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ABSTRACT6

Recent research suggest that the CA3 sub-region of the hippocampus operates both as a heteroassocia-
tive network, due to the ability to store and retrieve sequences of patterns, and as an autoassociative one,
due to its ability to complete partial clues, tolerate noise, and store associations between different parts of
episodic memories in flexible ways. Recent evidence regarding hippocampal theta sequences reinforces
the hypothesis of coding spatial memories as pattern sequences in the hippocampus. We investigated
whether a heteroassociative coding scheme combined with competitive synaptic scaling for homeostasis,
would suffice to explain the features that make the hippocampus a reliable network for memory: a) the
ability to retrieve stored pattern sequences after the presentation of a partial cue from one of its patterns,
in the presence of external noise and incomplete connectivity among neurons, and b) the renewal of the
set of stored sequences as new memories are learned, permitting the storage of new sequences while
forgetting older ones. We show that these hypotheses hold for a biologically plausible model of the CA3
subregion containing 10,000 integrate-and-fire neurons, with sequence retrieval organized by gamma
cycles nested on theta cycles.
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INTRODUCTION9

Even though it is well established that hippocampal formation is responsible for temporary storage10

and retrieval of memories (Squire, 1992; Andersen et al., 2007), the memory coding scheme is still11

not completely understood. The CA3 subregion contains a particularly large number of recurrent12

connections among the pyramidal neurons. Existing attractor neural network models (Hopfield, 1982;13

Amit, 1989) show that networks with recurrent connections can use a Hebbian learning rule to store14

patterns, represented as a set of active neurons, and retrieve them from partial cues. Based on these15

models, Rolls et al. (1997) proposed that the CA3 subregion could work as an autoassociative memory,16

which enables the association between different memories in flexible ways and the retrieval of stored17

memories from the presentation of partial cues. These characteristics of autoassociative networks makes18

them excellent candidates for the storage of complex episodic memories (Rolls, 2010), which contain19

smaller components organized in a flexible way and that could be used as cues to retrieve a whole episode20

(Cohen and Eichenbaum, 1993).21

Another important characteristic of the CA3 subregion is that, during exploratory behavior in rats, this22

area shows a local field potential (LFP) signal composed of gamma (40-100Hz) components nested in a23

theta (5-10Hz) rhythm (Bragin et al., 1995; Colgin, 2016). Moreover, O’Keefe and Recce (1993) observed24

that the phase of the theta cycle inside which a place cell is activated depends on the distance of the rat to25

the cell preferred place, an effect called theta phase precession. Jensen and Lisman (1996) proposed that26

the hippocampus could work as a heteroassociative memory (Sompolinsky and Kanter, 1986), a kind of27

network that stores sequences of patterns, representing neuronal ensembles. A pattern sequence could be28

retrieved in a theta cycle, with one pattern per gamma cycle nested in the theta cycle. To combine the29

properties of auto- and heteroassociative networks, models with additional autoassociative connections for30

each pattern in the sequence were proposed, despite the extra required connections. Feedback connections31

from CA3 to Dentate Gyrus (Lisman et al., 2005) or between different CA3 areas (Samura et al., 2008)32

would store sequences of memories in heteroassociative connections, and recurrent connections within33

single CA3 areas would work as autoassociative connections.34



Recently, the concept of theta sequences (Foster and Wilson, 2007) was proposed, representing35

sequence of neuronal ensembles which are sequentially activated bounded by theta cycles. Differently36

from phase precession, the appearance of theta sequences appears to require learning (Feng et al., 2015)37

and was associated with the representation of current goals (Wikenheiser and Redish, 2015) of rodents.38

The relationship of theta sequences with episodic (Wang et al., 2014) and spatial memories (Dragoi and39

Buzsáki, 2006) indicates that the CA3 recurrent and CA3-CA1 connections may code these memories as40

sequential activation of neuronal ensembles.41

A third feature of the hippocampus is that memories appear to be temporally stored there and later42

coded as remote memories in the cortex (Frankland and Bontempi, 2005). This property could be due to43

the limited capacity of auto and heteroassociative networks, since an increase in the number of stored44

memories leads to a catastrophic interference effect (Amit, 1989), where the saturation of connection45

weights makes all stored memories unavailable. Although the replacement of older memories by newer46

ones also receive the name of catastrophic forgetting in other types of networks (French, 1999), this47

effect is acceptable in the CA3 due to the temporary nature of memory storage. Proposals for enabling48

this memory renewal include the use of STDP rules (Caporale and Dan, 2008) and memory recall and49

consolidation during sleep (Born et al., 2006).50

Here, we investigated whether a single coding scheme would suffice to explain the features that51

make the hippocampus a reliable network for memory: the ability to retrieve stored sequences after52

presentation of a partial cue from one of its patterns, and to reliably retrieve them even in the presence of53

external noise and incomplete connectivity among neurons. We hypothesize that a neural network, with54

connections determined exclusively by a heteroassociative competitive learning rule, can reliably a) store55

and retrieve episodic memories coded as pattern sequences, and b) renew the set of stored sequences as56

new memories are learned. We also hypothesize that a heteroassociative learning rule, combined with57

competitive synaptic scaling for homeostasis, would permit the storage of new sequences while forgetting58

older ones. We show that these hypotheses hold for a biologically plausible model of the CA3 subregion59

containing 10,000 neurons, with sequence retrieval organized by gamma cycles nested on theta cycles.60

METHODS61

The network model62

We implemented a heteroassociative network, that simulates the CA3 subregion, composed of 10,00063

integrate-and-fire neurons representing pyramidal cells. Neurons are connected by excitatory recur-64

rent connections, with kinetic-based models of AMPA synaptic channels and weights defined by a65

heteroassociative learning rule. The network is shown in Figure 1.66

Basket O-LM

Excitatory connection Inhibitory connection

...

Figure 1. Network architecture, with the recurrent connections among pyramidal neurons and
connections representing inhibitory basket and O-LM neuronal populations.

The network has two kinds of feedback inhibition, mediated by fast and slow GABA channels (Pearce,67

1993), modeled as direct connections between every pair of pyramidal neurons. The fast inhibition is68

responsible for controlling the level of activity in the network and reducing the interference between69

stored pattern sequences. The slower inhibition helps to control the level of activity in the network in a70

slower time scale. We also included a periodic inhibition by O-LM cells (Freund and Buzsáki, 1998),71

modeled with a spike generator representing the intrinsic firing rate in the theta range (5 Hz) of these72
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cells when depolarized (Gloveli et al., 2005). It sends connections to the slow GABA channel of every73

pyramidal neuron, modulating the generation of theta rhythm in the network.74

Following the model used by de Almeida et al. (2007), we model the membrane potential Vn of neuron75

n by:76

dVn

dt
=

1
τm

((Isyn + Irep)∗ rInput −Vn +Vrest)

using the values rInput = 33 MΩ, Vrest = −60 mV, τm = 2 ms. When the Vn reaches a threshold of −50 mV,77

it is reset to Vrest , with a refractory period of 13.3 ms. The current Irep is an hyperpolarizing current that78

provides neural adaptation and is dependent on the time of the last generated spike tspk. It is given by:79

Irep =−560 pA∗ exp(
t− tspk

5ms
)

Finally, Isyn represents the synaptic current into the neuron, and is given by:80

Isyn = Iext + Iampa + Igaba + IgabaS

where Iext represents the external input, Iampa the excitatory AMPA synapses, Igaba the inhibitory fast81

GABA synapses, and IgabaS the slow GABA synapses. We used the Euler method with an integration step82

of 0.1 ms.83

The synaptic model84

We modeled the synaptic channels using a dual exponential model, given by:85

Ik = Ak ∑
s

Ws
∆ts

τ1− τ2

(
exp

(
−∆ts

τ1

)
− exp

(
−∆ts

τ2

))
where ∆ts = t− ts− tdelay is the time since the spike s, generated at time ts, was delivered, considering86

the delay tdelay. Ak represents the maximum conductance and Ws the synaptic weight, i.e. the connection87

strength between the neurons. Parameters τ1 and τ2 are the time constants, and the double exponential is88

reduced to the alpha function when τ1 = τ2:89

Ik = Ak ∑
s

Ws
∆ts
τ1

exp
(

1− ∆ts
τ1

)
We used the τ1 = 2 ms, τ2 = 8 ms and Ak = 3200 pA for AMPA channel of recurrent connections90

(Spruston et al., 1995), τ1 = τ2 = 2 ms and Ak = 3200 pA for the external input channels, τ1 = τ2 = 5 ms91

and Ak = 540 pA for the fast GABA channels (Pearce, 1993), and τ1 = 7 ms, τ2 = 57 ms and Ak = 30 pA92

for the slow GABA channels (Pearce, 1993).93

We placed all neurons in a plane and defined the axonal delay between each pair of pyramidal neurons94

based on their euclidean distance. We used an axonal propagation velocity of 300µm/s (Meeks and95

Mennerick, 2007) and considered a square 2 × 2 mm area, based on anatomical data (Amaral and Witter,96

1989), resulting in a mean axonal delay of about 3.3 ms (Aaron and Dichter, 2001). Since we are using97

integrate-and-fire neurons, we also included the excitatory postsynaptic potential (EPSP) propagation98

time to the soma. We used a delay of 5 ms, estimated by experimentally measured differences between99

the time to peak of EPSPs in the soma from mossy fiber inputs, near the soma, and recurrent connections,100

at apical dendrites (Miles and Wong, 1986).101

For inhibitory feedback connections we used a delay of 2.5 ms, based on studies on interneurons from102

the CA3 (Diego et al., 2001). For the slow inhibition, we used a delay of 10ms, to include the fact that103

these inhibitory cells are located near the basal positions of the pyramidal cells and makes connections to104

the upper apical positions (Hájos et al., 2004).105

External noise was modeled with a Poisson random number generators with 1 Hz rate per neuron,106

representing inputs to the neuron not related to the retrieval of sequences. We used weights that were107

large enough to cause the network neurons to fire spontaneously at the rate of 0.75 Hz, which is similar to108

the rate 0.80 Hz produced during pattern retrieval in the simulations.109
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Pattern sequences110

We created the patterns by generating random permutations with the neuron indexes and getting the first r111

values of the permutation, where r is equal to the number of neurons times the sparsity for the simulation.112

We define sparsity as the number of neurons active in a pattern divided by the total number of neurons. For113

a sparsity of 0.1, 10% of all neurons are active on the pattern. For heteroassociative networks, there are114

estimates by de Almeida et al. (2007) of sparsity of 0.003. For our simulated network with 10,000 neurons115

this would result in only 30 neurons per pattern, which would be insufficient for pattern completion and116

noise tolerance. Although using more neurons per pattern decreases the storage capacity of the network,117

we decided to use a sparsity of 0.01, resulting in 100 neurons per pattern.118

We define a pattern pµ as a binary vector with size equal to number of pyramidal neurons in the119

network. Each position pµ

i has value 1 if neuron i is part of pµ and 0 otherwise. We considered120

sequences of 7 patterns, which appears to be the typical number of patterns that can be coded inside theta121

cycles (Lisman and Idiart, 1995; Lisman and Jensen, 2013), and stored them using a heteroassociative122

learning rule (Sompolinsky and Kanter, 1986), that associates each pattern in the sequence with the123

subsequent one. For example, in a sequence of patterns s1-s2-s2-s4-s5-s6-s7, neurons from pattern s1 will124

have excitatory connections to neurons from pattern s2, which connect to neurons from s3, and so on. We125

included additional connections from the last to the first pattern, permitting sequence retrieval using a cue126

from any of its patterns.127

Learning rule128

The model uses a heteroassociative learning rule (Sompolinsky and Kanter, 1986) based on asymmetric129

STDP (Dan and Poo, 2004) for pattern sequence storage. We simulated an offline learning procedure,130

performed before the simulation, by considering that the patterns from each sequence were presented131

in sequence, with a separation of about 15 ms, corresponding to one cycle of the gamma rhythm. Con-132

sequently, connections weights from the pattern µ to µ +1 are increased, while connections from µ to133

µ−1 are decreased. The learning rule for each pattern association can be summarized as:134

∆wi j =±γ
±pµ

i pmod(µ±1,k)
j

where wi j represents the weight of the connection from neuron i to neuron j, γ± the LTP and LTD rate,135

pµ

i the neuron i from pattern µ and pmod(µ±1,k)
j the neuron j from the next/previous pattern in a sequence136

of k patterns, µ = 0, . . . ,k−1. The function mod(x,k) represents the modulo operation, with mod(−1,k)137

defined as k−1. This produces an association between the first and last patterns of the sequence. We used138

γ+ = 1 for LTP and γ− = {0,1} for simulations without and with LTD.139

The network is initialized with connections between every pyramidal neuron pair, with random140

weights drawn from an uniform distribution between 0 and defined maximum value, simulating a highly141

connected network from a developing nervous system. The learning rule is then sequentially applied142

for each pattern sequence to be stored. We included synaptic scaling (Abbott and Nelson, 2000) as an143

heterosynaptic long-term depression (hLTD) mechanism to model a competition between the synapses of144

a single neuron. After learning a set of 100 pattern sequences, we apply an additive synaptic scaling rule145

to all neurons. We decrease all synapses from each neuron by a fixed amount, defined as the ratio between146

the total weight increase since the last scaling procedure and the number of connections. Synapses that147

become negative are set to zero and the difference is subtracted from the remaining synapses.148

Although the usage of a standalone STDP rule is known to generate groups of neurons connected by149

strong synapses and that fire together (Buonomano, 2005), Fiete et al. (2010) showed that an assymetric150

STDP learning rule, combined with heterosynaptic competition within single neurons, allow networks to151

learn long sequences of patterns.152

In biological networks, each neuron can connect to a limited number of neurons, either by anatomical153

or physiological reasons. We simulate this constraint using different levels of connectivity extent, where154

we randomly define for each neuron the set of neurons to which it can connect. For a connectivity extent155

of 0.6, each neuron initially connects to 60% randomly selected neurons in the network. Connections to156

neurons outside this initial set cannot be created during learning, but connections can be eliminated due to157

LTD or synaptic scaling. We also change the connection weights proportionally to the ratio of removed158

connections, to maintain the excitatory drive with different connectivity extents comparable.159
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Sequence retrieval160

We defined as a pattern cue the stimulation of a subset of the neurons that are active in the pattern. We161

always provide inputs for same number of neurons, so that with a cue size of 1.0, we stimulate all neurons162

from the pattern and no other neuron. For instance, with a cue size of 0.7, only 70% of the neurons in the163

pattern receive the input, while random neurons outside the pattern are selected to keep the input size164

controlled over different simulation runs. We consider that the entorhinal cortex (EC) provides the input to165

the CA3, using a coding where an ensemble of neurons, representing an input pattern, fire synchronously166

inside a single gamma cycle (Chrobak and Buzsáki, 1998). In this case, each neuron stimulated by the167

cue receives a single spike as input, with a synaptic strength large enough to cause its firing.168

We determine the set of active neurons by checking which neurons fired inside a time window of169

10ms. The measurements are performed every 2 ms, with the time window centered at simulation time t.170

We used a small time window to permit capturing active neurons only from a single gamma cycle at each171

time t in the middle of the cycles. We define the overlap of the active neurons with a stored pattern pµ as:172

overlap(t, pµ) =
1

npµ
∑

i∈pµ

oi(t) · pµ

i

where npµ is the size of pµ , oi is the state of neuron i at the instant t, which can be 0 (inactive) or 1 (active),173

and pµ

i is 1 if neuron i is part of pµ and 0 otherwise. The overlap has value 1 when all the neurons from a174

stored pattern are active. Neurons also have spontaneous firings due to external noise and, to correctly175

evaluate the pattern retrieval, we consider in the measure only the neurons which are part of the pattern.176

This can be applied because the number of active neurons is always comparable to the number of neurons177

per pattern. We also compute the second highest overlap, so that we can check if a second pattern is178

retrieved at the same time.179

RESULTS180

The number of retrievable patterns and connections are stable during the network life-181

time182

Our evaluation shows that the number of connections in the recurrent network, initialized with full183

connectivity and random weights, stabilizes after learning a few hundred patterns, remaining stable as184

new patterns are added (Figure 2a). Storing a pattern sequence increases the total synaptic weight of185

each neuron, which is compensated by the synaptic scaling rule. This reduces the weights of all synapses186

in the neuron, causing some of them to disappear as they approach zero. The number of connections187

decreases until the number of connections created by learning new patterns is balanced by the removal188

of old connections. This occurred either when using only synaptic scaling (SS), in which case we set189

γ− = 0, and when including STDP-induced LTD (SS-LTD), with γ− =−1, showing that synaptic scaling190

is sufficient to control the number of connections in the network.191

The number of retrievable patterns initially increases with the number of stored patterns, followed by192

a decrease toward a constant value, as shown in Figure 2b. To determine if a pattern pmu is retrievable,193

we compute the sum of excitatory weights Si from neurons from the previous pattern pmu−1 toward194

each neuron i in the network. If Si for each target neuron from pmu is larger than the Si of each neuron195

outside pmu, the pattern is considered retrievable. This means that neurons in the pattern receive a larger196

excitatory drive than the other neurons during pattern retrieval, which permits a global inhibition to be197

used to suppress the activity of these other neurons. This simple measurement generates an estimate of the198

number of retrievable patterns directly from the connection weights. The alternative would be performing199

a simulation where, for each pattern, the network would be initialized close to a pattern and simulated to200

check if it converges towards the pattern. But this would be infeasible, since we would have to perform201

simulations to retrieve every pattern for all network configuration combinations, where we would vary the202

number of stored patterns, sparsity level, connectivity extend and LTD rule.203

The initial increase in number of retrievable patterns (Figure 2b) is due to the lack of patterns to204

retrieve in the beginning and the later decrease occurs due to the crosstalk interference effect. After205

reaching an equilibrium point, the number of retrievable patterns remains constant, with new pattern206

replacing older ones. Using a sparsity of 0.02, instead of 0.01, increased the number of connections,207

causing an increase in the crosstalk between pattern, which resulted in a reduced number of retrievable208
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patterns (Figures 2a-b). Combined with STDP-induced LTD, which caused a larger number of weight209

decreases, the number of retrievable patterns became almost zero. The opposite trend occurred with210

sparsity 0.005, showing the benefits of using less neurons per pattern.211

Including STDP-induced LTD (SS-LTD) caused only small changes in the number of connections,212

but the number of retrievable patterns decreased (Figures 2a-b). Although this result might seem to occur213

due to extra reductions in excitatory weights caused by STDP-induced LTD, we compensate for this by214

reducing the effect of synaptic scaling, so that the total weights per neuron with or without STDP-induced215

LTD will be the same. It appears that using STDP-induced LTD causes disruptions in stored pattern216

sequences when decreasing the connection weights from neurons of the last stored pattern to neurons of217

the previous pattern.218

Full connectivity is not possible in the real CA3 as, due to anatomical and physiological constraints,219

neurons can form new connections only with part of the neurons in the network. A neuronal connectivity220

extent of 0.6 means that a neuron can connect to 60% of the neurons. Using smaller connectivity extents,221

the number of connections is reduced, but the number of retrievable patterns is also reduced (Figures 2c-d).222

But it is interesting that using a connectivity extent of 0.4 and synaptic scaling (SS) alone, there were223

about 900 retrievable patterns, which is more than the 600 patterns obtained when using STDP-induced224

LTD (SS-LTD) with full connectivity extent. Also, although 900 patterns may be too little, this value225

would be much higher in the larger networks from biological systems. These results indicate that purely226

heteroassociative networks with a connectivity extent of 0.4 could be biologically viable.227
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Figure 2. (a) Number of connections in a network with 10,000 neurons after learning a set of pattern
sequences when applying only the synaptic scaling (SS) rule, for a sparsity of 0.02, 0.01 and 0.005, and
with synaptic scaling and STDP-induced LTD (SS-LTD); (b) Number of retrievable patterns for the same
scenarios from (a); (c-d) Same as (a-b), but comparing neuronal connectivity extents of 1.0, 0.6 and 0.4.

Increasing the initial total weight per neuron increases the number of connections, caused by a smaller228

competition in the synaptic scaling rule (Figure 3a). It also increases the number of retrievable patterns, as229

old patterns take longer to be forgotten, until a bifurcation point where the crosstalk interference becomes230

larger than the pattern inputs (Figure 3b). After this point, the number of retrievable patterns starts to231

decrease. The behavior is similar both with and without the usage of STDP-based LTD, but in the latter232

the number of retrievable patterns was larger.233

Another way to analyze the results is to check how many patterns can be stored in a network with a234

given number of connections per neuron. For instance, de Almeida et al. (2007) estimated that neurons in235

the CA3a subarea connect to 20% of the neurons. In our network, it would result in about 1600 retrievable236

patterns and would be far from the bifurcation point. Including more neurons or using a smaller sparsity,237

as is the case in biological systems, would result in a much larger number of retrievable patterns.238

The final number of connections in the network is dependent on the initial random weights between239

neurons, on the connection extent, and on the sparsity of the patterns (Figures 3a,c). With larger initial240

weights, the sum of synaptic weights toward each neuron will be larger and, consequently, less connection241

will be removed by the effect of synaptic scaling and STDP-induced LTD.242
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It is also interesting that although a smaller connectivity extent would permit the storage of more243

patterns with the same number of connections, we actually see a reduction in the number of retrievable244

patterns (Figures 3a,b). This is caused by the lower signal-to-noise ratio in the system, as there will be245

proportionally less coding connections. But with a connectivity extent of 60%, it is possible to use a larger246

initial weight of 6.5, while maintaining the total connections to 20% of the neurons, which resulted in247

about 1800 retrievable patterns, an actual improvement over the full connectivity extent. With an extent of248

40%, the number of retrievable patterns started to decrease with more than 1200 connections per neuron.249

Using a sparsity of 0.005 caused small changes in the final number of connections, but the number of250

retrievable patterns increased significantly (Figures 3c-d), which would be more typical for biological251

larger networks with a smaller sparsity. The exception is for the connectivity extent of 0.4, due to the252

small number of neurons per pattern in the simulated network.253
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Figure 3. (a) Number of connections after learning 100,000 patterns and applying the synaptic scaling
rule for different total weights per neuron, for a sparsity of 0.01, connectivity extents of 1.0, 0.6 and 0.4
with and without STDP-induced LTD; (b) Number of retrievable patterns for the same scenarios from (a);
(c-d) Same as (a-b), but with sparsity 0.05.

In this section we evaluated the static properties of the connections and the number of retrievable254

patterns. In the following sections, we perform actual network simulations to evaluate the dynamic255

operation of the network. In all simulations, we used a sparsity of 0.01, with 100 neurons per pattern,256

to improve the reliability of the simulations. For the initial random weights, we used the values of 2.5,257

3.0, 6.0 and 4.0 for the connectivity extents 1.0, 0.8, 0.6 and 0.4, respectively. These are the values that258

maximize the number of retrievable patterns when neurons connect to approximately 20% of all neurons.259

A heteroassociative network enables the retrieval of stored pattern sequences in the260

presence of noise261

The simulated heteroassociative network could retrieve complete pattern sequences stored on its connec-262

tion weights after presentation of a partial cue from any pattern in the sequence. Although this retrieval263

is expected in noiseless environment, we considered the scenario with a level of noise that caused the264

neurons to fire spontaneously, without presentation of pattern cues, with a mean spike rate of 0.75Hz.265

The network oscillates in the theta band at 5 Hz, shown in the approximate LFP signal obtained by sum266

of the membrane potential of the pyramidal neurons (Figure 4c). This oscillation in 5Hz is due to the267

periodic inhibition of O-LM cells, with a sharp decrease in the spike rate when the inhibition starts and268

a gradual recovery of the spike rate when the inhibition fades. Also, no pattern is retrieved during the269

period, despite the firing of near 100 neurons at some points, showing that the firing was random, which270

is also illustrated in the raster plot (Figure 4d). When a random external input is presented at instants271

4200ms and 4400ms, the target neurons are activated, but since they do not represent a stored pattern, this272

extra activity disappears.273

Presenting a pattern cue caused the retrieval of the complete pattern sequence just after its presen-274

tation, at 4200 ms and 4400 ms in Figures 4e-h. Each pattern is retrieved during a small time window,275
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Figure 4. Operation of two heteroassociative networks with 104 pyramidal neurons and 104 stored
patterns with 100 neurons per pattern and coded into sets of 7 patterns. The left-hand side graphs show
450 ms of the network operation with presentation of random inputs at instants 4200 ms and 4400 ms. (a)
Maximum value of the overlap among all stored patterns; (b) number of active neurons at each time; (c)
simulated LFP signal from the network; (d) raster graph showing the times of neuronal spikes for all
neurons in the network; and (e-h) same as (a-d), but with presentation of partial cues of 0.6 of a pattern at
instants 4200 ms and 4400 ms.

corresponding to a gamma cycle inside the theta cycle, as occurs in the theory proposed by Lisman (2005).276

As the complete sequence has seven patterns, the complete pattern is retrieved during a single theta cycle.277

We can also see that although we present only 60% of the first pattern of the set (cue size of 0.6), the278

network successfully retrieved and completed the subsequent patterns. Finally, the raster plot of neuronal279

spikes shows the clustering of neuronal firings during each pattern retrieval, with periods of inactivity280

between gamma cycles.281

Longer or smaller pattern sequences can also be stored and retrieved. With a larger sequence, a282

subset of the pattern sequence is retrieved in a single theta cycle, until the slow inhibitory current starts283

to win the competition against the excitatory drive. The remaining patterns can then be retrieved in the284

next theta cycle, by presenting the last retrieved pattern retrieved in the previous cycle. With smaller285

pattern sequences, the theta cycle would just keep looping the patterns in the sequence until the inhibition286

surpasses the excitatory drive and finishes the theta cycle.287

In the simulations from Figures 4e-h, we presented the pattern cues at the beginning of the theta288

cycles. Presenting the cues at other phases would cause only part of the sequence to be retrieved, since289

the periodical inhibition from O-LM cells would cause the pyramidal cells to stop firing before the290

sequence was finished. Since phase synchronization seems to be required for memory retrieval in the291

hippocampus (Fell and Axmacher, 2011), it seems reasonable to provide the inputs at specific theta292

phases.293

Completion of partial cues during retrieval occurs due to the heteroassociative connections from294

pattern j to next pattern j+ 1. Since many neurons from pattern j must fire to activate pattern j+ 1,295

randomly firing neurons do not cause random pattern retrievals. Pattern completion also works with296

connectivity extent of 0.6, as shown in Figure 5a. Also, the fast inhibition guarantees that only a single297

pattern is retrieved at a time. After evaluating the overlap with all other stored patterns, the second highest298

overlap was always lower than 0.1 (Figure 5b). Finally, using STDP-induced LTD did not change the299

overlaps significantly (Figures 5c-d).300
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Figure 5. Mean overlap during pattern retrieval within each gamma cycle inside a theta cycle. Gamma 1
refers to the first gamma cycle in each theta cycle, gamma 2 to the second, and so on. (a) The highest
overlap among patterns for different cue sizes and connectivity extents and using synaptic scaling only;
(b) same as (a), but showing the second highest overlap among all patterns; (c) and (d) same as (a) and
(b), but using synaptic scaling and STDP-induced LTD.

The heteroassociative network forgets older patterns while learning new ones301

The heteroassociative network model with the synaptic scaling rule replaces old pattern sequences with302

newer ones, working as a palimpsest memory (Nadal et al., 1986). It is a required property for any model303

of the CA3, since just increasing the number of stored patterns would saturate synaptic weights, causing304

all stored pattern sequences to be lost, an effect called catastrophic interference (Amit, 1989). It is also305

in accordance with the theory of temporary storage of memories in the hippocampus, which are latter306

transferred to the cortex as remote memories (Frankland and Bontempi, 2005).307

The number of patterns that can be retrieved from the network depends on the cue size, as more308

complete cues permit the retrieval of patterns with weaker connections. Pattern sequences were stored309

before the simulation and the sequences were retrieved in ascending order, with one sequence retrieval310

per theta cycle. Figure 6a shows the retrieval of the last 3000 stored patterns. The last stored patterns are311

fully retrievable but, as we go backwards in the set of stored patterns, we report a strong transition point312

where patterns are no longer retrievable. The transition point depends on the cue size, with larger cues313

enabling the retrieval of more patterns.314

The minimum cue size required to successfully retrieve the sequences was 0.4, which is related to315

the configuration of excitatory weights between patterns. Although with larger weights retrieval would316

be possible with smaller cue, these larger weights would also make the network more unstable. Since317

performing fine tuning of the network parameters and evaluating the impact of each are outside the scope318

of this work, we used a value that offered a good trade-off between stability and cue size. Nonetheless,319

the network stored between 200 and 1600 patterns, depending on the cue size. Although this value seems320

small, we used a network of only 10,000 neurons, when compared to 300,000 from the rat CA3 (Rolls,321

2007) or 2.7 million from the human CA3 (Simic et al., 1997).322

Pattern retrieval depends weakly on the connectivity extent (Figure 6b). Although with lower extents323

there would be less connections from a retrieved pattern j to neurons from pattern j+1, these connections324

are stronger. The transition point between retrievable and forgotten patterns is actually the same, even for325

a connectivity extent of 40%. Consequently, even if most neuronal pairs from patterns j and j+1 cannot326

create connections due to anatomical or physiological restrictions, the network can still operate. This327

also permits the network to use less connections for pattern sequence storage, saving scarce metabolic328

resources in the network.329

When including STDP-induced LTD, the capacity of the network is slightly reduced (Figures 6c and330

6d), but the effect is not as severe as Figure 2 would indicate. Also, although the capacity is reduced, the331

stored sequences are still retrieved correctly, as shown in Figures 5c and 5d. These results indicate that,332

for the proposed heteroassociative network, an additive synaptic scaling is sufficient for replacing old333
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Figure 6. Rate of successful retrieval for the last 3000 stored patterns. Markers show the average
retrieval rate for 10 simulations and lines the arithmetic mean of 10 rates around each point. A retrieval is
successful when at least four patterns of the sequence were retrieved with an overlap larger than 0.5. (a)
Simulation with all connections, variable cue sizes, and synaptic scaling; (b) simulation with partial cues
of 0.6, varying connectivity extents and synaptic scaling; (c) and (d) same as (a) and (b), but with the
addition of STDP-induced LTD.

memories by new ones. But if one adds STDP-induced LTD, the retrieval capability of the network does334

not change significantly.335

DISCUSSION336

Coding of memories as pattern sequences337

Episodic memories are characterized by their compositional properties (Cohen and Eichenbaum, 1993;338

Henke, 2010) and coding as pattern sequences allows different stimuli to be combined in a single339

composition. The relationship of theta sequences with and spatial (Dragoi and Buzsáki, 2006) and340

episodic memories (Wang et al., 2014), the requirement of learning for their appearance (Feng et al., 2015)341

and their association with the representation of current goals (Wikenheiser and Redish, 2015) provide342

important evidence for heteroassociative coding in the hippocampus.343

Under an evolutionary point of view, coding of memories using heteroassociative connections permits344

their storage using less connections. Coding of a n-neuron pattern using autoassociative requires n2
345

connections per pattern, as all neurons in the pattern must connect to each other. With heteroassociative346

coding the larger pattern would be decomposed into a sequence of k smaller patterns of n/k neurons,347

requiring only k∗ (n/k)2 = n2/k connections for the complete sequence. This results in a k-fold reduction348

in the number of connections, which is an important biological advantage. Nevertheless, we should349

consider that autoassociative networks may provide better noise tolerance and retrieval from smaller cues,350

since the retrieval can be performed iteratively in multiple steps. Consequently, the coding choice is a351

trade-off between number of connections and reliability.352

Retrieval from small cues seems to be easier with heteroassociative coding. This retrieval occurs, for353

example, when mice need to retrieve stored spatial memories from the presentation of a small cue of354

the original memory (Nakazawa et al., 2002). With heteroassociative coding we can retrieve a complete355

pattern sequence using a cue of 40% of a single pattern, which represents only 5.7% of the original pattern356

encoded as a sequence of seven patterns. Heteroassociative coding also permits the storage of memories of357

different sizes. For example, larger complex memories could be coded in longer sequences, while simpler358

ones could use small sequences. If autoassociative coding was used, retrieval of a memory using cues of359

5.7% would be unlikely to work, since the excitatory weights would need to be large enough to allow the360

activation of the remaining neurons in the pattern. But these same large weights would compromise the361

stability of the network during the retrieval, exacerbating the problem of crosstalk interference (Amit,362
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1989). The same drawback applies when storing patterns of different sizes, since small patterns would363

require larger weights, causing the same stability and crosstalk problems caused when performing retrieval364

from small cues.365

The hippocampus is considered to mediate some cognitive functions related to memory, such as366

associative representation of events, sequential organization, and relational networking (Eichenbaum,367

2004). Interestingly, heteroassociative coding may address these issues. Associative representation368

of events can be accomplished by including events in the same pattern sequence, while a sequential369

organization arises naturally from pattern sequences. Relational networking considers that the same event370

may be part of multiple memories, which could be accomplished putting the same event in multiple371

pattern sequences. In this case, a mechanism would be required to disambiguate between these sequences372

during pattern sequence retrieval.373

One possible problem with heteroassociative coding is that patterns cannot be held as persistent374

activity for an extended period of time. This activity persistence is normally considered a requirement for375

memory retrieval and can be accomplished with the usage of autoassociative connections. This persistent376

activity is normally found in the prefrontal cortex (Fuster and Alexander, 1971; Funahashi et al., 1989),377

but also in other areas, such as the entorhinal cortex (Egorov et al., 2002). These regions are largely378

connected to the hippocampus, so we can envision that the hippocampus is responsible for the associations,379

sequential organization, and relationships (Eichenbaum, 2004) between events. The retrieval of individual380

patterns in the sequence then causes the the persistent activity associated to memories in the different381

cortex regions.382

External noise, pattern completion and limited connectivity383

The usage of heteroassociative connections in the recurrent CA3 connections is not a new subject.384

For instance, Yamaguchi (2003) studied a model that tries to explains theta phase precession using385

heteroassociative connections from CA3 to CA1 and in the CA3 recurrent connections. Other studies386

also used simple feedforward network models that associate pairs of patterns (Lytton, 1998; Miyata et al.,387

2013). But these studies did not evaluate the problem of pattern completion, noise tolerance and operation388

with limited connectivity.389

Other existing heteroassociative models of the hippocampus use autoassociative connections in local390

circuits of the CA3, to reduce the effects of noise and incomplete pattern retrieval. But the same set of391

CA3 recurrent connections cannot store both autoassociative and heteroassociative connections for a392

given pattern, since this would provide two possible routes for the network dynamics (Rolls and Kesner,393

2006). A solution proposed in some theoretical studies is that the autoassociative and heteroassociative394

connections are coded in different parts of the the CA3 (Samura et al., 2008) or in connections from395

the CA3 to other areas of the hippocampus (Lisman et al., 2005). In both models, the heteroassociative396

connections perform the storage and retrieval of sequences, leaving to the autoassociative connections the397

task of removing noise during pattern sequence retrieval.398

The presence of both autoassociative and heteroassociative connections may use unnecessary resources.399

Although autoassociative connections can indeed be important for noise and limited synaptic connectivity400

tolerance, we showed that an exclusively heteroassociative network can operate correctly in these scenarios.401

Errors in the retrieval of a single pattern do not propagate to the next pattern and the network worked402

correctly even when we limited each neuron connectivity to 40% of the neurons in the network. One403

limitation of the current study is that we did not include noise in the neural responses and in synaptic404

plasticity. But since we showed that the network operates correctly with limited connectivity, it seems that405

even though this extra noise would degrade the network performance, it would not prevent the network406

from operating properly. But if the objective is to obtain extra reliability, a combination of autoassociative407

and heteroassociative connections may be helpful.408

Synfire chains (Abeles, 1991) are defined as the sequential activation of pools or layers of neurons by409

feedforward connections. It is a broader concept that encompasses many types of network architectures.410

Although feedback connections may be considered in randomly connect networks (Abeles et al., 2004),411

the focus is on feedforward networks Tetzlaff et al. (2002). Nevertheless, one may consider the retrieval of412

pattern sequences as a synfire chain. Consequently, most of the conclusions obtained from evaluating the413

effects of synaptic scaling and LTD on memory replacement, network oscillations, connectivity extents,414

and others, can also be partly applied to synfire chains.415

Recent work has shown that 8.2% of the measured connections (12 out of 146) between pyramidal416
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neurons in the CA3 of a rodent were part of reciprocal connection motifs (Guzman et al., 2016). Although417

reciprocal connections are normally considered as a signature of autoassociative networks, they are also418

present in heteroassociative networks. For instance, in our simulations of heteroassociative networks,419

more than 13% of connections were part of reciprocal motifs. Although the percentages of reciprocal420

motifs found in our simulations and in the rodent CA3 can not be directly compared, the low number of421

motifs in the rodent CA3 is a evidence that heteroassociative may be used in the CA3 area.422

System homeostasis and catastrophic forgetting423

Enabling the storage of new memories requires the removal of old memories that are never recalled.424

According to the remote memories hypothesis, memories are temporally stored in the hippocampus425

to be latter coded as remote memories in the cortex (Frankland and Bontempi, 2005). Although the426

hippocampal region may be necessary for retrieval of declarative memories for a long period (Winocura427

and Moscovitch, 2011), it is likely that the areas of the entorhinal cortex (EC) are the most relevant ones.428

It is well known that an increase in the number of stored memories in an auto or heteroassociative429

network leads to a catastrophic interference effect (Amit, 1989), where the saturation of connection430

weights makes all stored memories unavailable. It is possible to prevent catastrophic forgetting just by431

including bounds in the synaptic weights (Nadal et al., 1986), which causes only the last stored memories432

to be remembered. This kind of memory is called palimpsest, but it can store only a small number of433

patterns.434

Some form of unlearning is required, and there several proposals on how this could be performed,435

specially during sleep. The two main hypotheses for this unlearning are the active system consolidation436

(Diekelmann and Born, 2010), where memories in the hippocampus are replayed during sleep and437

transferred over to the neocortex, causing the potentiation of synapses, and the synaptic homeostasis438

hypothesis (Tononi and Cirelli, 2014), which states that synapse weights are strengthened by learning439

during wake periods and decreased during sleeping.440

Our model is compatible with both hypotheses. With the synaptic homeostasis hypothesis (Tononi441

and Cirelli, 2014), our learning of new associations would represent the wake periods and the additive442

synaptic scaling rule would do the homeostatic process of reducing synaptic weights. We use synaptic443

scaling to maintain the total sum of weights constant for each neuron, by decreasing all synaptic weights444

by the same amount. Memories are forgotten as their respective synapses have their weights reduced and445

weaker synapses are eventually eliminated as their weights vanish.446

When considering the active system consolidation (Diekelmann and Born, 2010), stored memories447

would be recalled and transferred over to the neocortex during sleep. Different mechanisms could be used448

for maintaining the system homeostasis, including the use of STDP rules (Caporale and Dan, 2008) or449

activity dependent synaptic scaling (Abbott and Nelson, 2000). In our model, we used a synaptic scaling450

based on the sum of the weights, since we did not simulated the learning process itself. Synaptic scaling451

rules are normally based on the mean activation of the neuron, but over long periods this activity should452

be proportional to the sum of the input weights, resulting in similar synaptic changes.453

As a last point, we note that the replacement of old memories for new ones also receive the name of454

catastrophic forgetting in other types of networks (French, 1999) and is an important concern in procedural455

learning, since old learned skills may be useful and should not be indiscriminately erased by learning new456

ones. For the CA3 this effect is not be a real problem due to the temporary nature of memory storage.457
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Chrobak, J. J. and Buzsáki, G. (1998). Gamma oscillations in the entorhinal cortex of the freely behaving485

rat. Journal of Neuroscience, 18(1):388–98.486

Cohen, N. J. and Eichenbaum, H. (1993). Memory, Amnesia, and the Hippocampal System. MIT Press,487

Cambridge, MA.488

Colgin, L. L. (2016). Rhythms of the hippocampal network. Nature Reviews Neuroscience, 17(4):239–249.489

Dan, Y. and Poo, M.-M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron, 44(1):23–30.490

de Almeida, L., Idiart, M., and Lisman, J. E. (2007). Memory retrieval time and memory capacity of the491

CA3 network: role of gamma frequency oscillations. Learning & Memory, 14(11):795–806.492

Diego, S., Sodroski, J., Hausmann, E. H., Ozel, M., Pauli, G., Koch, M. A., Saphire, E. O., Parren, P.493

W. H. I., Muir, T. W., Kent, S. B., Minor, W., Main, P., Macarthur, M. W., Moss, D. S., Bacon, D. J.,494

Menendez, A., Olson, A. J., Spehner, J. C., Wormald, M., Vos, A. D., Poignard, P., and Wang, M.495

(2001). Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition.496

Science, 293(5532):1159–1163.497

Diekelmann, S. and Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience,498

11(2):114–26.499
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