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ABSTRACT
Von Bertalanffy proposed the differential equationm′(t )= p×m(t )a−q×m(t ) for the
description of the mass growth of animals as a function m(t ) of time t. He suggested
that the solution using the metabolic scaling exponent a = 2/3 (Von Bertalanffy
growth function VBGF) would be universal for vertebrates. Several authors questioned
universality, as for certain species other models would provide a better fit. This paper
reconsiders this question. Based on 60 data sets from literature (37 about fish and 23
about non-fish species) it optimizes the model parameters, in particular the exponent
0≤ a< 1, so that themodel curve achieves the best fit to the data. Themain observation
of the paper is the large variability in the exponent, which can vary over a very large range
without affecting the fit to the data significantly, when the other parameters are also
optimized. The paper explains this by differences in the data quality: variability is low for
data from highly controlled experiments and high for natural data. Other deficiencies
were biologically meaningless optimal parameter values or optimal parameter values
attained on the boundary of the parameter region (indicating the possible need for a
different model). Only 11 of the 60 data sets were free of such deficiencies and for them
no universal exponent could be discerned.

Subjects Agricultural Science, Aquaculture, Fisheries and Fish Science, Computational Biology,
Mathematical Biology
Keywords Multi-model inference, Von Bertalanffy growth function (VBGF), Metabolic scaling
exponent, Akaike’s information criteria (AIC), Weak universality

INTRODUCTION
Growth model
Size at age is a key metric of productivity for any animal population (MacNeil et al., 2017)
and a wide range of growth models to describe the size and also the mass of animals as a
function of time has been developed. Amongst applications is stock assessments in fisheries
management (Juan-Jordá et al., 2015) and applications in ecology, e.g., understanding
outbreak dynamics (Pratchett, 2005). Of particular interest are models based on biological
principles. This paper considers a class of suchmodels thatwas developed byVon Bertalanffy
(1957), who formulated a differential equation of ontogenetic growth:

dm(t )
dt
= p ·m(t )a−q ·m(t ). (1)
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Equation (1) aims at explaining the allocation of metabolic energy between growth and
sustenance of an organism, using a metabolic scaling exponent 0≤ a< 1: if m=m(t ) is
body mass (weight) at age t, then the body utilizes resources at a metabolic rate (p ·ma) for
growth, except for catabolism (energy use for the operation and maintenance of existing
tissue) proportional to body weight (q ·m). The parameters p and q are positive constants
obtained by fitting the model curve (1) to growth data.

Is there a universal exponent?
Does the modeling of the growth of different species require different metabolic scaling
exponents? Thenull hypothesiswould state that on the contrary a certain universal exponent
would suffice. Several concrete values for such an exponent have been proposed in literature,
resulting in a scientific controversy about the ‘true’ exponent (Isaac & Carbone, 2010).

Von Bertalanffy (1934), Von Bertalanffy (1949) and Von Bertalanffy (1957) suggested
that a= 2/3 would describe the mass growth of vertebrates; this defines the classical Von
Bertalanffy growth function (VBGF). Von Bertalanffy explained this value of the exponent
by a biological reasoning: Anabolism (synthesis for growth) would be proportional to the
2/3th power of body weight, as the oxygen consumption would be proportional to surface
(2/3th power of volume). This value was supported e.g., by Banavar et al. (2002) andWhite
& Seymour (2003).

West, Brown & Enquist (2001) proposed an alternative value a= 3
4 of the exponent, as

anabolism would relate to the number of capillaries, which in turn would be proportional
to the 3

4 th power of the number of cells (proportional to body mass). Actually, a metabolic
exponent a= 3

4 had been suggested much earlier by Kleiber (1947). This value was also
supported by Darveau et al. (2002) and it is widely used in animal science.

Von Bertalanffy identified also species, where mass growth would be better described
by an exponent a= 0. Moreover, an exponent aL= 0 is widely used to describe the length
growth of fish and many authors reported an excellent fit also for e.g., shellfish (Koch et al.,
2015). For instance, the FishBase database (Froese & Pauly, 2017) presumes this model and
lists growth parameters for 2,320 species. In addition, a search in Google Scholar identified
approximately 25,000 papers related to the use of this model for fish. The use of this model
in literature was also specifically surveyed for elasmobranch species, showing that it was
studied twice as often as any other model (Smart et al., 2016).

More recent literature observed that no single exponent may be exactly correct. As
Killen, Atkinson & Glazier (2010) and White (2010) observed, for different species there
were different optimal exponents aopt. Also for the same species data sets differing
in environmental factors (e.g., food composition, temperature) supported different
exponents; c.f. Kimura (2008), Porch (2002), Quince et al. (2008), Stewart et al. (2013),
or Yamamoto & Kao (2012).

There were also suggestions that the very problem of determining an optimal exponent
may be ill-posed. For, as Shi et al. (2014) observed, for some data sets a near-optimal
fit could be achieved by a wide range of exponents. As a consequence, data fitting
using nonlinear regression by means of the method of least squares may be impeded
by numerical instability.
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Problem of the paper
The present paper develops an approach to identify best fitting exponents for model (1)
despite numerical instability and applies this to explore the variability of the exponent. To
this end, the growth model (1) was applied to 60 data sets and best fit exponents together
with suitable best fit parameters were determined.

In order to compare the goodness of fit across different data sets, the paper applies
Akaike’s information criterion: given the optimal exponent aopt, computed for a certain
data set, and a hypothesized exponent a (e.g., a universal value for the exponent) the Akaike
weight prob (a) is the probability that the model (1) using the hypothesized exponent a
is true, when compared with the optimal exponent aopt. Thereby, given a data set, the
exponent a is refuted for this data set, if in comparison to aopt its Akaike weight is below
2.5%. Variability of the exponent is measured by the length of the interval of not-refuted
exponents.

MATERIALS AND METHODS
Choice of the growth model
Model (1) is believed to have a biological meaning (see the ‘Introduction’). This was the
main reason, why the authors decided to study this model in more detail. This distinguishes
model (1) from simpler models recommended in literature for data interpolation, such as
power-laws between size and age (Katsanevakis & Maravelias, 2008).

Another reason to study model (1) was the boundedness of the model function and its
sigmoid shape, if a, p, q > 0: the rate of mass growth increases, as size increases, until it
reaches amaximal value and then decreases towards zero asmass approaches the asymptotic
weight limitmmax (mature body mass). This is a unimodal curve, peaking above the weight
at the inflection point. To demonstrate the plausibility of this model, Fig. 1 compares this
theoretical pattern of the growth rate, i.e., the right hand side of Eq. (1), with observed
growth rates from data.

As follows from this shape of the model curve for a, p, q > 0, mmax= (p/q)1/(1−a) is the
positive zero of the right hand side of Eq. (1); the rate of growth vanishes form=mmax. The
inflection point is assumed when body mass reaches the value minfl= a1/(1−a) ·mmax; the
derivative of the right hand side of Eq. (1) vanishes for m=minfl. The fraction minfl/mmax

varies between just above 0% and just below 1/e = 37%, the limits of a1/(1−a) for a→ 0
and for a→ 1, respectively.

An additional reason for the selection of model (1) was the availability of an explicit
solution (2) of Eq. (1) in terms of elementary functions (Von Bertalanffy, 1957), whence
spreadsheets could be applied for data fitting:

m(t )
mmax

= 1−a

√
1− (1− (

m0

mmax
)1−a) ·e−q·(1−a)·t (2)

Formula (2) explains growth in terms of four parameters: the exponent a, the growth
coefficient k = q · (1−a), the initial value (neonate weight) m0 =m(0), and mmax. (The
dimensions are mass in g or kg form,m0 andmmax, time in d, months or years for t, 1/time
for q and dimensionless for a). In the literature there are different parametrizations and
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Figure 1 Right hand side of Eq. (1) compared to observed values for the left hand side of (1). Figure
generated in Microsoft EXCEL based on data set #10 (outlier removed). Squares indicate observed growth
rates, the left hand side of Eq. (1), whereby dm/dt was computed by numeric differentiation (quadratic in-
terpolation taking care of unequal dt -interval length; Burden & Faires, 1993). The line (model) is the right
hand side of Eq. (1). Its parameters (p = 323, q = 0.73) were obtained from a linear fit to the observed
growth rates (LINEST function of EXCEL applied to dm/dt,ma, andm with a= 2/3). This method of fit-
ting parameters is a modification of the Walford plot (Walford, 1946).

Full-size DOI: 10.7717/peerj.4205/fig-1

the present one follows a recommendation of Cailliet et al. (2006). Knowing a and q allows
to computemmax and p from each other (using the formula formmax): p= q ·m1−a

max. Several
papers use a time shift t0 to eliminate the multiplicative constant of formula (2), but t0
might not have a biological meaning (Schnute & Fournier, 1980).

Formula (2) is also valid for an exponent a= 0, where it is the model of bounded
exponential growth. There, the difference mmax−m(t ) between mature body mass mmax

and current weight follows the model of exponential decay and the model curve is not
sigmoid. As Von Bertalanffy (1957) observed, the model for length growth using the
exponent aL= 0 is equivalent to VBGF for mass growth with a metabolic scaling exponent
a= 2/3. Therefore, in fishery literature both models are referred to as VBGF. However, for
this paper, VBGF always means a= 2/3. The equivalence between the models was meant
in the following sense: if mass growth is described by the VBGF with a= 2/3 and if mass
is assumed to be proportional to the third power of length, then the growth of length
is modeled by bounded exponential growth aL = 0. And conversely, if length increases
according to bounded exponential growth, aL= 0, then mass growth follows VBGF with
a= 2/3.

The authors acknowledge that there is room for alternative models and that certain
data sets may not be appropriate for further analysis by model (1). In particular, model
(1) may be generalized using more parameters. For instance, in (1) the term q ·m for
catabolism may be replaced by a more general term q ·mb (Pütter, 1920). This more general
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equation includes certain well-known models, e.g., for a= 1 a model due to Richards
(1959) and for b= 2 generalizations of the logistic growth function of Verhulst (1838).
However, the equation for the generalized model is no longer solvable using elementary
functions (Ohnishi, Yamakawa & Akamine, 2014). Such more complex models may be
analyzed using numerical solutions of differential equations (e.g., Leader, 2004), but then
numerical errors would require further analysis. Further, while for such models with more
free parameters the fit of the model curve to the data may be better, overfitting may result
in unrealistic parameter values.

Summarizing, with four parameters model (1) appeared to be flexible enough to
represent growth curves of different sigmoid shapes and to allow for handling numerical
instability, when analyzing the problem of the variability of the parameters.

Data
Tables 1 and 2 summarize the used data and the primary sources. The main secondary
sources were Parks (1982), Ogle (2017) and the supporting information of West, Brown &
Enquist (2001). The authors supplemented them by data from other literature sources and
from personal communications. Data in diagrams were retrieved by means of digitalization
(Digitize-It of Bormisoft R©). Obvious outliers were removed; this applied to data set #10
(Bull Trout).

Only data sets with N = 6 or more points of time were considered. Amongst data
sets removed for this reason were fish data about Channel Darter from Reid (2004) and
Creek Chub from Quist, Pegg & De Vries (2012). In average, data sets had 23 points of time
(maximum 110).

With respect to data collection, the paper distinguishes natural and controlled data.
Most fish data were natural data. For non-fish only controlled data were collected and
natural data were removed (Bottlenose Dolphin from Read et al., 1993; Burchell’s Zebra
from Smuts, 1975; Muntjak Deer from Pei, 1996). Thereby, controlled data were based
on repeated measurements of the same animals (pets, aquarium fish, farmed animals,
laboratory animals). The age of the animals was known, the food intake was controlled and
they could easily be grouped by objective factors (e.g., sex, strain). Natural data came from
hunting, fishing or capturing of wildlife, whereby in general animal age was estimated (e.g.,
otolith analysis). Thereby, e.g., spawning time caused additional age uncertainties for fish
(Datta & Blanchard, 2016).

The tables inform also about the number of data points for each data set, counting the
points of time. At each point of time the weights from one to several thousand animals
(e.g., data set #50) were averaged. Specifically, data sets #47 and 55 were growth data from
repeated measurements of a single animal. All other controlled data were average values of
repeated measurements of groups of animals (group size in general 15–30 animals.) The
natural data averaged over non-repeated measurements of different animals.

The authors considered only age-mass or age-length data; the latter only for fish. For
most fish (see Table 1) sources provided (average) lengths of different fish of approximately
the same age. In order to use data of the same format, length data were transformed into
mean-weight-at-time data. Empirical evidence for fish suggested that mass may be related
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Table 1 Numbering and sources of the fish data.

No Name Data Comment Source

1 Anchoveta Engraulis ringens 46
2 Araucanian Herring Strangomera bentincki 36

Cubillos et al. (2001)

3 Atlantic (Arctic) Cod Gadus morhua 19

N, TL

Jørgensen (1992)
4 Black Drum Pogonias cromis 8 N, TL, F Ogle (2017)
5 Blue Catfish Ictalurus furcatus 21 N, TL Maceina (2007)
6 33 N, TL, F
7

Australian Bonito Sarda australis
20 N, TL, M

Stewart et al. (2013)

8 Sea Trout & Rainbow
Trout

Salmo trutta & Oncorhynchus mykiss 9 Ogle (2017)

9 Sea (Brown) Trout Salmo trutta fario 15 Abad (1982)
10 Bull Trout Salvelinus confluentis 14* Parker et al. (2007)
11 Cabezon Scorpaenichthys marmoratus 13
12 Atlantic Croaker Micropogonias undulatus 10

Ogle (2017)

13 European Perch Perca fluviatilis 8

N, TL

Mooij, Van Rooij & Wijnhoven
(1999)

14 Guppy Poecilia reticulate 14 C, TW Brown & Rothery (1993)
15 Jackass Morwang Nemadactylus macropterus 16 Ogle (2017)
16 Jonubi Chalcalburnus mossulensis 6 Yildirim et al. (2003)
17 Lake Erie Walleye Sander vitreus 20

N, TL

18 17 N, TL, F
19

Arctic Lake Trout
Salvelinus
namaycush 19 N, TL, M

Ogle (2017)

20 Longjaw Cisco Coregonus alpenae (extinct) 8 Jobes (1946)
21 Red Drum Sciaenops ocellatus 42 Vaughan & Helser (1990)
22 Redbreast Tilapia Coptodon rendalli 19 Moreau (1979)
23 Rock Bass Ambloplites rupestris 9 Wolfert (1980)
24 Round Whitefish Prosopium cylindraceum 9

N, TL

Bailey (1963)
25 Sockeye Salmon Oncorhynchus nerka 24 N, TW West, Brown & Enquist (2001)
26 Sardine Strangomera bentincki 37 N, TL Cubillos et al. (2001)
27 15 N, TL, F
28

Siscowet Lake Trout Salvelinus namaycush
10 N, TL, M

Ogle (2017)

29 Spotted Sucker Minytrema melanops 7 Grabowski et al. (2012)
30 Atlantic Bluefin Tuna Thunnus thynnus 14 Krüger (1973)
31 Troutperch Percopsis omsicomaycus 8 House & Wells (1973)
32 Virgina Spot Leiostomus xanthurus 6 Ogle (2017)
33 Walleye Pollock Theragra chalcogramma 15

N, TL

Ianelli et al. (2011)
34 110 N, TL, F
35

White Grunt
Haemulon
plumierii 104 N, TL, M

Araujo & Martins (2007)

36 7 C, TW, M Gomez-Requeni et al. (2010)
37

Zebrafish Danio rerio
7 C, TL, L Kaushik, Georga &

Koumoundouros (2011)

Notes.
Data: number of time points; *, time points minus outlier (removed by the authors); comment: C/N, controlled/natural data; TL/TW, time length/weight data, F/M/L, female/-
male/larvae.
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Table 2 Numbering and sources of non-fish time-weight data from controlled experiments.

No Name Data Comment Source

38 21 Strain unknown Brody (1945)
39

Cattle Bos primigenius Taurus
42 Friesian Parks (1982)

40 19 Strain unknown Brody (1945)
41 30 Apollo Parks (1982)
42 11 Rhode Island Grossman (1969)
43 30 Ross Fryer Parks (1982)
44 20 X33 strain
45 20 X38 strain
46

Chicken Gallus gallus domesticus

20 X44 strain

Ricard (1975)

47 23 Rhodesian Ridgeback (E Schläger, pers. comm., 2016)
48 60 Great Dane, F
49

Dog Canis lupus familiaris

60 Great Dane, M
Parks (1982)

50 Domestic Pig Sus scrofa domestica 100 Various strains Renner-Martin et al. (2016)
51 Acheta domesticus 11
52 Gryllus assimilis 11
53

Cricket
Teleogryllus commodus 11

Larvae Sturm (2003)

54 Heron Ardea cinerea 12 Owen (1960)
55 Ball Python Python regius 14 (F Bader, pers. comm., 2016)
56 21 Albino Parks (1982)
57

Rat Rattus rattus
17 Strain unknown Brody (1945)

58 Robin Erithacus rubecula 12 Owen (1960)
59 Shrew Sorex cinereus 12 Forsyth (1976)
60 Shrimp Mysis mixta 7 Rudstam (1989)

Notes.
Data: number of time points; comment: F/M, female/male, if for the same species data sets of male and female animals were considered (all data sets except #60 were unisex).

to length by an allometric power relation m(t )= c · l(t )p with 2.5< p< 3.5 and some
constant c (Pauly, 1979; Anderson & Neumann, 1996). There were slight differences in the
parameters c and p, depending on which concept of length was used (Holden & Raitt, 1974:
standard length, fork length, total length). For simplicity, the paper approximated mass
by the third power of length. This convention was in line with Von Bertalanffy (1934),
Von Bertalanffy (1957) and it avoided mixing up information from different sources about
time-length and length-mass relations.

The search for data aimed at capturing the full growth phase, from an early point in
life (birth) till the end of growth (e.g., sexual maturation). For otherwise (Fig. 2), the
modeling of a growth curve would depend on extrapolation. In particular, as Knight (1968)
suggested, if mmax was excessive compared to the maximal observed weight mobs, then
the model curve would not be supported by the data. Therefore, this paper considered
mmax as excessive, if mmax ≥ 1.5 ·mobs, and for sigmoid model functions, if minfl ≥mobs

(Fig. 2B). The latter condition indicates that the weightminfl at the inflection point exceeds
the maximal observed weight, whence the inflection point of the best fitting model curve
is not visible in the data. (For good approximations at least three observations should be
located before and after the inflection point of the model curve, respectively.). However,
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Figure 2 Explanation of the meaning of ‘full growth phase’. The figure illustrates (A) the general form
of VBGF (a = 2/3,m0 = 5,mmax = 100, q = 0.01) showing a characteristic S-shape (circle = inflection
point:minfl = 29.6 at age= 95.9) over its whole range; (B) missing end-data, which suggest unbounded
growth; and (C) missing data at the beginning, which suggests exponential bounded growth (exponent
a= 0).

Full-size DOI: 10.7717/peerj.4205/fig-2

the authors did not discard of such data. For first, ideally a good growth model should
predict the mature body mass at a juvenile age, already, and second, mmax did not relate
alone to the data, but to data fitting. The paper therefore retained such data and marked
those with an excessive mmax. An exception were the Freshwater Drum data from Bur
(1984), removed due to an infinite asymptotic weight.

Statistical methods and data fitting
Generally, computations were done in Microsoft R© EXCEL. Optimization used its SOLVER
Add-In, which implemented an iterative optimization method (Newton’s method).
Casella & Berger (2001) was used as a standard reference for statistics and XL-Stat of
Addinsoft R© was used for statistical computations.

NonparametricMann–Whitney test was used for the comparison of location parameters.
(For example,mean values of optimal exponents were compared for different groups of data
sets.) The Anderson-Darling test was used to assess the good fit of a normal distribution.
The Fisher exact test was used for testing the significance of contingencies and the t -test
was used to test the significance of correlations. These computations used XL-Stat.

For confidence intervals, Clopper–Pearson confidence limits were used, as these are
conservative (higher confidence than stated) and suitable for small samples. Given a
sample of size M (the number of data sets) and amongst them m ones with a specific
property (the number of data sets not rejecting a certain exponent), then using the beta
distribution and EXCEL notation, the one-sided lower 90%-confidence limit and the
upper 90%-confidence limit for the frequency of this property in the population were 1
−BETA.INV(0.9;M−m+1;m) and BETA.INV(0.9;m+1;M−m). Excel notation is used
as there is no standard mathematical notation for the involved functions.

For data fitting, the paper used nonlinear regression by means of the method of least
squares. As Fig. 3 illustrates, for certain data sets it was meaningful to identify optimal
exponents by this method, as the resulting fit to the data of the model curves (1) was
evidently different for different exponents. (Thereby, except for the exponent, all other
model parameters were selected to ensure a best fit.) This approach assumed age was
controlled and weight observations came from a random sample of animals with a given
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Figure 3 Comparing the fit of model (1) with different exponents to growth data. Figure generated in
Microsoft EXCEL, based on data set #3 and the least squares fit to these data of model (1); squares: data
(weight as length3); dashed line: model curve for the exponent a = 0.67 (m0 = 0.14,mmax = 23,538, q =
0.18); thick line: model curve for the optimal exponent a= 0.99 (m0= 0.14,mmax= 23,538, q= 26.4).

Full-size DOI: 10.7717/peerj.4205/fig-3

age. Implicitly, the method of least squares is a maximum likelihood estimate assuming
normally distributed deviations of the data from the model curve (residuals).

Alternative regression models
As there is a large body of nonlinear regression literature, a few explanations are added
to justify the above choice of methods. For instance, in fisheries literature it has been
recommended to assume that weight was controlled and age observations came from a
random sample of animals with a given weight (Sparre & Venema, 1988; Piner, Hui-Hua &
Maunder, 2016). For the paper, this approach was rejected, as for the present data, all non-
fish data were controlled for age and for most non-fish data there was no control. However,
as explained below, the alternative approach was used for the numerical computations to
obtain a first approximation of the best fit parameters.

There are alternative heteroscedastic growth models assuming a larger variance for
higher weights. (For example, for lognormally distributed weights the standard deviation
is proportional to the expected weight.) An increase in variance may also be caused by
the availability of fewer data for older animals. (This relates to the dependency of the
variance of the mean value on sample size.) However, owing to relatively small sample
sizes (counting the number of different points of time) distribution fit tests did not refute
the assumption of normally distributed residuals for the present data sets. Therefore, the
paper used the simpler least squares method.

Literature in the context of feeding experiments applies also improvements of regression
models, such as mixed-effect models (e.g., Strathe et al., 2010). However, as the purpose of
such models would be the identification of explanatory factors for growth (e.g., gender),
such models require highly controlled experiments, distinguishing the relevant factors in
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the data. For most of the present data such information was not available. (For instance,
many data sets did average over male and female fish.) Therefore, the present paper did
not study such more complex models.

In a different direction the model fit could be simplified by using literature values
for certain parameters. For instance, for fishes the mass at age 0 (m0) is largely similar
(Andersen, 1969), whence a literature value for m0 could be used instead of optimizing
this parameter. However, by this approach the weight at t = 0 would be exceptional
in comparison to other data points, which it is not, whence also in fishery literature the
parameterm0 is usually optimized. Further, for non-fish species the neonate weight is more
variable and the authors did not wish to treat data fitting differently for different species.

Numerical approach towards data fitting
For most data sets a straightforward approach towards data fitting failed due to numerical
instability. (Data fitting means searching for values a, m0, mmax, and q, where the sum of
squared residuals is minimal.) The authors therefore did optimization in two steps:

In the first step, given an exponent 0< a< 1, optimal parameter values m0, mmax, and
q > 0 for model (2) were sought to minimize the sum of squared residuals between the
data points and the model function; the squared residual for the nth data point (t n, mn) is
(mn–m (t n))2 and SSR = SSR(a) is the sum of these residuals.

In the second step, the paper sought to obtain an optimal exponent, where SSR= SSR(a)
was minimal; the desired accuracy for the exponent was 0.01. Therefore, using a macro
the optimization was repeated for each exponent a= 0, 0.01, 0.02, . . . , and 0.99, resulting
in 100 models for each dataset. The resulting minimal values of SSR(a) were tabulated.
Summarizing, this defined an optimal exponent aopt < 1 and optimal parameter valuesm0,
mmax, and q for this exponent.

In view of numerical instability, the convergence of the first step of optimization (using
the SOLVER) required good initial estimates of the optimum parameters. These were
computed by adapting a graphical method (Fig. 4), the Bertalanffy-Beverton plot (Von
Bertalanffy, 1934). It was based on two ideas: fitting the inverse of function (2) to the
weight-time data (rather than fitting to time-weight data) and finding a transformation of
the weight-time data which allows to use a linear regression for this exercise.

Summarizing, this method aims at computing an optimal fit of the weight-time data to
the inverse function of (2). It is described by Eq. (3) for t = t (m); ln is the natural logarithm
function:

t =
f (m0)− f (m)

q
where f (x)=

ln(1− (x/mmax)1−a)
1−a

for x <mmax. (3)

Collecting terms not depending on m simplified this to Eq. (4):

t =A+B · f (m) with A= f (m0)/q,B=−1/q. (4)

The Bertalanffy-Beverton plot (Fig. 4) was motivated by Eq. (4): plotting, for all data
points, time t over transformed mass f (m) should result in approximately a straight line.
Therefore, A, B in formula Eq. (4) are the coefficients of a linear regression line t =A+B ·u
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Figure 4 Transformation of time-mass-data and a regression line for the transformed data set.Gener-
alized Bertalanffy-Beverton plot generated in Microsoft EXCEL, based on data set #47; squares: transfor-
mation of data (t,m) into (u,t ) = (f (m),t ); line: regression line t = A+ B · u with A = −55.64 and B =
−14.03. The function f was defined in Eq. (3) using the exponent a = 0.83 and assuming an asymptotic
weight limitmmax = 32,163 g. The transformation requiredmmax to exceed the maximal observed weight
(31.8 kg), as otherwise the transformation would not be defined for all data points.

Full-size DOI: 10.7717/peerj.4205/fig-4

that is fitted to transformed data (un,tn)= (f (mn),tn), using the function f of Eq. (3). In
EXCEL, A and B were computed with the LINEST function.

However, by Eq. (3), this transformation depends on assuming, in addition to the given
exponent a, a value for the (true) asymptotic weight limit mmax. As mmax was not known,
the goodness of fit of the regression line was evaluated for different values ofmmax, using the
sum of squared residuals SSRinv (mmax) for the transformed data. This defined a function
in mmax. (In EXCEL, it was again computed by the LINEST function.) It was assumed that
this sum SSRinv (mmax) was minimal for the true mmax.

The search for mmax with a minimal sum SSRinv (mmax) caused no numeric problems:
As illustrated by Fig. 5, for all data the function SSRinv (mmax) decreased rapidly for mmax

near the maximum mobs of the observed data (observed maximum) and it was flat for
larger values of mmax. The SOLVER Add-In minimized this function iteratively (using as a
starting value 1.01·mobs) under the additional constraints mmax > mobs, as otherwise f (m)
would not be defined for the larger data, and mmax <100·mobs, as in view of the flat curve
larger values ofmmax did not substantially reduce SSRinv . (For the purpose of optimization
it did not matter that an excessive mmax was not always empirically meaningful.) As the
optimization used exact formulae for A, B (LINEST function) and as it was done in one
dimension (seeking mmax with minimal SSRinv), it could be performed fast and with
high precision.
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Figure 5 Optimizing the asymptotic weight limit (fit to weight-time data). Figure generated in Mi-
crosoft EXCEL, based on data set #14, plotting the sum of squared residuals SSRinv (fit to the weight-time
data) in dependency onmmax for an exponent a = 0.67. The minimum was attained formmax = 0.165 g
(maximal observed weight:mobs = 0.145 g) resulting in the estimates q= 0.1/day andm0 = 0.03 g. These
were used as a starting value for the minimization of SSR (fit to the time-weight data). The resulting opti-
mal parameters for a= 0.67 were q= 0.139/day,m0= 0.002 g andmmax= 0.149 g.

Full-size DOI: 10.7717/peerj.4205/fig-5

Using this preliminary optimization, the following initial estimates for the fit of model
(2) to the data were used: the given exponent a, the above optimized mmax, q=−1/B, and
for m0 the least observed weight mmin.

These valuesm0,mmax, and q were used as starting values for the first optimization step,
the iterative optimization of SSR = SSR (a), given the exponent a. For all data sets, the
SOLVER converged. In order to hinder parameter values frommoving from the reasonable
starting values into a region of divergence, the above constraints mobs < mmax <100·mobs

were retained and m0 >mmin/100 was added.
As for a computationally simpler method of obtaining initial estimates for the best fit

parameters, there is a large body of literature using the Walford plot for data fitting (e.g.,
Espino-Barr et al., 2015), which was explained in Fig. 1. However, that method did not
always provide good initial estimates.

Model comparison
In order to compare the goodness of fit, for each data set the 100 models corresponding
to different exponents a <1 were assessed by means of the Akaike information criterion
(Akaike, 1974; Burnham & Anderson, 2002; Motulsky & Christopoulos, 2003), using an
index AIC c for small sample sizes. It was computed from SSR(a) = the sum of squared
residuals, N = number of data points, and K = 4 = number of optimized parameters
(namely m0, mmax, q and implicitly SSR). The number of data points essentially counted,
for how many points of time (ages) there were data. (If there were several observations
for the same age, as e.g., for reported average values for groups of animals, then this was
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counted as one data point.)

AIC(a)=N ln
(
SSR(a)
N

)
+2 ·K +

K ·(K +1)
N −K −1

(5)

prob(a)=
e−1/2

1+e−1/2 , where 1=AIC(a)−AIC(aopt)> 0. (6)

Formula (6) gives the probability prob (Akaike weight) that the model with exponent a
was true, when compared with the better fitting model with exponent aopt, assuming that
either a or aopt would be the true exponent. Assuming that one of the two exponents a or
aopt is true, then prob(a) + prob(aopt) = 100%. If the better fitting model is more likely to
be true, prob(a) ≤ prob(aopt). It follows that prob(a) ≤ 50% and prob(aopt) = 50%.

For the present paper, an exponent a is refuted (for a data set), if in comparison to aopt its
Akaike weight is below 2.5%. (Thus, ‘below 2.5%’ defines the 5% of the index values with
the worst fit.) The paper uses the Akaike weight for this definition, as other measures for
the goodness of fit (e.g., SSR) make sense only with respect to one given data set, while the
present paper seeks a definition applicable across different data sets. Further, this notion
of refutation uses the Akaike weight merely as an index for the goodness of fit, whence a
notion of truth is not required. In particular, the paper makes no assumption, whether one
of the exponents a or aopt is true, as this is not needed for a refutation owing to a poor fit:
if a model (defined from an exponent a) is refuted, as it fares poorly amongst its ‘peers’, it
is sensible to refute it also for any larger group of models. Further, if model (1) were false,
then the refutation of such an exponent a would be sensible anyway.

The Akaike weight was used to quantify the variability of the exponent, figuring out over
which range of exponents the best fit to the data did not change significantly. However,
as this weight was sensitive to outliers, in a preparatory step outliers had to be removed;
see Fig. 6. The curve prob(a) had its peak at aopt and it was increasing/decreasing for
lower/higher values of a. Therefore, the non-refuted exponents formed an interval.

FNR is the fraction of non-refuted exponents amongst the 100 considered exponents
(a = 0, 0.1, . . . , 0.99). It measures, how strong the optimal exponent is determined by the
data; the lower the FNR the less uncertainty remains about the value of the exponent a.
FNR was computed as the difference between High and Low of Table 3 plus 0.01 (as aopt is
not refuted), whereby High and Low were the highest and lowest non-refuted exponents.

RESULTS
Table 3 summarizes the fit of model (1) to 60 data sets. There occurred three issues.

First, there was a high variability in the exponent a, which for 18 data sets could take any
value (between 0 and 0.99) without affecting the fit to the data significantly (when the other
model parameters were optimized); FNR = 1 for these data sets. Consequently, it could
not be assured that a biologically correct exponent could be identified from data fitting.

Second, there were problems with unrealistic parameter values, specifically for the
estimated mature body mass mmax. For 13 data sets, it exceeded the maximally observed
weight by 50% (mmax/mobs ≥ 1.5), whence boundedness was not evident from the data,
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Figure 6 Akaike weights for different exponents, for data with and without outliers.Graphical multi-
model comparison, generated in Microsoft EXCEL, based on data set #10 with and without outlier. The
Akaike weight prob(a) for model (1) with exponent a was computed in comparison with the optimal ex-
ponent; dashed/fat line Akaike weights for data with/without outlier. Without outlier, the optimal expo-
nent became larger (0.64) and exponents with poor fit could be discerned more easily.

Full-size DOI: 10.7717/peerj.4205/fig-6

and for 7 data sets with sigmoid model curves (aopt > 0) the weight at the inflection point
exceeded the maximally observed weight (minfl≥mobs), whence the sigmoid shape of the
model curve was not discernible from the data. For one data set (#50, domestic pig), the
excessive mmax could be explained in part from data collection, as it ended long before
sexual maturity had been reached.

Third, there was a concentration of the optimal parameters on the boundary of the
parameter space. (If maximum likelihood parameters assume values on the boundary
of the parameter space, then the normal distribution of the optimal parameters is no
longer assured). For 15 data sets mmax=mobs assumed the lower bound for optimization.
Moreover, for 24 data sets, the exponent was optimal for the largest value a = 0.99; for 5
data sets, the exponent was optimal for the lowest value a= 0 (not sigmoid). The tendency
towards higher exponents persisted, if the variability was taken into account (Fig. 7): for 55
data sets the interval of non-refutation reached the upper bound ‘High’ = 0.99. Further,
for any a≤ 0.01, at least 50% of data sets would reject this low exponent, while for any a≥
0.89, at least 80% of data sets would not reject this high exponent. (For each statement 95%
confidence was confirmed, assuming data sets selected at random by the same strategy, as
for this paper.)

Summarizing, model (1) may be suitable to describe the growth of certain species, but
for 49 (82%) of the 60 data sets (95% confidence: at least 72% of data sets) there were issues
for optimization with unrealistic model parameters, with parameters on the boundary of
the parameter space, or with elusive parameters that due to a high variability could not
be determined accurately from the data. This indicated that for a substantial fraction of
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Table 3 Optimal exponents and range of acceptable exponents.

No aopt max Non-refutation No aopt max Non-refutation No aopt max Non-refutation

Low High Low High Low High

01 0.83 0.43 0.99 21 0 0 0.99 41 0.85 C 0.65 0.99
02 0.76

NO
0.11 0.99 22 0.62

NO
0.51 0.99 42 0.99 0.75 0.99

03 0.99 A 0.9 0.99 23 0.57 0 0.99 43 0.99 0.79 0.99
04 0.39 NO 0.21 0.99 24 0.51

B
0.35 0.99 44 0.88 0.78 0.99

05 0.75 C 0 0.99 25 0.91 0.64 0.99 45 0.99 0.9 0.99
06 0 0 0.99 26 0.99

NO
0.34 0.99 46 0.99 0.85 0.99

07 0 0 0.99 27 0.91 C 0.01 0.99 47 0.83

NO

0.68 0.99
08 0.99

NO

0 0.99 28 0.99 NO 0.02 0.99 48 0.84 0.58 0.99
09 0.66 A 0.54 0.99 29 0.99 A 0 0.99 49 0.99

C
0.68 0.99

10 0.64 0.44 0.99 30 0.11 B 0 0.99 50 0.45 A 0.37 0.93
11 0.6

NO
0 0.99 31 0.19 A 0 0.99 51 0.99 0.8 0.99

12 0 B 0 0.99 32 0.99 0 0.99 52 0.94 0.75 0.99
13 0.8 C 0 0.99 33 0.37

NO
0.22 0.67 53 0.99 0.89 0.99

14 0.99 NO 0.51 0.99 34 0.01 0.01 0.99 54 0.99

NO

0.78 0.99
15 0.99 A 0 0.99 35 0

C
0 0.99 55 0.99 C 0.57 0.99

16 0.99 B 0.08 0.99 36 0.99 0.66 0.99 56 0.14 NO 0 0.52
17 0.21 0 0.99 37 0.99

NO
0.57 0.99 57 0.78 C 0.55 0.99

18 0.69 0.11 0.99 38 0.24 C 0 0.54 58 0.99 0.16 0.99
19 0.28

C

0 0.99 39 0.2 B 0.02 0.38 59 0.99 0.3 0.99
20 0.99 A 0.38 0.99 40 0.17 C 0 0.99 60 0.99

NO

0.76 0.99

Notes.
Data sets numbered as in Tables 1 and 2; abbreviations for max: ‘NO’ no problem withmmax, ‘A’ and ‘B’ excessivemmax, becauseminfl ≥mobs, and becausemmax ≥ 1.5.mobs, re-
spectively, and ‘C’mmax = mobs; aopt = exponent with the best fit of model (1) to the data; non-refutation: lower and upper bounds of the interval consisting of those of expo-
nents that in comparison to aopt were not to be refuted (Akaike weight 2.5% or higher).

species a more general or a completely different class of models might be needed to describe
growth more realistically.

In particular, the data did not support the claims from literature about the existence
of a universal exponent for model (1) that would suffice to describe the growth of a large
taxonomic group of animals. On the contrary, also for the 11 data sets not showing the
above issues (#1, 2, 4, 10, 22, 25, 33, 44, 47, 52, 56), the optimal exponent aopt varied
widely and its mean value did not differ significantly between these 11 data sets and the 49
problematic ones (Mann–Whitney test, p-value 20.3%). Further, the data did not support
the hypothesis that for each species there would be optimal exponents to describe its growth
bymodel (1). For, the best fitting exponents could differ widely for female andmale animals
of the same species, as demonstrated for data sets #18–19 (female and male Lake Trout)
with optimal exponents 0.69 and 0.28, respectively. Further, where e.g., fish of the same
species came from different locations (different water temperatures for the Lake Trout data
#18–19 and #27–28), a different pattern of growth was expected for biological reasons.
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Figure 7 Confidence intervals for the percentage of data sets not rejecting an exponent. Figure gener-
ated in Microsoft EXCEL. Fat curve counts the percentage of how many of the 60 data sets did not reject
the exponent a; thin curves one-sided Clopper–Pearson confidence limits (95% significance).

Full-size DOI: 10.7717/peerj.4205/fig-7

DISCUSSION: EXPLAINING VARIABILITY
The observed issues, in particular the high variability of the exponent, may indicate that
data fitting optimized too many parameters. However, this paper proposes an alternative
explanation, namely differences in data quality. For, data for non-fish in general came from
highly controlled experiments, while data for fish in general were natural data.

This claim is supported by the highly significant dependency of variability on whether
the data were for fish or not: 17 of the 18 species with FNR = 1 were fish. Further, with
99.99% significance (Mann–Whitney test: p-value below 0.01%) the average FNR for fish
(0.8) was stochastically larger than the average FNR for non-fish (0.38), even though there
were also fish with small FNR (e.g., FNR = 0.1 for Artic Cod #3).

Ignoring this variability could generate artefacts. For instance, with 95% significance
(Mann–Whitney test, p-value 4.7%) the mean value of the optimal exponents for fish
(0.61) was stochastically lower than the mean value for non-fish (0.79). However, the
reason for this could be variability, as with 99.99% significance the optimal exponents were
negatively correlated with FNR (t -test: p-value below 0.01%); i.e., lower optimal exponents
for fish were related to a higher FNR (because ‘Low’ became smaller). By contrast, there
were no 95% significant differences between fish and non-fish for the fractions m/mobs

and minfl/mobs.
The following discussion aims at discerning characteristic features of natural data, which

did/did not affect variability.
An obvious difference between fish and non-fish data was the transformation of length

to weight, which was needed for most fish. This paper used a power-law transformation
m (t ) = l(t )p with p = 3 for fish. As Fig. 8 illustrates, this convention could have affected
refutations, but it could not explain a systematic bias towards easier or more difficult
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Figure 8 Effect on the Akaike weights of using different length-mass relations. Figure generated in Mi-
crosoft EXCEL, based data set #2, plotting Akaike weights for modifications of the data set, using different
powers of length to estimate mass.

Full-size DOI: 10.7717/peerj.4205/fig-8

refutations. (In the figure, higher/lower values of p make refutations easier/more difficult.
However, for some data, the ‘true’ p was below 3 and for others it was above 3).

Another difference between data sets was insufficient stratification for fish: for non-fish
species the data for females and males of the same species were collected separately, this
was not the case for all fish. In case that these groups had a different growth pattern
(different optimal exponents), as for Fig. 9, the combination of data could result higher
FNR. (Intuitively, combined data have higher residuals, making refutations more difficult).
Similar effects could have been generated from the combination of data from different
locations or from data about migrant animals, collected at the same location but not taking
into account the different origin of the animals.

However, in the authors’ view, the main difference seems to have been whether data
were comprised of repeated measurements of the same animals (controlled data) or of
single measurements of randomly chosen animals (natural data). For, the three discarded
natural data sets for non-fish species showed a high variability in the exponent, as did the
fish data, and the three fish data sets from controlled experiments showed a rather lower
variability. (More data sets would be needed to support this view by statistical reasoning.)

The authors developed the following strategy to identify data sets, where model (1)
could be expected to provide an adequate fit: data were removed, if FNR = 1 (maximal
variability), mmax/mobs ≥ 1.5, minfl/mobs ≥ 1 (unrealistic parameter values), aopt = 0,
aopt = 0.99, or mmax/mobs = 1 (parameters on the boundary). There remained 11 data
sets. For them here was no significant contingency between fish and non-fish data. (Fisher
exact test resulted in the p-value 100%, testing the contingency table comprised of seven
selected and 30 non selected fish and of four selected and 19 non selected non-fish.) Thus,
this strategy appeared to be successful in eliminating the differences between natural and
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Figure 9 Effect of combining males and females on the Akaike weights. Figure generated in Microsoft
EXCEL, based on data sets #18 and #19, plotting Akaike weights for data separated by sex and for the com-
bined data.

Full-size DOI: 10.7717/peerj.4205/fig-9

controlled data, as far as data fitting was concerned. However, also for this smaller sample
of data sets with apparently unproblematic data fitting there did not emerge a candidate
for a universal exponent; the exponent (aopt) took values between 0.14 and 0.94.

CONCLUSION
The paper argued that the question, whether there exists a universal metabolic scaling
exponent for the generalized Von Bertalanffy model (1) may be ill-posed, as the biological
meaning of the model exponent, and the variation in this exponent, might not be clear. To
this end it computed optimal exponents from a sample of 60 data sets about the growth of
animals.

A closer look at data-fitting revealed serious deficiencies. There was uncertainty about the
optimal exponent (variability), there were unrealistic parameter values (excessive estimates
for the mature body weight) and parameters tended to assume values on the boundary of
the parameter space (indication for the need of a completely different model). With respect
to variability, for a large range of exponents the best fitting model curves (optimizing the
other parameters) did not differ significantly in their fit to the data. (Intuitively, plots
did not show noticeable deviations of the model curves with these exponents from each
other). Thereby, the variability of the exponent could be related to the type of data, with
natural data causing higher variability than controlled data. Thereby for fish in general
only natural data were available. Ignoring these deficiencies could result in biologically
unfounded statements, such as observing stochastically lower exponents for fish than for
non-fish species.

However, also for data sets selected for not showing the above mentioned deficiencies,
the optimal exponents computed from the data differed widely from the values proposed
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in literature on the basis of biological reasoning (e.g., a= 2/3 or a= 3/4). In view of this
discrepancy data fitting did not support any of the biological explanations of the exponents.

Interpreting variability positively, if the model is merely intended to summarize
information from (mass) growth data by means of a few parameters, then for data
sets with large variability of the exponent almost any exponent may be adequate (if it is
close to 1: Fig. 7). Thus, in hindsight, also the use of VBGF to summarize fish data (e.g.,
FishBase) appears to be justified, unless the biological meaning of the model parameters is
overstressed.
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