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ABSTRACT
This paper reports an integrated solution, called BALSA, for the secondary analysis
of next generation sequencing data; it exploits the computational power of GPU and
an intricate memory management to give a fast and accurate analysis. From raw reads
to variants (including SNPs and Indels), BALSA, using just a single computing node
with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequenc-
ing (∼750 million 100 bp paired-end reads), or just 25 min for 210-fold whole exome
sequencing. BALSA’s speed is rooted at its parallel algorithms to effectively exploit a
GPU to speed up processes like alignment, realignment and statistical testing. BALSA
incorporates a 16-genotype model to support the calling of SNPs and Indels and
achieves competitive variant calling accuracy and sensitivity when compared to the
ensemble of six popular variant callers. BALSA also supports efficient identification
of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previ-
ously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel
detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT for-
mat, while maintaining the same fidelity as BAM in variant calling, enables efficient
storage and indexing, and facilitates the App development of downstream analyses.
BALSA is available at: http://sourceforge.net/p/balsa.

Subjects Bioinformatics, Genomics, Computational Science
Keywords Secondary analysis, Whole-genome seqeuncing, Whole-exome sequencing, GPU,
Variant calling, Genomics, NGS, HPC

INTRODUCTION
With the advance in next generation sequencing (NGS) technologies, whole exome

sequencing (WES) and whole genome sequencing (WGS) have become compelling tools

for clinical diagnosis and genetic risk prediction. Sequencing data requires dedicated

analysis tools to produce a robust characterization before being used by scientists or

clinicians. To this end, analysis pipelines such as Baylor’s Mercury (Reid et al., 2014)

and those commercially available in DNAnexus and Seven Bridges Genomics have been

developed. These pipelines take an automated approach to integrate multiple well-known

open-source analysis components. Cost aside, Mercury reported finishing the analyses
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of a WES human sample in 15 h using one computer node, and a WGS human sample

(NA12878) in approximately 32 h using 8 computing nodes at peak. These pipelines

have been deployed on public cloud services such as Amazon Web Services (AWS),

which provides the hardware elasticity to analyze up to tens of thousands of samples

simultaneously.

The cost and speed of NGS have been improving much faster than those of computer

hardware. As recently announced by Illumina, sequencing cost is approaching the

so-called “mythical” rate of $1,000 per whole genome sequencing. Many laboratories and

hospitals nowadays routinely generate terabytes of NGS data daily; apart from sequencing,

computational resources for running the above-mentioned analysis pipelines are indeed

a major expenditure. The running cost, theoretically speaking, increases linearly with the

running time and number of computing nodes required. Yet, in practice, the long running

time of such pipelines often coupled with a lot of extra cost to fix possible errors due to

nodes failure or corruption of intermediate data between the component tools, and to

solve unexpected compatibility issues among component tools. Thus a single tool that

is well designed to embrace the functionalities of all necessary components involved in

NGS secondary analysis while being efficient even on a single node is promptly needed.

The tool shall take raw reads as input, and outputs variants with sensitivity and accuracy

competitive to or better than the prevalently utilized combinations of short-read aligners

and variant callers. The tool shall have the extra capability to output the details of every

single genome position in a space-efficient manner to facilitate users from recurring

the analysis and to co-analyze with copious amount of samples. From the efficiency

perspective, the tool shall be meticulously designed to maximize the utilization of every

subsystem of a computing node.

Our previous work on short-read alignment, SOAP3-dp (Luo et al., 2013), which

fits the problem of aligning individual reads with the massive parallelism provided

by a Graphics Processing Unit (GPU), successfully solves the problem by two to tens

of times faster than state-of-the-art short-read aligners, while maintaining the highest

sensitivity and accuracy with read length of 100 bp and 150 bp. However, the acceleration

is inadequate for the whole secondary analysis. For a typical WGS sample, SOAP3-dp can

shorten the alignment time to 2–4 h, yet the follow-up analyses, which include base-score

recalibration, de-duplication, realignment and variant calling procedures, still require tens

of hours using a single computing node.

We have developed BALSA, a lightweight total solution for NGS secondary analysis that

takes full advantage of the computational power available on a computing node equipped

with a multi-core CPU and a GPU device. We have tested BALSA on a node equipped with

a 6-core Intel i7-3930k, 64 GB 1333 MHz memory and an Nvidia GTX680 GPU with 4 GB

memory, the end-to-end time to process a 50-fold WGS human dataset (∼150 Gigabases)

from FASTQ files into a VCF file of recalibrated variants with a “SNAPSHOT” of details per

genome position is 5.5 h and can be as fast as 3 h on newer and professional models of CPU

and GPU. A 210-fold WES human dataset takes 24.65 min with the same setting.
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Figure 1 BALSA, based on SOAP3-dp, performs the whole secondary analysis (raw reads to variants)
in memory with most of the modules accelerated with GPU.

BALSA outperforms existing pipelines when considering the sensitivity and accuracy

of detecting known variants in simulated data. It generates less SNP conflicts for a deeply

sequenced trio family. BALSA’s performance stems from using the 16-genotype model that

incorporates both SNPs and Indels simultaneously in a diploid space, and its proactive and

exhaustive realignment that maximizes the local variant signal coherency.

Figure 1 gives an overview of BALSA and Fig. 2 gives a flowchart of the pipeline of

BALSA. BALSA extends our aligner SOAP3-dp so that while the GPU is aligning the reads,

the CPU is processing the alignment results in the memory in parallel. Furthermore,

BALSA is able to utilize the GPU for different computational intensive work, such as

the exhaustive realignment of reads due to different hypothetical Indels in the reference

genome. The speed advantage of BALSA is not entirely due to the GPU; BALSA has

intricate memory management to minimize the use of hard disk. In a typical WGS

sample, the reads and their alignment results would occupy hundreds of Gigabytes or

even Terabytes. BALSA, with a succinct representation of the alignment results, is able

to process all the reads for the purpose of variant calling almost entirely in the main

memory. Processes like the removal of duplicate reads can be done without sorting a

large volume of data records on the hard disk. A SNAPSHOT that is considered as a pileup
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Figure 2 A flowchart of the pipeline of BALSA. BQSR denotes “base quality score recalibration”.

form of all the information from the inputting raw reads after alignment, recalibration

and realignment, is a simple dump of all the data structures that BALSA needs to work

with, which enables repeatable variant calling without reprocessing the reads. The details

of BALSA’s algorithms and implementations are given in the Supplemental Information.

BALSA has been optimized for Illumina platform, but the workflow can be adapted to

other platforms such as Ion Proton.

RESULTS
To demonstrate the performance of BALSA, we compare its speed and the quality of the

identified variants to other pipelines (Table 1), which typically comprise (1) an aligner,

(2) post-processing tools, and (3) a variant caller. We also compare BALSA to a recently

published CPU-based integrated workflow named ISAAC (Raczy et al., 2013).

Speed for WGS–YH 50-fold 100 bp paired-end reads
First of all, we compare the speed of BALSA, BWA + GATK (DePristo et al., 2011),

SOAP3-dp + GATK, and ISAAC on real data. In particular, 50-fold 100 bp paired-end

reads of the YH sample (Luo et al., 2012) (EBI SRA Accession: ERP001652, Appendix 1.1)

were used (see Appendix 2 for the settings and commands). For BWA v0.7.5a, both the ‘aln’
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Table 1 Aligners, post-processing tools, variant callers and integrated pipelines used for comparison
with BALSA.

Step Tool Citation

BWA-bwaaln Li et al. (2009)

BWA-bwamem Li (2013)Aligner

SOAP3-dp Luo et al. (2013)

GATK DePristo et al. (2011)
Post-processing

Picard http://picard.sourceforge.net

Atlas2 Challis et al. (2012)

Freebayes Garrison & Marth (2012)

GATK HaplotypeCaller DePristo et al. (2011)

GATK UnifiedGenotyper DePristo et al. (2011)

Samtools Li et al. (2009)

Mutect Cibulskis et al. (2013)

Variant caller

Varscan Koboldt et al. (2012)

Pipeline ISAAC Raczy et al. (2013)

Mutect Cibulskis et al. (2013)
Somatic Caller

SomaticSniper Larson et al. (2012)

version (Li & Durbin, 2009) and the new ‘mem’ version (Li, 2013) (with improved speed

and sensitivity) were tested, and for GATK, we used best practice v4. The variant caller used

is GATK UnifiedGenotyper. All experiments were performed on a computing node with a

6-core CPU (Intel i7-3930k@3.2GHz), 64 GB memory, and an Nvidia GTX680 GPU. The

time reported is the average time over two repeated runs of each experiment.

In summary, from raw reads to variants (including SNPs and Indels), BALSA finished

in 5.49 h, whereas ISAAC finished in 11.92 h, and GATK coupled with BWAaln, BWAmem

and SOAP3-dp in 88.00, 48.68 and 46.27 h, respectively. See Fig. 3 for a comparison,

and Table 2 for a breakdown of the running time. Although the overall time used by

BWAmem + GATK and SOAP3-dp + GATK is similar, the alignment time of SOAP3-dp

is indeed much shorter than BWAmem (4.12 h versus 14.56 h). BWAaln is the longest

(46.16 h). SOAP3-dp’s ability to identify more Indel candidatures causes GATK to run 8

more hours.

Alignment & variant calling statistics
BALSA (and SOAP3-dp) has the highest alignment sensitivity. When measuring the

number of read pairs that have both ends aligned and paired, SOAP3-dp/BALSA reports

97.08%, BWAmem 95.74%, BWAaln 92.22% and ISAAC 91.42% (see Table S1 for details).

Table 3 shows the statistics of the variants (SNPS and Indels) called by different pipelines.

For BALSA and GATK, we are able to count the raw SNPs called, as well as those SNPs

that pass the VQSR filter with good variant quality, and those passed the filter but with

low variant quality. BALSA reports a slightly higher number than GATK in each category

(no matter GATK is coupled with BWAaln, BWAmem or SOAP3-dp). The Ti/Tv ratio, Ref

Hets, and percentage of overlap with dbSNP are within normal ranges in all cases. The
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Table 2 Time consumption of different pipelines. All number in hours.

Step BWAaln
GATK + Picard
UnifiedGenotyper

BWAmem
GATK + Picard
UnifiedGenotyper

SOAP3-dp
GATK + Picard
UnifiedGenotyper

ISAAC BALSA

Alignment 46.16 14.56 4.12

Sort and merge 1.40 1.70 1.74

Mark duplicate 6.84 6.25 5.50

Realigner target creator 0.93 0.77 1.06

Indel realigner 10.89 7.37 15.70

Base score recalibration 5.20 4.75 4.91

PrintReads 12.17 9.92 9.47

9.89 5.24

Variant calling 4.41 3.37 3.77 2.03 0.24

Total 88.00 48.68 46.27 11.92 5.49

Figure 3 Time consumption comparison between pipelines analyzing YH 50-fold 100 bp paired-end
WGS data.

Indel calling statistics is relatively more interesting. When counting Indels that can pass

the VQSR filter (with good variant quality), BALSA detected 16.5%, 9.2% and 7.6% more

than GATK coupled with BWAaln, BWAmem and SOAP3-dp, respectively. The increase

over ISAAC is even more drastic. Note that the statistics reported here do not conclude

the accuracy. In the next section we will use simulated data to study the accuracy and

sensitivity of variant calling.

It is worth mentioning that BALSA comes with a Random Forest based filtration that

can be used to replace the VQSR filtration (method and features used for model training

described in Supplemental Information 8.3). The former costs only ∼15 min for a 50-fold

WGS, while giving similar filtration power (in our experiment, 98.5% of the variants that

pass the new filter (with probability ≥0.95) are overlapping with those variants passing the
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Table 3 Statistics of variants called by different pipelines. “VQSR LowQual” means variants passed GATK VQSR but with (i) QUAL<50 for
pipelines using UnifiedGenotyper and (ii) QUAL<30 for BALSA. “RandomForest LowQual” means variants with probability ≥0.95 using random
forest classification but with QUAL<30 for BALSA. Please refer to Supplemental Information 8.4.1 for the details of the variant QUAL profile of
BALSA.

Variant type Metric BWAaln
GATK + Picard
UnifiedGenotyper

BWAmem
GATK + Picard
UnifiedGenotyper

SOAP3-dp
GATK + Picard
UnifiedGenotyper

ISAAC BALSA

Raw 4,175,654 4,267,377 4,978,914 3,429,162 5,239,864

VQSR PASS 3,324,891 3,307,619 3,383,853 – 3,444,915

VQSR LowQual 151,933 136,392 308,321 – 877,964

RandomForest
PASS

– – – – 3,433,397

RandomForest
LowQual

– – – – 871,422

Ti/Tv 2.08 2.07 2.05 2.08 2.04

SNP

dbSNP v137 99.62% 99.47% 98.60% 99.29% 98.51%

Ref Hets 54.40% 54.40% 55.40% 57.20% 58.20%

Raw (Indel) 605,966 615,351 685,541 455,103 974,033

VQSR PASS 576,889 615,351 624,629 – 671,914

RandomForest
PASS

– – – – 630,827Indel

dbSNP v137 90.70% 90.49% 87.80% 93.38% 89.01%

VQSR filter. Figure 4 shows the correlation between the variant classification probabilities

generated by BALSA and the VQSLOD value generated by GATK’s VQSR.

Sensitivity and accuracy for WGS—simulated data
To assess the accuracy and sensitivity of BALSA on variant calling, we used pIRS

(Hu et al., 2012) short-read simulator to obtain a set of 40-fold Illumina-style 100 bp

paired-end reads with 500 bp insert size, from a modified GRCh37 human reference

genome with 2,859,141 known SNPs and 287,733 known Indels (Settings and commands

elaborated in Appendix 1.2). We tested three different pipelines to process the simulated

reads for variant calling: (1) BALSA, (2) SOAP3-dp + GATK + “6 prevalently used variant

callers”1 and (3) ISAAC. The results of the six variant callers were then combined to
1 The variant callers tested include Atlas

(Challis et al., 2012), Freebayes (Garrison
& Marth, 2012), GATK HaplotypeCaller,
GATL UnifiedGenotyper, Samtools (Li
et al., 2009), and Mutect (only SNP)
(Cibulskis et al., 2013)/Varscan (only
Indel) (Koboldt et al., 2012). See Table 1.
Note that in view of the results on real
data, we have not tested BWA-based
pipelines.

improve the sensitivity and accuracy of individual callers (see the rules in Appendix 2.4)

to form an Ensemble call set, referred to as Ensemble below. Using one computing node

(same configuration as above), BALSA and ISAAC finished in 3.86 and 8.71 h, respectively,

whereas the Ensemble pipeline used more than a week (the time was dominated by the

individual callers, which used about 5 days).

To make a fair comparison, no filtration was applied to the variants called by the three

pipelines. Figure 5 compares the SNPs and Indels called by BALSA and Ensemble with

respect to the correct SNPs and Indels covered by the simulated reads (denoted Truth

below). Perhaps not surprisingly, Ensemble made more incorrect calls for SNPs and Indels

and has higher False Discovery Rate (FDR) than BALSA (SNP: 0.21% versus 0.11%; Indel:

1.04% versus 0.34%), while Ensemble achieves higher sensitivity than BALSA, precisely,

Luo et al. (2014), PeerJ, DOI 10.7717/peerj.421 7/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421


Figure 4 Correlation plot between the RandomForest Probability generated by BALSA and the VQS-
LOD value generated by GATK’s VQSR on YH 50-fold 100 bp paired-end WGS data.

Figure 5 Venn graphs illustrating the overlaps between (1) BALSA, (2) the Ensemble call set, and
(3) the known variants on both SNP and Indel. AAF denotes “alternative allele frequency”, i.e., percent-
age of reads supporting the alternative allele among all simulated reads covering a variant. DP represents
the number reads simulated covering a variant. Qual means the variant score assigned by BALSA.

0.04% and 0.76% higher in SNPs and Indels, respectively. Further investigation into the

variants exclusively detected by Ensemble (2,156 SNPs and 2,241 Indels) indicated that

74.77% and 71.62% of such SNPs and Indels are covered with less than 10 reads generated

from the simulation; and for the remainders supported by ≥10 reads, 94.12% and 88.77%
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Figure 6 Venn graphs illustrating the overlaps between (1) BALSA, (2) ISAAC, and (3) the known
variants on both SNP and Indel.

of the SNPs and Indels are with alternative allele frequency (AAF) lower than 0.3. Hence

we conclude that over 95% of the variants that are exclusively detected by Ensemble are

unreliable and would eventually be filtered. Therefore, BALSA’s sensitivity and accuracy is

competitive to the combination of 6 prevalently used variant callers.

Figure 6 shows the comparison between BALSA and ISAAC. BALSA clearly outper-

formed ISAAC in terms of sensitivity (1.66% or 47,413 more SNPs, and 1.06% or 3,044

more Indels), and so did Ensemble. ISAAC’s performance is probably limited by its

alignment algorithm as its sensitivity is lower than all the other callers tested, where 3.67%

less reads were aligned and 5.66% less reads were properly paired when compared to

BALSA/SOAP3-dp. Notably, ISAAC has a slightly lower FDR than BALSA (0.10% and

0.12% lower for SNP and Indel, respectively).

In Figs. S1 and S2, BALSA is further compared with each of the six individual caller used

in Ensemble. BALSA, while outperformed the 6 individual callers in either sensitivity or

accuracy, achieved the best trade-off (SNP: Fig. S1, Indel: Fig. S2). We also compared the

size distribution between simulated Indels and Indels detected by BALSA (Fig. S3).

WGS–Trio study
To further test the accuracy of BALSA, SNP trio conflict analysis was performed. We used

a trio from CEPH pedigree 1493, which consists of family members NA12877 (father,

ERR091567-70, 54.59x), NA12878 (mother, ERR091571-74, 56.94x) and NA12882 (child,

ERR091575-78, 54.18x), with data from Illumina Platinum Genome Project (Illumina,

2012). We measured the number of Mendelian SNP conflicts, each of which is a variant

called in the child that is inconsistent with the genotypes of the parents. We run BALSA

and BWAmem + GATK + UnifiedGenotyper on the three samples, with RandomForest
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Table 4 Run time, number of SNPs passing filter (with PASS tag), union of SNP sites and total number
of SNP conflicts of BALSA and BWA + GATK for the NA12877, NA12878 and NA12882 family. Union
is the SNP sites called in all samples or called in any sample.

Pipeline Sample Time (Hour) SNPs (PASS) Union Conflicts Conflict rate

NA12877 6.98 3,522,647

NA12878 6.24 3,439,917BALSA

NA12882 6.65 3,428,070

4,556,818 209,552 4.60%

NA12877 87.81 3,125,185

NA12878 91.42 3,158,382BWA + GATK

NA12882 87.01 3,183,451

4,327,046 236,608 5.47%

and VQSR filtration applied to the resulting variants, respectively (settings and commands

elaborated in Appendix 2.1). The results of the two pipelines were transformed to gVCF

format and analyzed by the trio conflict evaluation tool, which available as a part of the

gvcftools (Illumina, 2013) package. BALSA took less than 20 h to analyze the three samples

by using just a single computing node (same configuration as above), while the GATK

pipeline use 266 h.

Results are shown in Table 4. As expected, BALSA reported more variants than

BWA + GATK: 250k–400k more per sample, and 229k more with respect to the union

of all SNP sites of the three samples. More interestingly, the number of SNP conflicts

detected by BALSA is 27k less than that of BWA + GATK; specifically, the conflict rate is

4.60% for BALSA and 5.47% for BWA + GATK. This shows that BALSA provides higher

sensitivity and accuracy than BWA + GATK.

Production testing on WGS—90 Chinese individuals
To test BALSA with the workload of a population scale study, we analyzed whole genome

sequencing data of 45 CHB and 45 CHS samples from the 1000 genomes project (Table S2).

In total, we have 90 samples of 100 bp paired-end reads with input size varying from 51.61

to 84.77-fold per sample (64.68-fold on average).

A computer cluster of 8 machines with three different hardware settings were used:

(1) 5 machines with a 6-core Intel i7-3730k@3.2GHz + Nvidia GTX680, (2) 2 machines

with a 6-core Intel E5-2620@2GHz + Nvidia GTX680, (3) 1 machine with a 6-core Intel

E5-2620@2GHz + Nvidia Tesla K40. All 90 samples were analyzed by BALSA and with

variants filtered by GATK VQSR. It took 3.13 days for the cluster to process all 90 samples

(Table S3 shows the time consumption of each sample). Limited by the performance of the

centralized storage for concurrent access by 8 machines, BALSA consumed more time on

loading reads and writing results. From the statistics of run time on different hardware, we

observed that a CPU with higher clock rate helps BALSA to better utilize the power of GPU.

In order to utilize the extra power of newer GPU models, BALSA needs optimizations on

the computation that utilizes CPU in the future.

The VCF files of the 90 individuals are available at http://www.bio8.cs.hku.hk/dataset/

BALSA/90ChineseIdv/VCFs/.
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Somatic SNV and CNV detection on WGS—leukemia
We analyzed a pair of normal-tumor WGS sample on Donor Cell Leukemia. A previous

study provides experimentally validated disease causing Somatic SNVs and CNVs on

this paired sample (Ho et al., 2012). BALSA finished in 4.52 and 4.54 h for the normal

(44.32-fold) and tumor (42.93-fold) sample, respectively. Using the SNAPSHOTs of the

paired sample as input, BALSA’s Somatic Mutation caller (Supplemental Information 9)

finished in 16.47 min and generated 128,623 Somatic SNVs and 55,710 Somatic Indels

passing the filter (Commands elaborated in Appendix 2.1.4). BALSA detected all the 16

Sanger validated disease causing SNVs (Table S4).

For comparison, we ran “SOAP3-dp + GATK”, followed by two somatic mutation

callers Mutect and SomaticSniper, which finished in 7.32 h and 1.14 h, respectively. When

considering only functional changing mutations with types including “missense”, “stop

loss”, “stop gain” and “splice site”, BALSA, Mutect and SomaticSniper (Larson et al.,

2012) identified 351, 2,945 and 8,963 somatic SNPs, respectively. Using the 16-genotype

probabilistic model (Supplemental Information 8), which considers the coexistence

of SNPs and Indels per site in a diploid space, BALSA effectively narrowed down the

candidates of somatic variants for further investigation.

Table S5 shows the comparison between the experimentally validated somatic CNVs

and the ones correspondingly detected by BALSA (Method in Supplemental Informa-

tion 10). BALSA authentically detected the somatic CNVs with a fine-grain boundary in

the validated regions (Table S6).

WES—a 210x TCGA lung adenocarcinoma sample
We analyzed a 209.53-fold whole-exome sequenced TCGA lung adenocarcinoma sample

(The Cancer Genome Atlas Research Network, 2012) (ID TCGA-44-7662) using BALSA.

The pipeline finished in 24.65 min, identified 97,640 SNPs and 6,614 Indels passing the

variant classification. Exome sequencing targets only tens of mega-bases of the genome;

Where BALSA stores the SNAPSHOT file on a per-base basis for WGS, it stores only the

user defined exome regions for WES in the purpose of storage saving (Supplemental

Information 7).

DISCUSSION
BALSA, as an extension of our GPU-based aligner SOAP3-dp, can finish the analysis of

50-fold whole genome sequencing data in a few hours; it was designed to favor the fast

turn around time requirement for the clinical context. Unlike the traditional pipelines

and tools that need to read and write Terabytes of intermediate data to the hard disk,

BALSA performs the whole secondary analysis including quality control, alignment,

base score recalibration, de-duplication and realignment in memory on the fly. With a

neatly designed data structure, the analysis of a human genome costs only about 45 GB of

memory, which makes BALSA applicable on most of the recent servers equipped with a

commodity GPU.

BALSA was designed with sensitivity and accuracy prioritized over speed, and there still

exists room for improving the speed of BALSA from an engineering perspective, such as
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(1) design a more efficient pipeline to overlap the CPU tasks and GPU tasks; (2) reduce the

data to be transmitted to and from GPU with better schema for reusing the data; (3) utilize

new GPU features such as Hyper-Q to overlap multiple kernels to gain an even better

hardware utilization. Better understandings on how the parameters affect the behaviors of

the operating system also helps to improve the performance of BALSA in a long run (see

Supplemental Information 2.5 for OS optimization guide).

Given BALSA’s high efficiency, large genome centers may consider re-processing

their historical sequencing data (say, thousands or even up to hundreds of thousands of

samples) using BALSA so as to come up with standardized results for larger-scale genome

analysis. Conventional thinking would suggest BALSA to store the alignment results of

individual reads in BAM format or even the recently released CRAM (reference-based)

format for later analysis. However, even if we just want to query a certain genome position

over all the samples, the overhead in processing the alignment results in BAM or CRAM

format is huge (the BAM format would demand a lot of time for decompression, and the

CRAM format would require both decompression and recovering information from the

reference). Suppose we have a hundred thousand samples, we estimate that using BAM

or CRAM format, it would require several hours just to query a certain position of all the

samples.

BALSA takes a different approach to store the alignment results for large-scale genome

analysis. It stores a “SNAPSHOT” that records the per-base details with almost the same

fidelity of a pileup from a BAM file. It allows much more efficient retrieval of per-base

information, and it does not occupy much space, about 12 and 0.25 GB in size after

LZ4 compression for a WGS and WES sample, respectively. BALSA’s caller was designed

to directly work on the “SNAPSHOT”. Users can easily write their own downstream

Apps utilizing SNAPSHOT, such as identifying SNPs and Indels from a SNAPSHOT or

identifying somatic variants from multiple SNAPSHOTs (see Supplemental Information 7

for design and details), say, one may want to query the genotype frequency of ‘GT’ at a

recurrent position in a tumor suppressor gene for those non-smoking female samples with

age ranging from 50 to 80.

BALSA primarily focuses on the secondary analysis and takes input in the form of

reads (FASTQ format). At present the process of preparing reads from a sequencer’s raw

signal, a.k.a. base-calling, relies almost exclusively upon vendor-provided software, such as

Illumina’s Bcl2FastQ (Illumina), which has been adopted by pipelines such as Mercury and

ISAAC as a pre-processing before secondary analysis. Notice that, when compared with

the time used by BALSA, the time consumed by such base calling software would become

a bottleneck. To tackle the problem, some vendors are also using GPU to accelerate base

calling; for example, in the Ion Proton platform (Gupta & Siegel, 2013).

BALSA can be easily integrated into existing workflows providing its simple interface.

For better automation, BALSA will be improved to integrate external metadata resources

and inputs such as a reference genome, sequence data locations, and a capture design bed

file and therefore requires interaction with (Laboratory Information Management System)

LIMS. To make BALSA portable, we will implement canonical APIs for transferring data

Luo et al. (2014), PeerJ, DOI 10.7717/peerj.421 12/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421/supp-1
http://dx.doi.org/10.7717/peerj.421


between BALSA and LIMS. These hooks are scripts that can be modified to query data

from any metadata resource. LIMS and actively invocate BALSA when the sequencing

data of a sample is ready. Examples of information served to BALSA from LIMS are the

reference genome and gene regions.

The current implementation of BALSA assumes a computing node with a 6-core CPU,

40+ GB of memory and a GPU board. Such a configuration is pretty affordable to even

small laboratories. Nevertheless, we have also considered how to make BALSA to run

on other configurations, in particular, those available in public clouds like AWS. Very

often cloud facilities may provide “computing instances”, some of which with a lot of

memory but no GPU, while others with too many GPUs but not enough memory. E.g.,

AWS provides a GPU instance “cg1.4xlarge”, featuring 16 CPU cores, 22.5 GB memory,

two Nvidia Tesla M2050 GPU devices, and 10 Gigabit inter-connectivity to other instances.

To this end, we will implement an offload mode for BALSA so that BALSA can be run

on two instances in parallel, one with sufficient memory but no GPU, plus one with two

GPUs but insufficient memory. We expect that with suitable adjustment, the throughput of

such implementation would be close to two copies of BALSA each running on a node with

sufficient memory and a GPU.
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