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ABSTRACT
Background. Recent research suggests that the CA3 subregion of the hippocampus
has properties of both autoassociative network, due to its ability to complete partial
cues, tolerate noise, and store associations between memories, and heteroassociative
one, due to its ability to store and retrieve sequences of patterns. Although there are
several computational models of the CA3 as an autoassociative network, more detailed
evaluations of its heteroassociative properties are missing.
Methods. We developed a model of the CA3 subregion containing 10,000 integrate-
and-fire neurons with both recurrent excitatory and inhibitory connections, and which
exhibits coupled oscillations in the gamma and theta ranges. We stored thousands of
pattern sequences using a heteroassociative learning rule with competitive synaptic
scaling.
Results. We showed that a purely heteroassociative network model can (i) retrieve
pattern sequences from partial cues with external noise and incomplete connectivity,
(ii) achieve homeostasis regarding the number of connections per neuron when many
patterns are stored when using synaptic scaling, (iii) continuously update the set of
retrievable patterns, guaranteeing that the last stored patterns can be retrieved and
older ones can be forgotten.
Discussion. Heteroassociative networks with synaptic scaling rules seem sufficient to
achieve many desirable features regarding connectivity homeostasis, pattern sequence
retrieval, noise tolerance and updating of the set of retrievable patterns.

Subjects Computational Biology, Neuroscience
Keywords Hippocampus, Computational neuroscience, Heteroassociative coding, Theta
sequences, CA3, Memory

INTRODUCTION
Even though it is well established that hippocampal formation is responsible for temporary
storage and retrieval of memories (Squire, 1992; Andersen et al., 2007), memory coding is
still not completely understood. The CA3 subregion contains a particularly large number
of recurrent connections among the pyramidal neurons. Existing attractor neural network
models (Hopfield, 1982; Amit, 1989) show that networks with recurrent connections can
use a Hebbian learning rule to store patterns, represented as a set of active neurons, and
retrieve them from partial cues. Based on these models, Rolls et al. (1997) proposed that the
CA3 subregion could work as an autoassociative memory, where neurons from the same
pattern have recurrent excitatory connections between them. These connections enable
associations between features of a memory, retrieval of stored memories from presentation
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of partial cues, and noise tolerance during memory retrieval. These characteristics of
autoassociative networks make them excellent candidates for the storage of complex
episodic memories (Rolls, 2010), which contain smaller components organized in a flexible
way and that could be used as cues to retrieve a whole episode (Cohen & Eichenbaum, 1993).

Another important characteristic of the CA3 subregion is that, during exploratory
behavior in rats, this area shows a local field potential (LFP) signal composed of gamma
(40–100 Hz) components nested in a theta (5–10 Hz) rhythm (Bragin et al., 1995; Colgin,
2016). Moreover,O’Keefe & Recce (1993) observed that the phase of the theta cycle at which
a place cell is activated depends on the distance of the rat to the cell preferred location, an
effect called theta phase precession. Jensen & Lisman (1996) proposed that the hippocampus
could work as a heteroassociative memory (Sompolinsky & Kanter, 1986), a kind of network
that stores sequences of patterns, represented by neuronal ensembles. Similarly, Levy
(1996) proposed a simple model composed of McCulloch-Pitts threshold neurons that
could learn to store sequences using local associative learning rules. The main difference
to autoassociative memory is that neurons from a pattern have recurrent connections to
neurons from the next pattern in the sequence. The advantage is that an entire sequence
of patterns can then be retrieved in a theta cycle, with one pattern per gamma cycle nested
in the theta cycle. However, the lack of autoassociative connections could make these
network less reliable in the presence of internal and external noise and unable to perform
pattern completion. To combine the properties of auto- and heteroassociative networks,
models containing both kinds of connections were proposed. In these models, recurrent
connections within a single CA3 area would work as autoassociative connections, while
heteroassociave connections would be located either as feedback connections from CA3 to
dentate gyrus (Lisman, Talamini & Raffone, 2005) or between different CA3 areas (Samura,
Hattori & Ishizaki, 2008).

More recently, the concept of theta sequences (Foster & Wilson, 2007) was proposed,
based on experimental evidence that sequences of neuronal ensembles are sequentially
activated at subsequent gamma cycles and coupled to theta oscillations. Activations occur
preferentially at some phases of theta cycles and sequences seem to be bounded within theta
cycles. In contrast to phase precession, the appearance of theta sequences appears to require
learning (Feng, Silva & Foster, 2015) and was associated with the representation of current
goals (Wikenheiser & Redish, 2015) of rodents. The relationship of theta sequences with
episodic (Wang et al., 2014) and spatial memories (Dragoi & Buzsáki, 2006) indicates that
the CA3 recurrent and CA3-CA1 connections may encode these memories as sequential
activation of neuronal ensembles.

Another feature of the hippocampus is that memories appear to be temporarily stored
there and later coded as remote memories in the cortex (Frankland & Bontempi, 2005).
This property could be due to the limited capacity of auto- and heteroassociative networks,
since increasing the number of stored memories beyond its capacity leads to a catastrophic
interference effect (Amit, 1989), where the saturation of connection weights makes all
stored memories unavailable. Although the replacement of older memories by newer ones
also receives the name of catastrophic forgetting in other types of networks (French, 1999),
this effect is consistent with one of the hypothesized roles of the CA3 as a temporary
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Figure 1 Network architecture, with the recurrent connections among pyramidal neurons, fast and
slow GABAergic connections, and O-LM inhibitory population.

Full-size DOI: 10.7717/peerj.4203/fig-1

memory storage. Proposals for enabling this replacement of older memories include the
use of STDP rules (Caporale & Dan, 2008) and memory recall and consolidation during
sleep (Born, Rasch & Gais, 2006).

Although there are several computational models of the CA3 as an autoassociative
network (Rolls et al., 1997; Cutsuridis & Wennekers, 2009), more detailed evaluations of
its heteroassociative properties are missing. In this work, we use a heteroassociative
network model of the CA3 subregion containing 10,000 neurons to investigate the
following properties: (i) retrieval of pattern sequences from partial cues with external
noise and incomplete connectivity, (ii) achievement of homeostasis regarding the number
of connections per neuron when many patterns are stored using synaptic scaling, (iii)
replacement of the set of stored patterns, guaranteeing that the last stored patterns can be
retrieved and older ones can be forgotten.

METHODS
The network model
We implemented a heteroassociative network, that simulates the CA3 subregion, composed
of 10,000 integrate-and-fire neurons representing pyramidal cells. Neurons are connected
by excitatory recurrent connections, with kinetic models of AMPA synaptic channels and
weights defined by a heteroassociative learning rule. The network is shown in Fig. 1.
The network has two kinds of feedback inhibition, mediated by fast and slow GABA

channels (Pearce, 1993), modeled as direct connections between every pair of pyramidal
neurons. The fast inhibition is responsible for controlling the level of activity in the network
and reducing the interference between stored pattern sequences. The slower inhibition
helps to control the level of activity in the network in a slower time scale. We also simulated
periodic inhibition from a oriens-lacunosum-moleculare (O-LM) interneuron (Freund &
Buzsáki, 1998) population, modeling it as a single spike generator representing the intrinsic
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firing rate in the theta range (5 Hz) of these cells when depolarized (Gloveli et al., 2005). It
is connected with every pyramidal neuron via slow GABA synapses and generates the theta
rhythm in the network.

Following the model used by De Almeida, Idiart & Lisman (2007), we model the
membrane potential Vn of pyramidal neuron n by:

dVn

dt
=

1
τm

((Isyn+ Irep)× rInput−Vn+Vrest)

using the values rInput = 33 M�, Vrest =−60 mV, τm = 2 ms. When Vn reaches a threshold
of −50 mV, it is reset to Vrest, with a refractory period of 13.3 ms. The current Irep is a
hyperpolarizing current that provides spike frequency adaptation and depends on the time
of the last generated spike tspk . It is given by:

Irep=−560 pA× exp
(
−
t− tspk
5 ms

)
.

Finally, Isyn represents the synaptic current into the neuron, and is given by:

Isyn= Iext+ Iampa+ Igaba+ IgabaS

where Iext represents the external input, Iampa the excitatory AMPA synapses, Igaba the
inhibitory fast GABA synapses, and IgabaS the slow GABA synapses. We used the Euler
method with an integration step of 0.1 ms, which is sufficient for simple integrate-and-fire
models.

The synaptic model
We modeled the synaptic channels using a dual exponential model, given by:

Ik =Ak
∑
s

Ws
[1ts]+
τ1−τ2

(
exp

(
−
1ts
τ1

)
−exp

(
−
1ts
τ2

))
where [1ts]+= t − ts− tdelay,∀t > ts+ tdelay is the time since the spike s generated at time
ts was delivered considering the delay tdelay, and 0 otherwise. Ak represents the maximum
conductance andWs the synaptic weight, i.e., the connection strength between the neurons.
Parameters τ1 and τ2 are the time constants, and the double exponential is reduced to the
alpha function when τ1= τ2:

Ik =Ak
∑
s

Ws
[1ts]+
τ1

exp
(
1−

1ts
τ1

)
.

We used the τ1 = 2 ms, τ2 = 8 ms and Ak = 3,200 pA for AMPA channel of recurrent
connections (Spruston, Jonas & Sakmann, 1995), τ1 = τ2 = 2 ms and Ak = 3,200 pA for
the external input channels, τ1 = τ2 = 5 ms and Ak = 540 pA for the fast GABA channels
(Pearce, 1993), and τ1 = 7 ms, τ2 = 57 ms and Ak = 30 pA for the slow GABA channels
(Pearce, 1993). We did not include NMDA channels, which have a main role in LTP and
LTD processes, since our learning phase is executed offline, as we discuss in subsection
‘‘Learning rule’’.

We placed all neurons in a plane and defined the axonal delay between each pair of
pyramidal neurons based on their euclidean distance. We used an axonal propagation
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velocity of 300 µm/s (Meeks & Mennerick, 2007) and considered a square 2 × 2 mm area,
based on anatomical data (Amaral & Witter, 1989), resulting in a mean axonal delay of
about 3.3 ms (Aaron & Dichter, 2001). Since we are using integrate-and-fire neurons, we
also included the excitatory postsynaptic potential (EPSP) propagation time to the soma.
We used a delay of 5 ms, estimated by experimentally measured differences between the
time to peak of EPSPs in the soma from mossy fiber inputs, near the soma, and recurrent
connections, at apical dendrites (Miles & Wong, 1986).

For inhibitory feedback connections we used a delay of 2.5 ms, based on studies on
interneurons from the CA3 (Diego et al., 2001). For the slow inhibition, we used a delay of
10 ms, to include the fact that these inhibitory cells are located near the basal positions of
the pyramidal cells andmakes connections to the upper apical positions (Hájos et al., 2004).

External noise was modeled as a Poisson process with 1 Hz rate per neuron, representing
independent inputs to the neurons not related to the retrieval of sequences. We used
weights that were large enough to cause the network neurons to fire spontaneously at the
rate of 0.75 Hz, which is similar to the rate 0.80 Hz produced during pattern retrieval in
the simulations.

Pattern sequences
We created the patterns by generating random permutations, without replacement, of the
neuron indexes and getting the first r values of the permutation, where r is equal to the
number of neurons times the pattern density for the simulation. We define the density
as the number of neurons active in a pattern divided by the total number of neurons.
For heteroassociative networks, there are estimates by De Almeida, Idiart & Lisman (2007)
of density of 0.003. For our simulated network with 10,000 neurons this would result in
only 30 neurons per pattern, which would be insufficient for noise tolerance and sequence
completion. We use the term sequence completion to refer to that the next pattern in
the sequence can be retrieved correctly even when the current pattern was only partially
activated. Although using more neurons per pattern decreases the storage capacity of the
network, we decided to use a density of 0.01, resulting in 100 neurons per pattern.

We define a pattern pµ as a binary vector with size equal to number of pyramidal neurons
in the network. Each position pµi has value 1 if neuron i is part of pµ and 0 otherwise.
We considered sequences of seven patterns, which appears to be the typical number of
patterns that can be coded inside theta cycles (Lisman & Idiart, 1995; Lisman & Jensen,
2013), and stored them using a heteroassociative learning rule (Sompolinsky & Kanter,
1986) that associates each pattern in the sequence with the subsequent one. For example, in
a sequence of patterns s1–s2–s3–s4–s5–s6–s7, neurons from pattern s1 will have excitatory
connections to neurons from pattern s2, which in turn connect to neurons from s3, and
so on. We included additional connections from the last to the first pattern, permitting
sequence retrieval using a cue from any of its patterns.

Learning rule
The model uses a heteroassociative learning rule (Sompolinsky & Kanter, 1986) for pattern
sequence storage. We simulated an offline learning procedure, performed before the
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simulation, by considering that the patterns fromeach sequencewere presented in sequence.
This enables the usage of an LTP-like rule to learn associations between subsequent patterns
in each sequence, which can be summarized as:

1wij = γ
+pµi p

mod(µ+1,k)
j

where wij represents the weight of the connection from neuron i to neuron j, γ+= 1 the
learning rate, pµi the neuron i from pattern µ and pmod(µ+1,k)

j the neuron j from the next
pattern in a sequence of k patterns, µ= 0,...,k−1. The function mod(x,k) represents the
modulo operation, with mod(−1,k) defined as k−1. This produces an association between
the last and the first patterns in the sequence. We also used an LTD-like learning rule that
performs a dissociation between a pattern and the previous pattern in the sequence,
summarized as:

1wij =−γ
−pµi p

mod(µ−1,k)
j .

We executed simulations with and without LTD, in which case we used γ− = 1 and
γ−= 0, respectively.

We included synaptic scaling (Abbott & Nelson, 2000) as a heterosynaptic long-term
depression (hLTD) mechanism (Chistiakova & Volgushev, 2009), where we update the
weights of synapses that were not active during the learning phase. Synaptic scaling models
a competition between the synapses of a single neuron. After learning a set of 100 pattern
sequences, we apply an additive synaptic scaling rule to all neurons. We decrease all
synaptic weights from each neuron by a fixed amount, defined as the ratio between the
total weight increase since the last scaling procedure and the number of connections.
Synapses that become negative are set to zero and the difference is uniformly subtracted
from the remaining synapses.

In biological networks, anatomical constraints can limit the set of neurons to which
a neuron can connect. We simulate these constraints using different levels of initial
connectivities, where we randomly defined for each neuron the set of neurons to which
it can connect. For an initial connectivity of 0.6, each neuron initially connects to 60%
randomly selected neurons in the network, with random weights drawn from a uniform
distribution between 0 and a defined maximum value. Initial connection weights are
scaled to maintain the excitatory drive with different initial connectivities comparable.
Connections to neurons outside the set of initial connections cannot be created during
learning.

The learning rule is then sequentially applied to each pattern sequence to be stored.
During learning connections are eliminated due to LTD or synaptic scaling, so that after
storingmany sequences the network stabilizes at a lower connectivity, effectively simulating
a ‘‘lifetime’’ of episodic sequences learning until maturity.

Sequence retrieval
We defined as a pattern cue the stimulation of a subset of the neurons that are active in
the pattern. We always provide inputs for same number of neurons, so that with a cue size
of 1.0, we stimulate all neurons from the pattern and no other neuron. For instance, with
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a cue size of 0.7, only 70% of the neurons in the pattern receive the input, while random
neurons outside the pattern are selected to keep the input size controlled over different
simulation runs. We consider that during retrieval the entorhinal cortex (EC) provides the
input to the CA3 via the perforant path, using a coding where an ensemble of neurons,
representing an input pattern, fire synchronously inside a single gamma cycle (Chrobak &
Buzsáki, 1998). In this case, each neuron stimulated by the cue receives a single spike as
input, with a synaptic strength large enough to cause its firing. A second input to the CA3
are the mossy fibers, originating from the dentate gyrus, which appears to deliver sparse
patterns for storage in the CA3 subregion (Treves & Rolls, 1992). Since in this work the
learning phase was performed offline, we did not include this input in the simulation.

We determine the set of active neurons by checking which neurons fired inside a time
window of 10 ms. The measurements are performed every 2 ms with the time window
centered at simulation time t . We used a small time window to permit capturing active
neurons only from a single gamma cycle at each time t in the middle of the cycles. We
define the overlap of the active neurons with a stored pattern pµ as:

overlap(t ,pµ)=
1
npµ

∑
i∈pµ

oi(t ) p
µ
i

where npµ is the size of pµ, oi is the state of neuron i at the instant t , which can be 0 (inactive)
or 1 (active), and pµi is 1 if neuron i is part of pµ and 0 otherwise. The overlap equals 1 when
all the neurons from a stored pattern are active. Neurons also have spontaneous firings due
to external noise and, to correctly evaluate the pattern retrieval, we consider in the metric
only the neurons which are part of the pattern. This could be applied because the number
of active neurons was always comparable to the number of neurons per pattern. To verify
that extra active neurons are randomly activated and not concurrent retrieval of multiple
patterns, we also compute the highest overlap among all other patterns.

We evaluated sequence retrieval in the simulated neuronal network using the mean
overlap over 10 simulations for each combination of parameter values. We varied the cue
size (1.0, 0.8, 0.6 and 0.4), initial connectivity (1.0, 0.8, 0.6 and 0.4) and synaptic LTD usage
(true and false). We stored 10,010 patterns, a multiple of the sequence size of 7 patterns, in
the network. Each simulation was executed for 86,150 ms, which was sufficient to evaluate
the retrieval of the last 3,003 stored patterns. The simulation and experimental results
analysis were implemented and executed in MATLAB (R2014a; The Mathworks, Natick,
MA, USA). Simulation source code and raw and processed data are available at a public
repository (https://dx.doi.org/10.6084/m9.figshare.5378347.v2).

RESULTS
The number of retrievable patterns and connections are stable
during the network lifetime
Our evaluation shows that the number of connections in the recurrent network, initialized
with full connectivity and random weights, stabilizes after learning a few hundred patterns,
remaining stable as new patterns are added (Fig. 2A). Storing a pattern sequence increases
the total synaptic weight of each neuron, which is compensated by the synaptic scaling
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Figure 2 (A) Number of connections in a network with 10,000 neurons after learning a set of pat-
tern sequences when applying only the synaptic scaling (SS) rule, for a pattern density of 0.02, 0.01 and
0.005, and with synaptic scaling and LTD (SS–LTD); (B) number of retrievable patterns for the same
scenarios from (A); (C–D) same as (A–B), but comparing neuronal initial connectivities of 1.0, 0.6 and
0.4. The graph shows the mean of three executions. Standard deviations values were lower than 10 connec-
tions for (A) and (C), 70 patterns for (B) and 35 patterns for (D) and are not shown for clarity.

Full-size DOI: 10.7717/peerj.4203/fig-2

rule. This reduces the weights of all synapses in the neuron, causing some of them to
disappear as they approach zero. The number of connections decreases until the number of
connections created by learning new patterns is balanced by the removal of old connections.
This occurred either when using only synaptic scaling (SS), in which case we set γ−= 0,
and when using SS combined with LTD (SS–LTD), with γ−=−1, showing that synaptic
scaling is sufficient to control the number of connections in the network.

The number of retrievable patterns initially increases with the number of stored
patterns, followed by a decrease toward a constant value, as shown in Fig. 2B. To determine
if a pattern pµ is retrievable, we compute the sum of excitatory weights Si from neurons
from the previous pattern pµ−1 toward each neuron i in the network. If Si for each target
neuron from pµ is larger than the Si of each neuron outside pµ, the pattern is considered
retrievable. This means that neurons in the pattern receive a larger excitatory drive than
the other neurons during pattern retrieval, which permits a global inhibition to be used
to suppress the activity of these other neurons. This simple measurement generates an
estimate of the number of retrievable patterns directly from the connection weights. The
alternative would be a simulation where, for each pattern sequence, we would provide a
cue of one of its patterns and check if all patterns in the sequence are retrieved correctly.
But this would be unfeasible, since we would have to perform simulations to retrieve every
pattern for all network configuration combinations, where we would vary the number of
stored patterns, pattern density level, initial connectivity and LTD rule.

The initial increase in number of retrievable patterns (Fig. 2B) is due to the lack of
patterns to retrieve in the beginning and the later decrease occurs due to the interference
between stored patterns, called crosstalk. After reaching an equilibrium point, the number
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of retrievable patterns remains constant. Using a pattern density of 0.02, instead of 0.01,
increased the number of connections, causing an increase in the crosstalk between patterns,
which resulted in a reduced number of retrievable patterns (Figs. 2A–2B). Combined with
LTD, which caused a larger number of weight decreases, the number of retrievable patterns
became almost zero. With density 0.005, the final number of connections was smaller and
the number of retrievable patterns higher, showing the benefits of using fewer neurons
per pattern. Although a smaller density may reduce the reliability of the network due to
neuron firing and synaptic variability, a region containing one million neurons would still
have about 5,000 active neurons per pattern with a density of 0.005.

Including LTD (SS–LTD) caused only small changes in the number of connections, but
the number of retrievable patterns decreased (Figs. 2A–2B). Although this result might
seem to occur due to extra reductions in excitatory weights caused by LTD, we compensate
for this by reducing the effect of synaptic scaling, so that the total weights per neuron with
or without LTD will be the same. It appears that using LTD causes disruptions in stored
pattern sequences when decreasing the connection weights from neurons of the last stored
pattern to neurons of the previous pattern.

Anatomical constraints may prevent full connectivity in the CA3 subregion. An initial
connectivity of 0.6 means that a neuron can connect to 60% of the neurons. Using
a smaller initial connectivity reduces the number of connections, but the number of
retrievable patterns is also reduced (Figs. 2C–2D). However, it is interesting that using an
initial connectivity of 0.4 and synaptic scaling (SS) alone, there were about 900 retrievable
patterns, which is more than the 600 patterns obtained when using LTD (SS–LTD) with full
initial connectivity. Also, although 900 patterns may be too few, this value would probably
be higher for larger networks from biological systems.

Increasing the initial total weight per neuron increases the number of connections, caused
by less competition in the synaptic scaling rule (Fig. 3A). It also increases the number of
retrievable patterns, as old patterns take longer to be forgotten, until a transition point
where the crosstalk interference becomes larger than the pattern inputs (Fig. 3B). After this
point, the number of retrievable patterns starts to decrease. The behavior is similar both
with and without the usage of LTD, but in the latter the number of retrievable patterns was
larger.

Another way to analyze the results is to check how many patterns can be stored in
a network with a given number of connections per neuron. For instance, De Almeida,
Idiart & Lisman (2007) estimated that neurons in the CA3a subarea connect to 20% of the
neurons. In our network, it would result in about 1,600 retrievable patterns and would be
far from the transition point. Including more neurons or using a smaller pattern density,
as is the case in biological systems, would result in a much larger number of retrievable
patterns.

The final number of connections in the network is dependent on the initial random
weights between neurons, initial connectivity, and pattern density (Figs. 3A and 3C). With
larger initial weights, the sum of synaptic weights toward each neuron will be larger and,
consequently, fewer connections will be removed by the effect of synaptic scaling and LTD.
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and are not shown for clarity.

Full-size DOI: 10.7717/peerj.4203/fig-3

It is also interesting that although a smaller initial connectivity would permit the storage
of more patterns with the same number of connections, we actually see a reduction in
the number of retrievable patterns (Figs. 3A and 3B). This is caused by the smaller signal-
to-noise ratio in the system, as there will be proportionally fewer coding connections. If
we consider an estimated final connectivity of 20% (De Almeida, Idiart & Lisman, 2007),
with full initial connectivity we would have to use an initial weight of 2.0, resulting in
about 1,400 retrievable patterns (red arrows). But with an initial connectivity of 60%, it
is possible to use a larger initial weight of 6.0, while maintaining the total connections to
20% of the neurons, which resulted in about 1,600 retrievable patterns (green arrows), an
actual improvement over the full initial connectivity. With an initial connectivity of 40%,
the number of retrievable patterns started to decrease with more than 1,200 connections
per neuron.

Using a density of 0.005 caused small changes in the final number of connections, but the
number of retrievable patterns increased (Figs. 3C–3D), which would be more typical for
larger biological networks with lower density. The exception is for the initial connectivity
of 0.4, due to the small number connections per neuron in the simulated network.

In this section we evaluated the static properties of the connections and the number of
retrievable patterns. In the following sections, we perform actual network simulations to
evaluate the dynamic operation of the network. In all simulations, we used a density of
0.01, with 100 neurons per pattern, to improve the reliability of the simulations. We used
different initial weight values for different initial connectivities (weight, connectivity): (2.5,
1.0), (3.0, 0.8), (6.0, 0.6) and (4.0, 0.4). These are the values that maximize the number of
retrievable patterns when neurons connect to approximately 20% of all neurons.
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Figure 4 Operation of two heteroassociative networks with 104 pyramidal neurons and 104 stored
patterns with 100 neurons per pattern and coded into sets of seven patterns. The left-hand side graphs
show 450ms of network operation with presentation of random inputs at instants 4,200 ms and 4,400
ms, extracted from a 5,000 ms simulation. (A) Maximum value of the overlap among all stored pat-
terns; (B) number of active neurons as a function of time; (C) simulated LFP signal from the network;
(D) raster plot showing instants of neuronal spikes for all neurons in the network; and (E–H) same as
(A–D), but with the presentation of partial cues of 0.6 of a pattern at instants 4,200 ms and 4,400 ms.

Full-size DOI: 10.7717/peerj.4203/fig-4

A heteroassociative network enables the retrieval of stored pattern
sequences in the presence of noise
The simulated heteroassociative network could retrieve complete pattern sequences stored
on its connection weights after presentation of a partial cue from any pattern in the
sequence. Although this retrieval is expected in a noiseless environment, we considered
the scenario with a level of noise that caused the neurons to fire spontaneously, without
presentation of pattern cues, with a mean spike rate of 0.75 Hz. The network oscillates
in the theta band at 5 Hz, shown in the approximate LFP signal obtained by sum of the
membrane potential of the pyramidal neurons (Fig. 4C). This oscillation in 5 Hz is due
to the periodic inhibition of O-LM cells, with a sharp decrease in the spike rate when the
inhibition starts and a gradual recovery of the spike rate when the inhibition fades. Also,
no pattern is retrieved during this period (Fig. 4A), despite the firing of near 200 neurons
at some points (Fig. 4B), showing that the firing was random, which is also illustrated in
the raster plot (Fig. 4D). When a random external input is presented at instants 4,200 ms
and 4,400 ms, the target neurons are activated, but since they do not represent a stored
pattern, this extra activity disappears.
Presenting a pattern cue caused the retrieval of the complete pattern sequence just after

its presentation, at 4,200 ms and 4,400 ms in Figs. 4E–4H. Each pattern is retrieved during
a small time window, corresponding to a gamma cycle inside the theta cycle, as occurs in
the theory proposed by Lisman (2005). There are about nine gamma cycles per theta cycle
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and since each pattern sequence has seven patterns, the complete sequence is retrieved
during a single theta cycle. The last pattern in the sequence is connected to the first, which
causes the number of gamma cycles to be larger than the sequence size. We can also see that
although we present only 60% of the first pattern of the set (cue size of 0.6), the network
successfully retrieved and completed the subsequent patterns. Finally, the raster plot of
neuronal spikes shows the clustering of neuronal firings during each pattern retrieval, with
periods of inactivity between gamma cycles.

Longer or smaller pattern sequences can also be stored and retrieved. With a larger
sequence, a subset of the pattern sequence is retrieved in a single theta cycle, until the
slow inhibitory current starts to win the competition against the excitatory drive. The
remaining patterns can then be retrieved in the next theta cycle, by presenting the last
pattern retrieved in the previous cycle. With smaller pattern sequences, the theta cycle
would just keep looping the patterns in the sequence until the inhibition surpasses the
excitatory drive and finishes the theta cycle.

In simulations shown in Figs. 4E–4H, we presented the pattern cues at the beginning of
the theta cycles. Presenting the cues at other phases would cause only part of the sequence
to be retrieved, since the periodical inhibition from O-LM cells would cause the pyramidal
cells to stop firing before the end of the sequence. Since phase synchronization may be
required for memory retrieval in the hippocampus (Fell & Axmacher, 2011), it seems
reasonable to provide the inputs at specific theta phases.

Sequence completion during retrieval occurs due to the heteroassociative connections
from pattern j to next pattern j+1. Since many neurons from pattern j must fire to activate
pattern j+1, randomly firing neurons do not cause random pattern retrievals. Sequence
completion also works with initial connectivity of 0.6, as shown in Fig. 5A. Also, the fast
inhibition guarantees that only a single pattern is retrieved at a time. After evaluating the
overlap with all other stored patterns, the second highest overlap was always lower than 0.1
(Fig. 5B). Finally, using LTD did not cause perceptible changes in the mean overlap values
(Figs. 5C–5D).

The heteroassociative network forgets older patterns while learning
new ones
The heteroassociative network model with the synaptic scaling rule replaces old pattern
sequences with newer ones. It is a required property for any model of the CA3, since just
increasing the number of stored patterns would saturate synaptic weights, causing all stored
pattern sequences to be lost, an effect called catastrophic interference (Amit, 1989). It is
also in accordance with the theory of temporary storage of memories in the hippocampus,
which are later transferred to the cortex as remotememories (Frankland & Bontempi, 2005).

The number of patterns that can be retrieved from the network depends on the cue size,
as more complete cues permit the retrieval of patterns with weaker connections. Pattern
sequences were stored before the simulation and the sequences were retrieved in ascending
order, with one sequence retrieval per theta cycle. Figure 6A shows the retrieval of the last
3,000 stored patterns for different cue sizes. The last stored patterns are fully retrievable
but, as we go backwards in the set of stored patterns, we report a strong transition point
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where patterns are no longer retrievable. The transition point depends on the cue size, with
larger cues enabling the retrieval of more patterns.

The minimum cue size required to successfully retrieve the sequences was 0.4, which is
related to the configuration of excitatory weights between patterns. Although with larger
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weights retrieval would be possible with a smaller cue, these larger weights would also
make the network more unstable. Since performing fine tuning of the network parameters
and evaluating the impact of each are outside the scope of this work, we used a value that
offered a good trade-off between stability and cue size. Nonetheless, the network stored
between 200 and 1,600 patterns, depending on the cue size. Although this value seems
small, we used a network of only 10,000 neurons, when compared to 300,000 from the rat
CA3 (Rolls, 2007) or 2.7 million from the human CA3 (Simic et al., 1997).

Pattern retrieval depends weakly on the initial connectivity (Fig. 6B). Although with
smaller connectivities there would be fewer connections from a retrieved pattern j to
neurons from pattern j+1, these connections are stronger. The transition point between
retrievable and forgotten patterns is actually the same, even for an initial connectivity of
40%. Consequently, even if most neuronal pairs from patterns j and j+1 cannot create
connections due to anatomical or physiological restrictions, the network can still operate.
This also permits the network to use fewer connections for pattern sequence storage, saving
scarce metabolic resources in the network.

When including LTD, the capacity of the network is slightly reduced (Figs. 6C and 6D),
but the effect is not as severe as indicated in Fig. 2. Also, although the capacity is reduced,
the stored sequences are still retrieved correctly, as shown in Figs. 5C and 5D. These results
indicate that, for the proposed heteroassociative network, an additive synaptic scaling is
sufficient for replacing old memories by new ones, as the addition of LTD does not cause
perceptible changes in the retrieval capability of the network.

DISCUSSION
Coding of memories as pattern sequences
Episodic memories are characterized by their compositional properties (Cohen &
Eichenbaum, 1993; Henke, 2010) and coding as pattern sequences allows different stimuli
to be combined in a single composition. The relationship of theta sequences with spatial
(Dragoi & Buzsáki, 2006) and episodic memories (Wang et al., 2014), the requirement of
learning for their appearance (Feng, Silva & Foster, 2015) and their association with the
representation of current goals (Wikenheiser & Redish, 2015) provide important evidence
for heteroassociative coding in the hippocampus.

Retrieval of pattern sequences from small cues is possible with both auto- and
heteroassociative networks. This retrieval occurs, for example, when mice need to retrieve
stored spatial memories from the presentation of a small cue of the original memory
(Nakazawa et al., 2002). With heteroassociative coding we can present a small cue from a
single pattern in the sequence, and the rest of the sequence would be retrieved sequentially.
With autoassociative networks, neurons from the stored pattern would be progressively
activated by the self-reinforcing dynamics of the network until the complete pattern is
retrieved. Also, both types of network permit the storage of memories of different sizes.
With heteroassociative networks, larger complex memories could be coded in longer
sequences, while simpler ones could use small sequences.

The hippocampus is considered to mediate some cognitive functions related to memory,
such as associative representation of events, sequential organization, and relational

de Camargo et al. (2018), PeerJ, DOI 10.7717/peerj.4203 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.4203


networking (Eichenbaum, 2004). Interestingly, heteroassociative coding may address
these issues. Associative representation of events can be accomplished by including events
in the same pattern sequence, while a sequential organization arises naturally from pattern
sequences. Relational networking considers that the same event may be part of multiple
memories, which could be accomplished putting the same event in multiple pattern
sequences. In this case, an extra mechanism would be required to disambiguate between
these sequences during pattern sequence retrieval. For instance, Levy (1996) proposed that
a set of context neurons in the CA3 could guide this disambiguation.

One possible problem with heteroassociative coding is that patterns cannot be held as
persistent activity for an extended period of time. This activity persistence is normally
considered a requirement for memory retrieval and can be accomplished with the usage
of autoassociative connections. This persistent activity is normally found in the prefrontal
cortex (Fuster & Alexander, 1971; Funahashi, Bruce & Goldman-Rakic, 1989), but also in
other areas, such as the entorhinal cortex (Egorov et al., 2002). These regions are largely
connected to the hippocampus, so we can envision that the hippocampus is responsible for
the associations, sequential organization, and relationships (Eichenbaum, 2004) between
events. The retrieval of individual patterns in the sequence then causes the persistent
activity associated to memories in the different cortex regions.

External noise, sequence completion and limited connectivity
The usage of heteroassociative connections in the recurrent CA3 connections is not a new
subject. For instance, Yamaguchi (2003) studied a model that tries to explains theta phase
precession using heteroassociative connections from CA3 to CA1 and in the CA3 recurrent
connections. Other studies also used simple feedforward network models that associate
pairs of patterns (Lytton, 1998; Miyata, Ota & Aonishi, 2013). But these studies did not
evaluate the problem of sequence completion, noise tolerance and operation with limited
connectivity.

Other existing heteroassociative models of the hippocampus use autoassociative
connections in local circuits of the CA3, to reduce the effects of noise and incomplete
pattern retrieval. But the same set of CA3 recurrent connections cannot store both
autoassociative and heteroassociative connections for a given pattern, since this would
provide two possible routes for the network dynamics (Rolls & Kesner, 2006). A solution
proposed in some theoretical studies is that the autoassociative and heteroassociative
connections are present in different parts of the the CA3 (Samura, Hattori & Ishizaki, 2008)
or in connections from the CA3 to other areas of the hippocampus (Lisman, Talamini &
Raffone, 2005). In both theoretical approaches, the heteroassociative connections perform
the storage and retrieval of sequences, leaving to the autoassociative connections the task
of removing noise and performing pattern completion during sequence retrieval.

We showed that a heteroassociative network can operate correctly in the presence of
external noise and limited synaptic connectivity, since retrieval errors in single patterns
do not propagate to the next patterns. These errors include partial pattern retrieval and
activation of neuronswhich are not part of the retrieved pattern. Consequently, the presence
of both autoassociative and heteroassociative connections in the same network may not be
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a requirement for preventing these propagating errors. One limitation of the current study
is that we did not include noise in the neural responses or in synaptic plasticity. But since
we showed that the network operates correctly with limited connectivity, it seems that even
though this extra noise would degrade the network performance, it would not prevent the
network from operating properly. Nonetheless, if the objective is to obtain extra reliability,
a combination of autoassociative and heteroassociative connections may be helpful.

Synfire chains (Abeles, 1991) are defined as the sequential activation of pools or layers of
neurons by feedforward connections. It is a broader concept that encompasses many types
of network architectures. Although feedback connections may be considered in randomly
connected networks (Abeles, Hayon & Lehmann, 2004), the focus is on feedforward
networks (Tetzlaff, Geisel & Diesmann, 2002). Nevertheless, one may consider the retrieval
of pattern sequences as a synfire chain.

Recent work has shown that 8.2% of the measured connections (12 out of 146)
between pyramidal neurons in the CA3 of a rodent were part of reciprocal connection
motifs (Guzman et al., 2016). Although reciprocal connections are normally considered
as a signature of autoassociative networks, they are also present in heteroassociative
networks. For instance, in our simulations of heteroassociative networks, more than 13%
of connections were part of reciprocal motifs. Although the percentages of reciprocal
motifs found in our simulations and in the rodent CA3 cannot be directly compared, the
low number of motifs in the rodent CA3 is an evidence that heteroassociative coding may
be used in the CA3 area.

System homeostasis and catastrophic forgetting
It is well known that an increase in the number of stored memories in an auto- or
heteroassociative network leads to a catastrophic interference effect (Amit, 1989), where
the saturation of connection weights makes all storedmemories unavailable. It is possible to
prevent catastrophic forgetting in Hopfield networks (Hopfield, 1982). It requires changing
the learning rule to generate strong enough synaptic changes to ensure the retrieval of
newly stored patterns and bounding the maximum values of synaptic weights (Nadal et al.,
1986). This type of memory was called palimpsest memory and permits the retrieval of the
last stored memories, but it can store only a small number of patterns. We note that the
replacement of old memories with new ones is also reffered to as catastrophic forgetting in
other types of networks (French, 1999). It is an important concern in procedural learning,
since old learned skills may be useful and should not be indiscriminately erased by learning
new ones. For the CA3 this effect is not a real problem due to the temporary nature of
memory storage.

Enabling the storage of new memories requires the removal of old memories that are
never recalled. According to the remote memories hypothesis, memories are temporarily
stored in the hippocampus to be later coded as remote memories in the cortex (Frankland
& Bontempi, 2005). Some form of unlearning is required, and there are several proposals
on how this could be performed specifically during sleep. The two main hypotheses for
this unlearning process are: (i) the active system consolidation (Diekelmann & Born, 2010),
where memories in the hippocampus are replayed during sleep and transferred over to
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the neocortex causing the potentiation of synapses, and (ii) the synaptic homeostasis
hypothesis (Tononi & Cirelli, 2014), which states that synaptic weights are strengthened by
learning during wake periods and decreased during sleeping.

Our model is compatible with both hypotheses. With the synaptic homeostasis
hypothesis (Tononi & Cirelli, 2014), our learning of new associations would represent
the wake periods and the additive synaptic scaling rule would account for the homeostatic
process of reducing synaptic weights. We use synaptic scaling to maintain the total sum of
weights constant for each neuron, by decreasing all synaptic weights by the same amount.
Memories are forgotten as their respective synapses have their weights reduced and weaker
synapses are eventually eliminated as their weights vanish.

When considering the active system consolidation (Diekelmann & Born, 2010), stored
memories would be recalled and transferred over to the neocortex during sleep. Different
mechanisms could be used for maintaining the system homeostasis, including the use
of STDP rules (Caporale & Dan, 2008) or activity-dependent synaptic scaling (Abbott &
Nelson, 2000). In our model, we used a synaptic scaling based on the sum of the weights,
since we did not simulated the learning process itself. Synaptic scaling rules are normally
based on the mean activation of the neuron, but over long periods this activity should be
proportional to the sum of the input weights, resulting in similar synaptic changes.

The CA3 subregion of the hippocampus seems to be involved in several tasks such as
storing temporal sequences and associations between parts of memories, while maintaining
a homeostasis over the lifetime of individuals. Moreover, it is necessary to operate in
the presence of noise, incomplete cues, and limited connectivity. With this study we
depicted important properties of the CA3 that can be accomplished using a simple
heteroassociative rule combined with competitive synaptic scaling. We believe that both
auto- and heteroassociative rules have their roles in memory processes and simulation
studies like the one presented here allow us to better understand the effects of different
learning rules over the operation of these networks.
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