmann, 2015; Klug, Riegraf & Lehmann, 2012). When regarding the specimens figured
by Mironenko & Rogov (2016), one tends to assume that the gonads filled a much larger
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portion of the body chamber. This hypothesis finds further support in symmetric bulges
in the posterior body chamber in mature Pachydesmoceras (Fig. 1) and scaphitid conchs
(Kennedy, 1989). These bulges may have offered space for the growing ovaries. Owing to
these materials and morphological adult modifications of ammonoid conchs, we calculated
alternative maximum egg-numbers using a body chamber volume proportion occupied by
gonads of 30%.

The largest specimen of the largest ammonite species Parapuzosia seppenradensis is
incomplete (Landois, 1895; Kennedy & Kaplan, 1995). This specimen measures 1,740
mm (Fig. 1). We estimated the adult body chamber volume and the surface area of the
terminal aperture assuming a body chamber length of about 180 degrees because of shell
traces of the missing conch part along the umbilical seam. Accordingly, the maximum
diameter dm can be reconstructed to have reached 2,200 mm with a whorl height wh
of about 800 mm and a whorl width ww of about 500 mm. The radiuses would then
measure 1,250 mm (r1) at the terminal aperture and 950 mm (r2) on the opposite side.
Using the wh and ww values, we reconstructed a whorl cross section in CorelDraw and
measured the area; accordingly, the cross section area K amounts to almost 320,000 mm2.

As shown byDe Baets et al. (2012), derived ammonoids (i.e., with fully coiled embryonic
conchs) likely had a high fecundity. This is corroborated by the great differences between
embryo size and adult conch size. For example, in the largest specimen of Parapuzosia
seppenradense from the Late Cretaceous of Germany, the embryonic conch measured
about one millimeter in diameter at hatching, while the adult conch exceeded two meters
in diameter (Kennedy & Kaplan, 1995; De Baets et al., 2012; De Baets, Landman & Tanabe,
2015; Korn & Klug, 2007; Landman, Tanabe & Shigeta, 1996; Tanabe, Kulicki & Landman,
2008). This implies a factor of at least 2,000 in diameter increase between embryos and
adult macroconchs. Embryonic conch size (ammonitella size) is well documented for
most ammonoid clades (De Baets, Landman & Tanabe, 2015). In Cretaceous ammonoids,
ammonitella size ranges between 0.5 and 1.5 mmwith the average being smaller than 1 mm
(De Baets, Landman & Tanabe, 2015).

In order to estimate the absolute gonad volume, we determined the body chamber
volume VBC, which can be achieved by applying an equation introduced by Raup &
Chamberlain (1967) and also used by De Baets et al. (2012):

VBC= 2/3 ·π · (K ·Ra/lnW ) · (1−W−3θ/2π ) (1)

with K—area of the last aperture, Ra—distance coiling axis to center of mass (estimated
200 mm based on comparisons with species with similar conch shape: Tajika et al., 2015;
Naglik, Rikhtegar & Klug, 2016), θ—angular length of the body chamber in radians (equals
π here, because the body chamber is about 180◦ long), the whorl expansion rate for this
particular body chamber length

W = (r1/r2)2π/θ (2)

with r1—radius at maximum conch diameter and r2—radius at conch diameter 180◦

behind the aperture.
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In order to compare the embryonic conch size of Cretaceous ammonites to early
Thecosomata, we collected data from various publications (for values and references, see
Tables 1, 2 and 3. We plotted these values in box plots using Excel.

As a further approach to estimate ammmonoid fecundity, we gathered published data
on the numbers of eggs per adult female and list those in Table 4 (references of the data
sources are given there). Using Excel, we produced a loglog-biplot depicting the relationship
between the estimated number of eggs and the mature conch size in various ammonoids of
Devonian to Cretaceous age. Unsurprisingly, there is an exponential relationship between
the two parameters.

RESULTS
Estimating ammonoid fecundity
Applying the data and calculations listed in the method section to the lectotype of
Parapuzosia seppenradense, we obtain a whorl expansion rate W of 1.73 and then an
according body chamber volume VBC of 137,075,470 mm3. Depending on the proportion
of the gonads (between 8 and 30%; see discussion in ‘Methods’), we obtain gonad volumes
varying between about 10,000,000 mm3 and 40,000,000 mm3. Assuming an egg-volume of
1 mm3, we obtain numbers of 10,000,000 to 40,000,000 eggs per adult female Parapuzosia
seppenradensis (see also Fig. 2) if they were semelparous. If we assume iteroparity, these
numbers increase by the factor of the number of reproductive cycles. Also, if we assume
that the eggs and embryos continued to grow after they were laid (see discussion in
Walton, Korn & Klug, 2010), ammonoid fecundity would further increase, but evidence for
this is missing in ammonoids (Mironenko & Rogov, 2016). For an adult female of half the
diameter, we would still obtain egg-numbers of between 3,000,000 (8% gonad volume) and
10,000,000 eggs (30% gonad volume) at semelparity. Puzosiids and other large Cretaceous
ammonoids in the size range between 500 and 1,000 mm are quite common worldwide
(e.g., Pachydesmoceras).

In Fig. 2, we depict the relationship between the number of eggs per female adult
ammonoid using mostly published data and the results presented here. The loglog-biplot
shows an exponential relationship between these two parameters, which is not surprising
taking into account how the estimates were achieved (De Baets et al., 2012). It also shows
some variation scattering around the exponential trend line, which likely roots in the
variation of the ratio of embryonic versus adult conch size (e.g., Gyroceratites and Sinzovia
have similar adult sizes, but the embryonic conch is 50% larger in Gyroceratites; De Baets
et al., 2012; De Baets, Landman & Tanabe, 2015;Mironenko & Rogov, 2016).

The role of r-strategy in ammonite and belemnite ecology
Depending on the proportional gonad size andwhether or not ammoniteswere semelparous
or iteroparous, it appears likely that adult females of the largest puzosiid ammonites such as
Parapuzosia seppenradensis laid between 10,000,000 and 100,000,000 eggs and ammonoids
about half the size still over 1,000,000 eggs. The simple calculation above highlights the
likelihood that derived ammonites were extreme r-strategists (respectively fast life strategy),
which produced vast amounts of offspring, likely contributing an important part of the
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Table 1 Measurements of embryonic conchs of Cretaceous ammonites.Data from De Baets, Landman
& Tanabe (2015) and Laptikhovsky, Nikolaeva & Rogov (2017).

Species Stage ADmean

Acanthoplites sp. Albian 0.75
Aconeceras (Sanmartinoceras) sp. Aptian 0.84
Aconeceras trautscholdi Aptian 0.63
Aconeceras trautscholdi Aptian 0.77
Anagaudryceras limatum Coniacian 1.28
Anagaudryceras matsumotoi Maastrichtian 1.32
Anagaudryceras nanum Campanian 1.26
Anagaudryceras tetragonum Maastrichtian 1.26
Anagaudryceras yokoyamai Santonian 1.41
Baculites sp. Santonian 0.78
Beudanticeras beudanti Albian 1.06
Beudanticeras laevigatum Albian 0.88
Boreophylloceras densicostatum Berriasian 2.37
Boreophylloceras praeinfundibulum Berriasian 2.9
Calliphylloceras subalpinum Albian 0.8
Calliphylloceras velledae Aptian 0.84
Calycoceras orientale Cenomanian 0.93
Canadoceras kossmati Campanian 0.89
Canadoceras mystricum Campanian 1
Clioscaphites vermiformis Santonian 0.71
Collignoniceras woollgari Turonian 0.82
Colombiceras sp. Aptian 0.62
Damesites ainuanus Turonian 0.7
Damesites damesi Santonian 0.89
Damesites latidorsatus Santonian 0.85
Damesites semicostatus Santonian 0.84
Damesites sugata Santonian 0.83
Deshayesites deshayesi Albian 1
Desmoceras dawsoni Albian 1.52
Desmoceras ezoanum Cenomanian 1.22
Desmoceras japonicum Turonian 0.97
Desmoceras kossmati Cenomanian 0.85
Desmoceras kossmati Cenomanian 0.9
Desmoceras poronaicum Albian 0.84
Desmophyllites diphylloides Santonian 0.86
Desmophyllites diphylloides Santonian 0.81
Desmophyllites sp. Santonian 0.84
Desmophyllites sp. Santonian 0.89
Diadochoceras nodosocostatiforme Aptian 0.77
Diadochoceras sinuosocostatus Aptian 0.74

(continued on next page)
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Table 1 (continued)

Species Stage ADmean

Diadochoceras sp. Aptian 0.75
Discoscaphites conradi Maastrichtian 0.76
Discoscaphites gulosus Maastrichtian 0.72
Discoscaphites rossi Maastrichtian 0.69
Eogaudryceras (Eotetragonites) aurarium Albian 0.93
Eogaudryceras (Eotetragonites) balmensis Albian 0.98
Eogunnarites unicus Cenomanian 0.76
Eupachydiscus haradai Campanian 0.9
Gabbioceras angulatum Aptian 0.88
Gabbioceras latericarinatum Albian 0.93
Gabbioceras michelianum Albian 0.9
Gaudryceras cf. denseplicatum Turonian 1.34
Gaudryceras cf. tenuiliratum Campanian 1.4
Gaudryceras denseplicatum Turonian 1.52
Gaudryceras stefaninii Cenomanian 0.93
Gaudryceras striatum Campanian 1.26
Gaudryceras tombetsense Maastrichtian 1.42
Hauericeras angustum Campanian 0.7
Hauericeras gardeni Campanian 0.72
Holcophylloceras guettardi Aptian 0.81
Holcophylloceras sp. Aptian 0.81
Hoploscaphites comprimus Maastrichtian 0.66
Hoploscaphites nebrascensis Maastrichtian 0.68
Hoploscaphites nicolletii Maastrichtian 0.77
Hoploscaphites spedeni Maastrichtian 0.76
Hypacanthohoplites sp. Aptian 0.84
Hypacanthohoplites subcornuenianus Aptian 0.93
Hypophylloceras hetonaiensis Maastrichtian 0.9
Hypophylloceras ramosum Maastrichtian 1.02
Hypophylloceras subramosum Santonian 1.03
Karsteniceras obatai Barremian 0.75
Kossmatella agassiziana Albian 1.11
Luppovia sp. Aptian 0.7
Mantelliceras japonicum Cenomanian 0.89
Marshallites compressus Cenomanian 0.97
Melchiorites sp. Albian 0.69
Menuites pusilus Maastrichtian 0.87
Menuites yezoensis Maastrichtian 0.76
Metaplacenticas subtilistriatum Campanian 1.14
Microdesmoceras tetragonum Cenomanian 0.94
Nolaniceras sp. Aptian 0.79
Parahoplites melchioris Aptian 1.21
Parajaubertella kawakitana Cenomanian 1.12

(continued on next page)
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Table 1 (continued)

Species Stage ADmean

Phylloceras japonicum Cenomanian 0.92
Phyllopachyceras ezoense Santonian 1.08
Phyllopachyceras ezoense Campanian 0.91
Phyllopachyceras sp. Aptian 0.76
Protexanites minimus Santonian 0.74
Pseudohaploceras nipponicus Aptian 0.79
Pseudophyllites indra Campanian 1.48
Ptychoceras renngarteni Aptian 0.85
Ptychophylloceras ptychoicum Berriasian 0.69
Pusozia takahashii Turonian 0.89
Puzosia orientale Turonian 0.83
Puzosia pacifica Turonian 0.84
Puzosia yubarensis Turonian 0.61
Saghalinites teshioensis Campanian 1.19
Scaphites carlilensis Turonian 0.6
Scaphites corvensis Turonian 0.67
Scaphites depressus Coniacian 0.76
Scaphites larvaeformis Turonian 0.59
Scaphites nigricollensis Turonian 0.68
Scaphites planus Turonian 0.84
Scaphites preventitricosus Turonian 0.65
Scaphites pseudoaequalis Coniacian 0.72
Scaphites warreni Turonian 0.66
Scaphites whitfieldi Turonian 0.65
Scaphites yonekurai Coniacian 0.87
Simbirskites coronatiformis Hauterivian 1.09
Simbirskites discofalcatus Hauterivian 1.17
Simbirskites elatus Hauterivian 1.06
Simbirskites sp. Hauterivian 1.26
Simbirskites sp. Hauterivian 0.98
Simbirskites versicolor Hauterivian 1.09
Subprionocyclus bakeri Turonian 0.75
Subprionocyclus minimum Turonian 0.74
Subprionocyclus neptuni Turonian 0.78
Teshioites sp. Campanian 0.92
Tetragonites duvalianus Albian 1.06
Tetragonites glabrus Turonian 1.08
Tetragonites hulensis Albian 1.04
Tetragonites minimus Turonian 0.98
Tetragonites popetensis Campanian 0.97
Tetragonites popetensis Campanian 1.08
Tetragonites terminus Maastrichtian 1.8
Texanites kawasakii Santonian 0.93
Tragodesmoceroides subcostatus Turonian 0.88

(continued on next page)
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Table 1 (continued)

Species Stage ADmean

Valdedorsella akuschaensis Aptian 0.68
Yezoites klamathensis Coniacian 0.75
Yezoites matsumotoi Coniacian 0.8
Yezoites puerculus Coniacian 0.82
Yokoyamaoceras ishikawai Turonian 0.89
Zelandites aff. inflatus Cenomanian 1.22
Zelandites kawanoii Santonian 1.19
Zelandites mihoensis Coniacian 1
Zelandites varuna Maastrichtian 1.22
Zuercherella falcistriata Aptian 0.75

plankton in size at the limit from micro- to macroplankton. R-strategy corresponded with
high mortality and it is likely that hatchlings and juveniles of ammonites formed a major
source of food in the marine realm.

As far as belemnites are concerned, their global abundance had already decreased during
the Late Cretaceous (prior to the main extinction event), freeing ecospace for, e.g., some
other coleoids (Iba et al., 2011). Nevertheless, coleoids with conical phragmocones such
as belemnites, diplobelids, Groenlandibelus or Naefia share a small initial chamber and
likely small embryonic conchs (Bandel et al., 1984). Above all, there are a lot of similarities
between belemnite and ammonite hatchlings such as their small initial chambers, their
overall hatchling size, their supposed habitats including the planktonic mode of life
and the r-strategy reproductive mode (Ward & Bandel, 1987; Arkhipkin & Laptikhovsky,
2012; Doguzhaeva et al., 2014). Accordingly, we assume that belemnite fecundity was
also high, although much lower than those of the puzosiid ammonites because of
the much lower size difference between adults and embryos (about 100–1,000 eggs
per female).

Which animals ate ammonites?
Evidence for successful and unsuccessful predation on medium to large-sized ammonites
is not rare but identifying the actual predator is possible only in very few cases (Keupp,
2012; Hoffmann & Keupp, 2015). Additionally, most hard parts of ammonites (conch and
lower jaw) were likely crushed by the predators and quickly dissolved in the digestive
tract, making ammonites as fossilized stomach contents improbable, although a few cases
have been reported where juvenile ammonoid remains are preserved in stomachs of
Jurassic ammonites (Keupp & Schweigert, 2015; Klug & Lehmann, 2015). It is even more
difficult to find evidence for predators that fed on hatchlings and neanic juveniles of
ammonites (dm< 10 mm), which must have occurred in vast numbers in the world’s
oceans of the Mesozoic. These early post-hatching developmental stages probably lived
in the water column because their conchs already had functional phragmocones and they
are often found in black shales, which were deposited under hypoxic to anoxic bottom
water conditions and therefore, a strictly benthic mode of life was impossible (Shigeta,
1993; Nützel & Mapes, 2001; Mapes & Nützel, 2009). Thus, pelagic nektonic animals
(including older growth stages of ammonites) are the likeliest candidates as predators
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Table 2 Size of conchs of Thecosomata with coiled conchs.Data sources are indicated in the table.

Taxon Age Conch size (mm) Source

Limacinidae Eocene 1.125 Lokho & Kumar (2008)
Limacinidae Eocene 1.05 Lokho & Kumar (2008)
Limacinidae Eocene 0.733333 Lokho & Kumar (2008)
Limacinidae Eocene 0.75 Lokho & Kumar (2008)
Limacinidae Eocene 0.32 Lokho & Kumar (2008)
Limacinidae Eocene 0.568182 Lokho & Kumar (2008)
Limacinidae Eocene 0.857143 Lokho & Kumar (2008)
Altaspiratella elongatoidea Eocene 1.416667 Janssen & Goedert (2016)
Altaspiratella elongatoidea Eocene 1.833333 Janssen & Goedert (2016)
Altaspiratella elongatoidea Eocene 1.233333 Janssen & Goedert (2016)
Heliconoides mercinensis Eocene 1.764706 Janssen & Goedert (2016)
Limacina aegis Eocene 1.4375 Janssen & Goedert (2016)
Limacina aegis Eocene 1.71875 Janssen & Goedert (2016)
Limacina aegis Eocene 1.03125 Janssen & Goedert (2016)
Limacina aegis Eocene 1.53125 Janssen & Goedert (2016)
Limacina aegis Eocene 1.84375 Janssen & Goedert (2016)
Limacina aegis Eocene 1.28125 Janssen & Goedert (2016)
Limacina novacaesarea Eocene 1.382353 Janssen & Goedert (2016)
Limacina novacaesarea Eocene 1.588235 Janssen & Goedert (2016)
Limacina novacaesarea Eocene 1.470588 Janssen & Goedert (2016)
Heliconoides lillebaeltensis Eocene 2.4 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides lillebaeltensis Eocene 2.5 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides lillebaeltensis Eocene 2.5 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides lillebaeltensis Eocene 2 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides lillebaeltensis Eocene 1.7 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides lillebaeltensis Eocene 1.8 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides mercinensis Eocene 2 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides mercinensis Eocene 2.6 Janssen, Schnetler & Heilmann-Clausen (2007)
Limacina pygmaea Eocene 1.4 Janssen, Schnetler & Heilmann-Clausen (2007)
Heliconoides sp. Campanian 1.56 Janssen & Goedert (2016)
Heliconoides mercinensis Pleistocene 2 Guess

feeding on these young ammonites: Fig. 3 depicts the fitting of juvenile planktonic
ammonites and holoplanktonic gastropods with the mesh size of filter feeders of the
corresponding time intervals. See Fig. 4 for the stratigraphic distribution of the groups
discussed here.

For abundant and easy prey like juvenile ammonites, a broad range of predators can be
hypothesized. Like plankton today, these masses of juvenile ammonites represent perfect
food sources for medium-sized to large suspension feeders (invertebrates and vertebrates).
From the Cretaceous, giant planktivorous bony fishes (pachycormids: Friedman et al.,
2010) have been suggested to be nektonic suspension feeders, which might have fed
on plankton comprising a wealth of juvenile ammonites. In the SOM of their paper,
Friedman et al. (2010) show a fragment of the gill rakers; their filaments have a spacing
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Table 3 Size of conchs of Thecosomata with straight conchs.Data sources are indicated in the table.

Family Age Conch size (mm) Source

Creseidae Eocene 1.875 Lokho & Kumar (2008)
Creseidae Eocene 1.25 Lokho & Kumar (2008)
Creseidae Eocene 1.25 Lokho & Kumar (2008)
Creseidae Eocene 0.75 Lokho & Kumar (2008)
Creseidae Eocene 2.142857 Lokho & Kumar (2008)
Creseidae Eocene 0.416667 Lokho & Kumar (2008)
Creseidae Eocene 0.597826 Lokho & Kumar (2008)
Creseidae Eocene 0.597826 Lokho & Kumar (2008)
Creseidae Eocene 0.480769 Lokho & Kumar (2008)
Creseidae Eocene 0.477273 Lokho & Kumar (2008)
Creseidae Eocene 0.575 Lokho & Kumar (2008)
Creseidae Eocene 0.5 Lokho & Kumar (2008)
Cliidae Eocene 1.857143 Lokho & Kumar (2008)
Cliidae Eocene 1.145833 Lokho & Kumar (2008)
Cliidae Eocene 0.9375 Lokho & Kumar (2008)
Cliidae Eocene 1.5625 Lokho & Kumar (2008)

Table 4 Estimates of numbers of eggs produced by various ammonoid taxa.

Genus Age Adult size (mm) Fecundity Source

Parapuzosia Cretaceous 2,000 10,000,000 This paper
Pachydesmoceras Cretaceous 1,000 3,000,000 This paper
Sinzovia Jurassic 50 200 Mironenko & Rogov (2016)
Manticoceras Devonian 400 200,000 De Baets et al. (2012)
Erbenoceras Devonian 150 500 De Baets et al. (2012)
Mimosphinctes Devonian 90 35 De Baets et al. (2012)
Gyroceratites Devonian 56 130 De Baets et al. (2012)
Agoniatites Devonian 300 4,500 De Baets et al. (2012)

of about 1 mm, which is suitable to filter out hatchlings and juvenile ammonites with
conchs of one millimeter in diameter or slightly more (Fig. 3). This trophic relationship
is further suggested by the extinction of this group synchronous with the demise of the
Ammonoidea and Belemnitida but direct evidence is missing. Taking the direct fossil
evidence from the Jurassic into account, it appears likely that ammonites also played
a role as micropredators feeding on early juvenile ammonite offspring (Jäger & Fraaye,
1997; Klug & Lehmann, 2015; Keupp, 2012; Kruta et al., 2011; Keupp & Schweigert, 2015;
Keupp et al., 2016).

The extreme differences in size (up to three orders in magnitude) between adults
and juveniles in large ammonites indicate that the range of potential predators changed
significantly throughout the life history of these cephalopods. As hatchlings and small
juvenile planktonic forms, moderate-sized to large suspension feeders and small predators
likely used them as a food source but for adult puzosiids and other large ammonites, only
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Figure 2 Relationship between adult conch size and the estimated number of eggs.Data are displayed
in Table 4. The variation seen in smaller species likely roots in differences of the embryo size.

Full-size DOI: 10.7717/peerj.4219/fig-2

large predators such as mosasaurs, pliosaurs and large fishes can be considered, although
the seeming direct evidence for such a trophic relationship is still under debate (Kauffman
& Kesling, 1960; Tsujita & Westermann, 2001; Kauffman, 2004; Gale, Kennedy & Martill,
2017). Latest Cretaceous juvenile ammonites were possibly not the primary food source of
ichthyosaurs since the latter became extinct already in the Cenomanian and are unknown
from stomach contents to our knowledge. After the demise of ichthyosaurs, ammonites
persisted to be diverse and abundant. In spite of a better link of their extinction with that of
the belemnites in the North Pacific near the end of the Early Cretaceous (Iba et al., 2011),
belemnite decline in the Tethys at the Cenomanian–Turonian boundary (Doyle, 1992;
Christensen, 2002) and direct evidence for a trophic relationship between phragmocone-
bearing coleoids and ichthyosaurs (Kear, Briggs & Donovan, 1995 and references therein),
Acikkol (2015) suggested that a link between the severe reduction of belemnite diversity
and ichthyosaur extinction is unlikely.

An additional point we want to raise is the role of adult ammonites as micropredators
feeding on juvenile ammonites. It has been claimed by various authors that ammonites,
particularly heteromorphs, lived in the water column (Cecca, 1997; Guex, 2006), i.e., with
direct access to meso- and microplankton. As pointed out above, a microphagous diet has
been shown for several ammonite species including heteromorphs (Jäger & Fraaye, 1997;
Klug & Lehmann, 2015; Keupp, 2012; Kruta et al., 2011; Keupp & Schweigert, 2015; Keupp
et al., 2016), thus making ammonites as predators feeding on juvenile ammonites in the
Cretaceous likely.
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Full-size DOI: 10.7717/peerj.4219/fig-3

Which groups filled the ecospace freed by the extinction of ammonite
hatchlings and planktivorous actinopterygians?
Association of the extinctions of large marine reptiles, large planktivorous fish and those
of ammonites and belemnites suggest trophic relationships between these groups; their ex-
tinction freed ecospace for both small zooplankton and various suspension feeders as well as
predators. This association is followed bymajor changes in the planktonic realm such as the
rise of holoplanktonic gastropods. Although a few Early Jurassic to Cretaceous heteropods
are known (Bandel & Hemleben, 1995; Nützel, 2014; Teichert & Nützel, 2015; Janssen &
Goedert, 2016; Nützel et al., 2016; Burridge et al., 2017; Janssen & Peijnenburg, 2017), the
major expansion of heteropods and ‘pteropods’ falls into the Cenozoic (Lalli & Gilmer,
1989; Tracey, Todd & Erwin, 1993; Janssen & Goedert, 2016; Janssen & Peijnenburg, 2013).

In size and their coiled form, many fossil Limacinidae (Thecosomata, planktonic
opisthobranch gastropods) resemble ammonites. Similarly, the conchs of fossil Creseidae
morphologically and in size (at least roughly) correspond to hatchlings of belemnites,
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diplobelids and other phragmocone-bearing coleoids of the Cretaceous (Bandel et al.,
1984; Lokho & Kumar, 2008). In addition to these morphologic similarities, these groups
shared the planktonic habitat. According to Janssen & King (1988), Janssen & Peijnenburg
(1988), ‘pteropods’ were already present at least as early as the latest Palaeocene (see also
Janssen & Goedert, 2016). Janssen & Goedert (2016) even claimed a Cretaceous origin of the
Thecosomata. A number of Eocene pteropod occurrences are known worldwide (Bristow,
Ellison & Wood, 1980; King, 1981; Curry, 1982; Zorn, 1991; Hodgkinson, Garvie & Bé, 1992;
Janssen, Schnetler & Heilmann-Clausen, 2007; Lokho & Kumar, 2008; Ando, Ujihara &
Ichihara, 2009; Cahuzac & Janssen, 2010). An early Palaeogene origin is also supported by a
combination of palaeontological and molecular clock data published by Corse et al. (2013).
Remarkably, the latter authors compare the uncoiling of the conch of Thecosomata with
the coiling of ammonites, but they did not discuss macroecological implications such as the
ecological replacements suggested here. As far as abundance of these fossils is concerned,
pteropods are much less frequent than subadult to adult ammonites and belemnites, while
their hatchlings are similarly rare. This is probably due to the combination of their small
body size as well as their thin and fragile aragonitic shells (Janssen & King, 1988), which
did not provide a high fossilization potential. The great majority of these thin aragonitic
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shells was undoubtedly rapidly dissolved during early diagenesis and as a consequence not
fossilized (Berner, 1977; Janssen & Peijnenburg, 2017). Nevertheless, the fact that numerous
pteropods have been reported from the Eocene implies that they were abundant and widely
distributed at least since that period of time.

Similarities in size, overall morphology, habitat, abundance as well as the timing of
their respective extinction and origination suggest that hatchlings and small individuals
of ammonites as well as belemnites were ecologically replaced, at least partially, by
planktonic opisthobranchs (Thecosomata) and other holoplanktonic gastropods. In turn,
the ecological installation of the Thecosomata together with other planktonic organisms
contributed to the dietary basis for the evolution of new groups of large planktivorous
suspension feeders (Lalli & Gilmer, 1989; Armstrong et al., 2005; Hunt et al., 2008). As
suggested by Friedman et al. (2010), the Cretaceous ‘giant planktivorous bony fishes’ found
an ecological replacement in both large suspension-feeding chondrichthyans and baleen
whales. Several of these groups are known to take in important amounts of planktonic
gastropods, although arthropods such as krill and other plankton plays important roles
as well. Today, thecosomes may regionally contribute up to 50% of the zooplanktonic
biomass and thus are ecologically important (Mackas & Galbraith, 2012). However, today’s
Manta rays (Mobulidae) are known to feed predominantly on small Crustaceans, small fish
and other plankton and the same holds true for several baleen whales (e.g. Sims & Merrett,
1997;Motta et al., 2010; De la Parra Venegas et al., 2011; Slater et al., 2017). Nevertheless, it
is unknownwhat exactly these Palaeogene suspension feeders ate, but at least the filter mesh
spacing of both planktivorous chondrichthyans and several baleen whales fits well with the
size range of thecosomes (Fig. 3). Also, it is conceivable that early filter feeding species of
these groups did not discriminate in their planktonic diet as much as more derived modern
relatives. In any case, the niche of filterers catching prey of a size of a few millimetres was
occupied by the chondrichthyan and marine mammal filter feeders mentioned above. The
Thecosomata can thus be understood as an example for the new plankton that occurred
after the end-Cretaceous mass extinction.

What caused this ecological replacement?
The fossil record comprises quite a few cases of ecological replacements (which are often
called ‘biotic replacements’; e.g., Benton, 1987; Benton, 1991; Briggs, 1998). Some famous
examples include replacements of brachiopods by bivalves (Gould & Calloway, 1980;
Payne et al., 2014), dinosaurs by mammals (e.g., Sloan et al., 1986), hybodonts by modern
sharks (Schaeffer, 1965), and ‘straight-necked’ turtles by ‘flexible-neck’ turtles (Rosenzweig
& McCord, 1991; for a comprehensive list of ecological replacement, see Benton, 1987;
Benton, 1991). These examples are also used to discuss possible mechanisms, which explain
what drove the replacement and in turn, facilitated speciation or macroevolution of clades.
Benton (1991) presented several models of ecological replacements, in which the role of
competition, key adaptation and mass extinction was discussed as main cause of such
replacements. He concluded that ‘competition’ and ‘key adaptation’ can rarely be the main
cause of such replacements, although the role of mass extinction also needs to be further
examined. By contrast, some other researchers have different views on mechanisms of
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ecological replacements. For instance, Rosenzweig & McCord (1991) wrote the following:
‘‘species from the new clade produce new species to replace already extinct species from
the old clade. The key adaptation gives them a higher competitive speciation rate than
old-clade sources of replacement’’. They presented the example of the straight-necked
turtles (Amphichelydia), which were replaced by cryptodiran turtles with the capability
of neck retraction and termed this model of replacement ‘incumbent replacement’. In
this mechanism, key adaptations play a major role. Also, Briggs (1998) argued that several
cases of ecological replacement, which are cited as evidence for mass-extinction-induced
replacements, took place over a long period of time, and thus, biological interaction played
a primary role.

In the case of ammonoids and belemnites being ecologically replaced by holoplanktonic
gastropods, it partially depends on the phylogenetic and temporal scale that is examined
and on the fossil record. When focusing only on ammonoids and belemnites, no species
remained after the Cretaceous to compete with Palaeogene holoplanktonic gastropods. By
contrast, when including the whole clade, this looks different since cephalopods continued
to exist and gastropods were also present long before this faunal change (Fig. 5; Sepkoski,
1981). What makes this more relevant is the end-Cretaceous diversity reduction among
the Cephalopoda in a phase where the whole clade Gastropoda diversified (a longterm
process that started already in the Triassic, which was largely a result of the expansion
of Neogastropda). Naturally, both Cephalopoda and Gastropoda contain species with a
broad range of different modes of life and thus, their differing diversity patterns cannot
be explained by the ecological replacement of juvenile ammonites by holoplanktonic
gastropods alone—especially although holoplanktonic gastropods are abundant and widely
distributed, their diversity is not high. On the other hand, the removal of ammonites and
belemnites from the planktonic realm offered certain gastropods the opportunity to flourish
in this realm and to long for new opportunities including availability of food and space
resources.

As far as key adaptations (e.g., Simpson, 1943; Benton, 1983; Benton, 1987; Rosenzweig
& McCord, 1991; Briggs, 1998; Payne et al., 2014) are concerned, they were already present
in the group of species assuming the ecological role of the previously incumbent species
after their extinction (Rosenzweig & McCord, 1991). Although some researchers report
the presence of holoplanktonic gastropods in the Cretaceous (Janssen & Goedert, 2016;
Burridge et al., 2017), to date, there is no fossil evidence, which suggests that they acquired
all key adaptations that ensured the success of radiation in the Cenozoic except the small,
thin-shelled conch. Also, due to a lack of data, it is not possible yet to conclude whether
or not a direct biotic interaction between the old (ammonite and belemnite hatchlings)
and the new (holoplanktonic gastropods) clades occurred in the Cretaceous, although the
Thecosomata originated already in the late Campanian (Janssen & Goedert, 2016; Burridge
et al., 2017). At least, the fossil record suggests that this case of replacement was triggered
by a mass extinction event. In Fig. 6, we show the distribution of sizes of embryonic
conchs of ammonites compared to the earliest occurrences of Thecosomata in the fossil
record demonstrating the size-overlap between the two groups. Moreover, the evolution
of a holoplanktonic mode of life is particularly easy in gastropods with a planktotrophic
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veliger larva. Bandel et al. (1984) have convincingly shown that pteropods evolved through
neotenic extension of larval life of a benthic ancestor. A similar model has been proposed
by Teichert & Nützel (2015) for Jurassic heteropods, which are superabundant in the
Early Jurassic Posidonia Shale. Here, repeated Early Jurassic Anoxia resulted in neotenic
prolongation of larval life to a holoplanktonic adult life. Thus, the free-swimming veliger
larvae may be seen as an preadaptation for a holoplanktonic mode of life in these
gastropods and this way the timely overlap that is required for in the incumbency model
applies.

Nevertheless, the main radiation of the Thecosomata appears delayed until the
Palaeocene-Eocene boundary judging from their fossil record (Janssen, Schnetler &
Heilmann-Clausen, 2007; Janssen & Peijnenburg, 2017). This raises the question whether
this delay in radiation is an artefact of the poor fossil record of the Thecosomata or whether
the main radiation really occurred several million years after the Cretaceous. Considering
that a species loss caused by a mass extinction event can require as long as 5–10 My for
community recovery (Copper, 1989), it appears likely that the radiation of holoplanktonic
gastropods began in the Palaeocene. It must be taken into account that adaptation to the
new life style including optimization of resource exploitation needed time.

Although we cannot rule out key adaptations and biotic interaction as main causes of the
ecological exchange of ammonites and belemnites by Thecosomata and other holoplantonic
gastropods after the Cretaceous, it is probably safe to claim that the holoplanktonic
gastropods opportunistically benefited from the ecospace vacated by the extinction of
these two groups of cephalopods. Possibly, new finds of holoplanktonic gastropods from
the early Palaeocene will push their radiation back in time closer to the extinction of
ammonoids.
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CONCLUSIONS
Large Late Cretaceous ammonites such as puzosiids reached sizes exceeding two meters
in diameter. Their offspring has a conch size that is in stark contrast to the adult size; the
embryonic conchs of many Cretaceous ammonites measure only about 1 mm in diameter
at the time of hatching. This size relationship, conch geometry and anatomical proportions
allow estimates of the number of offspring per female. Accordingly, the largest females
might have laid between 10,000,000 (semelparity, small gonads) and 100,000,000 eggs
(iteroparity, large gonads). Apart from this extreme example, the great abundance of
ammonites, many of them of considerable size as adults, throughout the Mesozoic and
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the generally small size of their offspring implies that juvenile ammonites and belemnites
played a fundamental role near the base of Mesozoic food webs, both as primary consumers
and as food source for secondary consumers. We assume that Mesozoic oceans were full of
small hatchlings and juveniles of ammonites and belemnites in the mm to cm size range.
This part of the planktonic food chain vanished with the extinction of ammonites and
belemnites but may have enabled the evolutionary and ecological rise of holoplanktonic
gastropods, which occupy a similar size range, conch morphologies (coiled and straight)
and trophic role. This underlines the importance of ecological differentiation between
different ontogenetic stages. Gill raker filament spacing in huge pachycormids correspond
in size to these juvenile ammonites and belemnites, potentially suggesting a trophic link in
the light of the synchronous extinction at the end of the Cretaceous.

Here, we suggest that the ecospace formerly occupied by ammonite and belemnite
juveniles was taken over during the post-Mesozoic rise of the Thecosomata (holoplanktonic
heterobranchs) and other holoplanktonic gastropods. The ecological replacement of the
pachycormids is a bitmore difficult to explain. During the early Palaeogene, three important
large planktivorous lineages of chondrichthyans occur; however, modernmobulids (Manta
rays), for instance, are known to feed on planktonic crustaceans. Perhaps, stomach contents
of exceptionally preserved specimens of Palaeogene planktivorous chondrichthyans will
shed more light on the suspension feeders that, at least in their function as primary
consumers, benefited from the thecosomes that ecologically replaced juvenile ammonites.
In any case, it is likely that ammonite hatchlings had occupied a significant part of their
particular plankton size class and were important prey for some filter feeders. This size class
niche of small plankton was vacant after the Cretaceous and holoplanktonic gastropods
are one important group filling this ecospace, probably in concert with other plankton.

Independent of the filter feeder-side, we conclude that in r-strategists, the young
offspring can play a more important ecological role than their large adults. This case of
ecological replacement underlines the significance of differences at which developmental
stage the acme in ecological importance of an organism occurs.
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