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ABSTRACT
Previous research has indicated that inner ear function might be modulated by
visual attention, although the results have not been totally conclusive. Conceivably,
modulation of hearing might occur due to stimulation of the cochlea via descending
medial olivocochlear (MOC) neurons. The aim of the present study was to test whether
increased visual attention caused corresponding changes in inner ear function, which
was measured by the strength of otoacoustic emissions (OAEs) recorded from the ear
canal in response to a steady train of clicks. To manipulate attention, we asked subjects
to attend to, or ignore, visual stimuli delivered according to an odd-ball paradigm. The
subjects were presented with two types of visual stimuli: standard and deviant (20%
of all stimuli, randomly presented). During a passive part of the experiment, subjects
had to just observe a pattern of squares on a computer screen. In an active condition,
the subject’s task was to silently count the occasional inverted (deviant) pattern on the
screen. At all times, visual evoked potentials (VEPs) were used to objectively gauge the
subject’s state of attention, and OAEs in response to clicks (transiently evoked OAEs,
TEOAEs) were used to gauge inner ear function. As a test of descending neural activity,
TEOAE levels were evaluatedwith andwithout contralateral acoustic stimulation (CAS)
by broadband noise, a paradigm known to activate the MOC pathway. Our results
showed that the recorded VEPs were, as expected, a good measure of visual attention,
but even when attention levels changed there was no corresponding change in TEOAE
levels. We conclude that visual attention does not significantly affect inner ear function.

Subjects Bioengineering, Neuroscience, Anatomy and Physiology, Otorhinolaryngology
Keywords Otoacoustic emission, Visual evoked potential, Attention, TEOAE,
Medial olivocochlear complex, Contralateral acoustic stimulation, Suppression, Odd-ball

INTRODUCTION
The ear is not only passive receiver of sounds but also acts actively, amplifying acoustic
signals before transforming them into electrical impulses and sending them to the cerebral
cortex. We know this amplification takes place in the cochlea, but the mechanics is
complicated and not fully understood (Bell & Fletcher, 2004). However, it is known that
efferent neurons to the cochlea play a role in regulating the active process behind the
amplification (e.g.: Siegel & Kim, 1982; Veuillet, Collet & Duclaux, 1991). It is possible
to study the active process noninvasively by placing a microphone in an ear canal and
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measuring low-intensity sounds called otoacoustic emissions (OAEs), which are generated
as acoustic byproducts of cochlear amplification (Kemp, 1978; Kemp, 2002). Additionally,
contralateral acoustic stimulation (CAS) may cause a decrease in cochlear amplifier gain (a
decrease in the amplitude of OAEs) via descending medial olivocochlear (MOC) neurons
(reviewed by Guinan, 2006). In this way, measurements of OAE strength or strength of
their suppression by CAS can become a proxy for the level of activity in neural pathways
to the cochlea. Given the link between OAEs and neural activity, the question then arises
of whether focusing attention on a sound, or directing attention elsewhere—to another
modality such as vision—will, via top-down control, modulate hearing.

In studying the effect of attention on the mechanics of the inner ear, auditory attention
has been more frequently used than visual attention. This is probably because auditory
attention is obviously more related to functioning of the inner ear. There is quite strong
evidence for the effect of auditory attention on OAEs (De Boer & Thornton, 2007; Garinis,
Glattke & Cone, 2011; Harkrider & Bowers, 2009; Mishra, 2014; Smith & Cone, 2015).
However, it is also of interest to study whether visual attention has an effect on inner ear
function, as this may help uncover a relationship between the different modalities—visual
and auditory—at the periphery. For example, we are all aware that when we focus intently
on something in our visual field we sometimes become oblivious to surrounding sounds.
The question we pose in this paper is whether focusing attention on a visual modality
might also lead to changes in peripheral parts of the nervous system and express itself as a
change in OAEs.

The first study to investigate the effect of visual attention on OAEs (Puel, Bonfils & Pujol,
1988) found that the amplitudes of emissions were reduced during a visual task. Later,
attention effects were also shown to enhance the strength with which CAS suppressed OAEs
(Froehlich et al., 1990; Ferber-Viart et al., 1995). One of the strongest pieces of evidence for
visual attention affecting cochlear function comes from the study by Delano et al. (2007)
which showed a decrease in cochlear sensitivity during periods when the subject was
attending to visual stimuli (compared to when they were attending to auditory stimuli).
A major limitation of this study, however, was that it was done on chinchillas, and used
compound action potentials and cochlear microphonics, not OAEs. More recently, a study
with human subjects (Wittekindt, Kaiser & Abel, 2014) did find that visual attention had a
distinct effect on OAEs, with auditory attention having no discernable effect.

More generally, however, the results are not uniform. There are some contradictory
results to those reported above which show no apparent change in amplitude, or
suppression of OAEs, during a visual task (Avan & Bonfils, 1992; De Boer & Thornton,
2007). Noteworthy is one study which showed that auditory attention had an effect on
OAE amplitudes but no effect was seen when a visual task was employed (De Boer &
Thornton, 2007). The results of different experiments show that attention sometimes seems
to have an opposite effect on OAEs (e.g., in Smith & Cone, 2015, the effect was to produce
higher OAE strength while in Harkrider & Bowers, 2009 the effect was weaker OAEs). In
fact, one of the earlier studies of the effect of visual attention on OAEs (Froehlich et al.,
1990) found a positive result in only three of 16 subjects, which suggests a possible statistical
artefact.
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The rationale for this study is to try to settle the issue of the effect of visual attention
on auditory function. Here we use objective measures of visual attention to control for
its effect and to distinguish it from the effects of auditory attention. In experiments with
auditory attention there is always the danger that the stimulus used for evoking attention
will also add to the stimulus used to evoke OAEs—that is, a change measured in OAE
amplitude might be due to different amounts of acoustic energy delivered to the ear during
different auditory tasks (perhaps, for example, due to middle ear muscle effects Guinan et
al., 2003). To control attention, most previous studies have relied on instructing the subject
to count (or not count) stimuli, and have not controlled attention objectively (Froehlich et
al., 1990; Ferber-Viart et al., 1995;De Boer & Thornton, 2007;Walsh, Pasanen & McFadden,
2015). However, it is possible to measure brain activity, and hence attention, by recording
evoked potentials. As far as we know, there is only one study of attention effects that has
measured evoked potentials while making OAE measurements in humans (Wittekindt,
Kaiser & Abel, 2014). However, this study relied on recording steady state potentials and
the presence of alpha-wave activity. Such approaches do not provide an ideal measure of
attention: steady state potentials might arise from the mere sight of the stimuli, not by
attending to them, and although changes in alpha waves might indeed relate to changes in
attention (from either being more relaxed or more focused), it is not necessarily the case
that such changes are due to the task at hand. To monitor attention more closely, cognitive
potentials such as P3 seem more suitable (Rugg & Coles, 1995; Polich, 2007).

The present study uses P3 as an objective measure of visual attention while performing
OAE measurements. In this way, it investigates the question of whether attention affects
OAE levels in a significant way. By controlling for visual attention, we endeavor to reach
a more conclusive finding on OAE amplitudes. As an extra control, we measured OAEs
with and without CAS, which as mentioned above, is a known way of affecting OAEs.
For this purpose the most common type of OAE used for studies of CAS effect was used,
namely transiently evoked OAEs (TEOAEs). To make the result even more definitive, we
also introduced another controlling factor into our experiments, one which has not been
used before in this context: does simply closing the eyes during OAE measurements—and
hence eliminating visual attention entirely—bring about a significant change in OAE
amplitudes?

MATERIAL AND METHODS
Subjects
Eighteen normally hearing adults (five male, 13 female, age 28–43 years) participated in
the study. All subjects had pure tone thresholds better than 25 dB HL at 0.5–8 kHz, normal
middle ear function verified by 226Hz tympanometry (tympanometric peak pressure values
between −100 and +100 daPa and peak compensated static acoustic admittance values of
0.2–1.0 mmhos), and no known history of otologic disease. In all subjects, ipsilateral and
contralateral middle ear acoustic reflex thresholds for clicks (50 s−1) and broadband noise
were above 65 dB SPL, i.e., above the levels used in TEOAE measurements.
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All subjects had normal or corrected-to-normal vision, and no history of
neuropsychiatric diseases or head trauma. They did not take any medications affecting
their central nervous system.

All subjects were volunteers and provided written informed consent prior to
participation. All procedures were approved by the Ethics Committee of the Institute
of Physiology and Pathology of Hearing, Poland (IFPS:KB/09/2015), and conformed to the
tenets of the Declaration of Helsinki for medical research involving human subjects.

Experimental paradigm
The study comprised a basic evaluation of subjects followed by a 30-min recording session
divided into three separate parts of about 10 min each: no task, passive, and active, between
which the level of attention was varied.

In the no task portion of the study, all visual attention was eliminated. The subjects were
simply required to sit comfortably in an arm-chair with their eyes closed.

In the passive part of the study, subjects just observed visual stimuli presented on a
computer monitor 1.5 m in front of them. Psytask 2.84 software (Mitsar Ltd., St Petersburg,
Russia) was used to control presentation of the stimuli. Stimuli were delivered according
to a visual odd-ball paradigm—a sequence of standard stimuli randomly interrupted
by an inverted deviant stimulus). Standard stimuli were gray squares containing a small
blue square at the bottom edge; deviant stimuli were the same gray squares but with the
small blue square at the top edge. There were 400 (80%) standard stimuli and 100 (20%)
deviant stimuli in each recording session. Both standard and deviant stimuli were randomly
presented for 100 ms every 2 s. Subjects were asked to just observe the stimuli.

In the active part of the session, the same sequence of stimuli was presented but the
difference was that the subject was asked to pay attention and silently count the number of
deviant stimuli.

During all parts TEOAEs were measured, with and without a contralateral noise
suppressor. This meant that during all three parts of a recording session the subject
constantly heard click stimuli in one ear and noise, interleaved with silence, in the second
ear. During the passive and active parts, visual evoked potentials (VEPs) were acquired.

During some preliminary tests, it was found that sometimes subjects were confused
when the order was changed. That is, when the active task was presented first, some would
count the stimuli during the passive task, unwittingly repeating the previous test (VEP
recordings were similar for active and passive parts). Therefore, in the main experiment
the three parts making up a session were always in the same order: no task, passive, and
active. As shown later, this resulted in distinctive VEPs for passive and active parts.

All measurements (TEOAEs and VEPs) were performed in a low-noise and electrically
shielded room, and details of the procedures are described below.

TEOAE procedures
OAEs were measured using an ILO 292 system (Otodynamics Ltd., Hatfield, UK). The
standard ILO protocol for measuring contralateral suppression of TEOAEs was used: 65 dB
SPL clicks (linear mode) were delivered to one ear and 60 dB SPL noise to the contralateral
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ear (2 s on/off time). All recordings were performed in an acquisition window of 20 ms.
To minimize stimulus artifacts the initial part (2.5 ms) of the response was windowed
automatically by the system. The main reason for this recording paradigm was to use the
default settings of the ILO system as it is likely that such settings will be most often used
by other researchers and especially clinicians. The second reason was that TEOAEs evoked
by 60 dB are likely to be very weak, and therefore the signal-to-noise ratio (SNR) would be
low. Nevertheless, two changes from the default settings of the ILO system were made: the
first was to extend the number of averages from 260 to 1,000 (the maximum available);
the second was to lower the level of artifact rejection from 47 to 33 dB. These changes were
introduced in order to obtain signals with the lowest possible noise floor. Preliminary tests
showed that extending the number of averages to 1,000 increased the SNR by about 5 dB
and lowered error by a factor of 2 (Jedrzejczak et al., 2017). Measurements of TEOAE level,
noise level, and SNR were used for analysis. The requirement was that all recordings should
have an SNR of at least 12 dB for recording without CAS, since previous work (Mertes
& Goodman, 2016) indicated that high SNR is crucial for reliable TEOAE suppression
measurement. In every subject only one ear was tested. The ear with the higher level of
TEOAEs was chosen, which resulted in the testing of three left and 15 right ears.

Efforts were also made to search for more local effects. In addition to evaluating
suppression for the whole of the signal, suppression was also analyzed in half-octave
bands with center frequencies of 1, 1.4, 2, 2.8, and 4 kHz, and in 3.5 ms epochs (cosine
window with 0.5 ms rise/fall time and 2.5 ms plateau) between 2.5 and 17.5 ms (the epochs
overlapped by 0.5 ms). Since 0.5 ms cosine ramps decayed very fast, the significant part
of the signal was located at 2.5 ms plateau fragment. Verifying that the signal existed in
particular epochs might be important, since it is known that the few first milliseconds of
TEOAEs measured using the linear paradigm often contain artifacts related to reflection
of the stimulus from middle ear structures (e.g., Jedrzejczak et al., 2012). Additionally, it is
possible that suppression might be stronger during particular epochs or frequency bands
(e.g., Smith & Cone, 2015; Jedrzejczak et al., 2016).

VEP acquisition and analysis
VEPs were used to objectively gauge the subjects’ state of attention during TEOAE
recordings. VEPs measurements were based on electroencephalographic (EEG) recordings
from a 21-channel system (Mitsar Ltd., St Petersburg, Russia) employing 19 silver chloride
electrodes placed in a proprietary EEG cap applied in accordance with the international
10–20 standard (Jasper, 1958). The signal was referenced to electrodes mounted on the ears
and digitized at a rate of 250 Hz. The ground electrode was at the FCz position. During
EEG acquisition the impedance was monitored and kept below 5 k� at all electrodes.

After recording, the EEG signal was analyzed offline using WinEEG 2.84 software
(Mitsar Ltd., St. Petersburg, Russia). Digital pre-processing involved high- and low-pass
filtering within the range 0.5–15 Hz. Eye-blink artifacts were removed by detecting them
using independent component analysis (ICA) and zeroing the activation curves of these
individual components (Vigário, 1997; Jung et al., 2000). Epochs with excessive amplitudes
(>100 µV overall, or >35 µV in the 20–35-Hz band or >50 µV in the 0–1-Hz band) were

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 5/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.4199


0 200 400 600 800
−4

−2

0

2

4

6

8

10

12
A                         Fz                               

P3

am
pl

itu
de

 [µ
V

]

time [ms]
0 200 400 600 800

−4

−2

0

2

4

6

8

10

12
B                         Cz                               

P3

0 200 400 600 800
−4

−2

0

2

4

6

8

10

12
C                         Pz                               

P3

Figure 1 Grand-average VEPs for all subjects recorded during passive (thin lines) and active (thick
lines) conditions using standard stimuli (grey lines) and deviant stimuli (black lines). The consecutive
(A), (B), and (C) show recordings from Fz, Cz, and Pz electrodes (10/20 standard), respectively. P3 only
appears in response to odd-ball stimuli.

Full-size DOI: 10.7717/peerj.4199/fig-1

excluded from further analysis. Finally, the EEG traces were manually inspected to verify
that all artifacts had been properly removed. VEPs were then averaged, relative to stimulus
onset, from 200 ms pre-stimulus to 1,000 ms post-stimulus.

The P3 wave was defined as the largest positive wave in the 250–600 ms window, with
amplitude measured in the parietal electrodes (P3, Pz, and P4) and only in VEPs recorded
in response to deviant stimuli.

Analysis
In all analyses, a 95% confidence level (p< 0.05) was chosen as the criterion of significance.
For all parameters the statistical significance of the mean difference between groups
was evaluated by repeated measures analysis of variance (RM ANOVA). For multiple
comparisons, Bonferroni corrections were applied. All datasets were checked for sphericity
by Mauchly’s test. Greenhouse–Geisser correction for violation of sphericity was applied
when needed. Percent data were transformed to a normal distribution by applying an
arcsine transformation.

RESULTS
VEPs
Attention states during passive and active parts of the experiment were verified objectively
by VEP analysis. That is, it was verified that in each subject, in response to the instruction to
pay attention and count the deviant stimuli, the P3 wave—an electrophysiological marker
of cognition (Rugg & Coles, 1995; Polich, 2007)—was present during the active part but
absent during the passive part. Figure 1 shows, for three electrodes, the grand-average VEPs
for all subjects during both passive and active periods, and it is clear that a large P3 wave
appears only when the subject was counting deviant stimuli (thick black lines in figure).
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Figure 2 Average TEOAE parameters for three conditions—no task, passive visual, and active visual—
for TEOAEsmeasured without (T) and with (T+CAS) contralateral stimulation by noise. (A) response
levels; (B) noise levels; (C) signal-to-noise ratio (SNR). Whiskers indicate standard errors. There were no
statistically significant differences between different attention conditions (p > 0.05). Response levels and
SNRs without CAS (T) were significantly greater than with CAS (T+CAS).

Full-size DOI: 10.7717/peerj.4199/fig-2

TEOAE parameters
Since the main interest was to gauge the effect of attention on the strength of suppression
of TEOAEs, it was crucial to verify that basic TEOAE parameters stayed the same over the
three different conditions (no task, passive, and active). The parameters typically used for
TEOAE analysis are response level, noise level, and SNR.

Figure 2 shows average levels of these parameters. They were calculated for TEOAEs
measured without CAS (marked as T) and with CAS (marked as T+CAS). A two-factor
RM-ANOVA was conducted for each parameter as a function of CAS (T/T+CAS) and task
(no task/passive/active). For response level, a statistically significant main effect of CAS

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 7/17

https://peerj.com
https://doi.org/10.7717/peerj.4199/fig-2
http://dx.doi.org/10.7717/peerj.4199


0

0.2

0.4

0.6

0.8

1

S
up

pr
es

si
on

 [d
B

]

 

 
no task
passive
active

Figure 3 Average suppression levels for TEOAEs measured in the no task, passive, and active visual at-
tention conditions.Whiskers indicate standard errors. There were no statistically significant differences
between any of the data (p> 0.05).

Full-size DOI: 10.7717/peerj.4199/fig-3

was found (F[1, 17] = 24.43, p< 0.001, η2p = 0.59), while the main effect of task (F[1.18,
20.07] = 0.14, p= 0.75, η2p = 0.008), or an interaction of CAS and task (F[1.42, 24.14] =
1.65, p = 0.215, η2p= 0.088), were not significant. For noise level, no effect was significant
(main effect of task: F[2, 34] = 0.52, p = 0.602, η2p = 0.029; main effect of CAS: F[1, 17]
= 1.62, p = 0.22, η2p = 0.087; interaction effect of CAS and task: F[2, 34] = 0.21, p =
0.811, η2p = 0.012). Similarly to response level, for SNR only the main effect of CAS was
significant (F[1, 17] = 15.07, p = 0.001, η2p= 0.47), while the main effect of task (F[2, 34]
= 0.43, p = 0.656, η2p = 0.025), or an interaction of CAS and task (F[2, 34] = 0.26, p =
0.776, η2p= 0.015), were not significant.

TEOAE suppression
The magnitude of TEOAE suppression due to CAS was calculated by subtracting TEOAE
response levels measured with CAS (shown at the Fig. 2A as T+CAS) from those measured
without CAS (marked with T). The suppression levels were small, on average around
0.6 dB, and are plotted in Fig. 3. The average suppression levels for passive and active
attention conditions were very similar, with slightly higher suppression levels for the no
task condition. However, RM ANOVA as a function of task did not yield a significant result
(F[1.42, 24.14] = 1.65. p = 0.215, η2p= 0.088).

When responses from single subjects were investigated (Fig. 4), it was possible to
investigate individual changes in OAEs between attention states—for example, there might
be situations where the change in OAEs between attention states for one subject was in a
different direction to that for another, i.e., in one person OAEs might be enhanced while
diminished in a second. Here, in 10 subjects suppression was lower during the active
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Figure 4 Amount of TEOAE suppression by individual subject, and shown in order of average sup-
pression. Arrows at top indicate whether, suppression was raised (up arrow) or lowered (down arrow) in
the active condition compared to the passive condition. In 10 subjects suppression was lower during the
active condition and in 8 it was higher.

Full-size DOI: 10.7717/peerj.4199/fig-4

condition compared to the passive condition, and in eight it was higher. As these are nearly
equal numbers, there does not seem to be a trend.

Additional factors
In order to investigate if the sought-after effects were more specific, the signals were split
into separate frequency bands and different time windows. First the signals were separated
into 2.5 ms epochs (Fig. 5A). A two-factor RM-ANOVA was conducted as a function of
epoch and task. A statistically significant main effect of epoch was found (F[2.13, 36.12]
= 8.56, p = 0.001, η2p = 0.335), while the main effect of task (F[1.48, 25.18] = 2.76, p =
0.096, η2p= 0.140) or interaction between epoch and task (F[4.30, 73.1]= 1.05, p= 0.392,
η2p = 0.058) were not significant. Second, the signals were split into half-octave frequency
bands at 1, 1.4, 2, 2.8, and 4 kHz (Fig. 5B). A two-factor RM-ANOVA was conducted as a
function of frequency and task. Similarly, a statistically significant main effect of frequency
was found (F[4, 68] = 7.18, p< 0.001, η2p= 0.297), while the main effect of task (F[2, 34]
= 2.50, p = 0.097, η2p = 0.128) or interaction between frequency and task (F[4.71, 80.06]
= 1.03, p = 0.406, η2p= 0.057) were not significant.

Since the average suppression was small (around 0.6 dB), analysis was focused on the
subgroup that showed suppression >0.5 dB under all conditions—a total of seven ears.
However, even here the results did not change. There was still no significant change in
suppression between states of attention and inattention.

Finally, circumstances surrounding the rejection rate for each condition were
investigated. The initial measurement procedure had been done in such a way that
responses which exceeded a certain level (here a level of 33 dB) were rejected. The rejected
responses are taken to be signals with excess noise related to effects such as bodymovements,
swallowing, or loud breathing, but they can also relate to body tension, and this might
relate directly to states of attention. The rejection rate was transformed into a percentage of
responses rejected, and figures of 12–17%were returned (Fig. 6). The rate was similar under
each condition. A two-factor RM-ANOVA as a function of CAS (T/T+CAS) and task (no
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Figure 5 Average suppression levels for TEOAEs measured in the three conditions shown for different
epochs of the signal (A) and different half-octave frequency bands (B).Whiskers indicate standard er-
rors. There were no statistically significant differences between different attention conditions (p> 0.05).

Full-size DOI: 10.7717/peerj.4199/fig-5

task/passive/active) did not show any significant effects (main effect of task: F[1.51, 25.59]
= 0.44, p = 0.649, η2p= 0.025; main effect of CAS: F[1, 17] = 0.55, p = 0.468, η2p= 0.031;
interaction effect of CAS and task: F[2, 34] = 1.50, p = 0.238, η2p= 0.081).

DISCUSSION
To date, the evidence for an effect of visual attention on OAEs has seemed ambiguous,
as several papers have reported contradictory results. Therefore, in the present study,
great care was taken into designing an experiment in such a way that attention states
could be objectively confirmed by VEPs. At the same time, we wanted to achieve the best
quality OAEs. In most prior studies the attention state was not monitored with evoked
potentials, so in fact the authors could only assume—based on an instruction to count
stimuli—that the attention states were different (e.g., Froehlich et al., 1990; Meric & Collet,
1992; Ferber-Viart et al., 1995; De Boer & Thornton, 2007; Walsh, Pasanen & McFadden,
2015). Here, visual attention was objectively confirmed by the presence of a P3 wave, which
was present during active counting and absent during passive conditions (Fig. 1).

The present study has shown no significant effect of visual attention on TEOAEs, even
though we measured, objectively, different patterns of VEPs arising from each attention
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Figure 6 Average rejection rate of noisy trials of TEOAEs. The parameters were calculated for TEOAEs
signals measured without (T) and with contralateral stimulation by noise (T+CAS). Whiskers indicate
standard errors. There were no statistically significant differences between any of the data (p> 0.05).
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state. There were no significant differences between response levels of TEOAEs and levels of
suppression of TEOAEs. In addition, although some previous studies have seen an increase
in suppression during active attention (Ferber-Viart et al., 1995), here only eight out of 18
subjects showed an increase during the active attention task. Finally, there were also no
significant difference between TEOAEs measured during visual tasks and when eyes were
closed (the no task condition).

Our results contradict those of previous studies which have found that visual attention
has an effect on TEOAEs (Froehlich et al., 1990; Meric & Collet, 1992; Ferber-Viart et al.,
1995). However, even among the three positive findings cited, the effect seems to be
weak. For example, Froehlich et al. (1990) found only three of their 16 subjects showed
a clear effect of visual attention. The present study in fact supports more recent work
(De Boer & Thornton, 2007) which also did not find any influence of visual attention, and
two earlier studies (Avan & Bonfils, 1992; Michie et al., 1996).

The main uncertainty surrounding most previous studies is that the authors did not
describe if or how they controlled SNR. As shown by Goodman et al. (2013), high SNRs
(above 9 dB) are needed in order to minimize the inter-measurement variability of small
TEOAE suppression effects and achieve a definite result. Here it has been shown that even
with a considerable SNR value (22 dB on average) there seems to be no attention effect.
In our experience with the ILO system (e.g., Jedrzejczak et al., 2017), it is rare to achieve
similar SNRs using the default number of averages (260), as typically used in previous
studies.
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The levels of contralateral suppression measured in the present study were similar to
those recorded in previous studies using the same equipment (e.g., Stuart & Cobb, 2015;
Killan et al., 2017). It should be noted, however, that the levels of click stimuli used to evoke
TEOAEs and the levels of contralateral noise in those studies varied slightly from the levels
used in the present work. Also the changes of the parameters of TEOAE suppression for
different signal epochs and frequency bands were similar to those in previous studies, i.e.,
suppression increased in later epochs (similarly to Smith & Cone, 2015), and diminished
with higher frequency (similar to Jedrzejczak et al., 2016).

Two previous studies (De Boer & Thornton, 2007; Walsh, Pasanen & McFadden, 2014)
have pointed out that the number of trials rejected because of excessive noise might be
related to different attention states. However this was not the case here. It should be
mentioned that we asked our subjects to count silently and not make any moves during
recording, whereas in some other studies counting was achieved by tapping a button
(De Boer & Thornton, 2007; Walsh, Pasanen & McFadden, 2014; Wittekindt, Kaiser & Abel,
2014). Certain studies (Garinis, Glattke & Cone, 2011; Kalaiah et al., 2017; Smith & Cone,
2015) suggested that the effect of attention might be more pronounced in particular parts
of the signal. We pursued this avenue but found that attention effects did not arise either
in particular time epochs or frequency bands.

The present results suggest there does not need to be any control for attention during
MOC measurements of OAEs, as has been suggested by Mertes & Goodman (2016). This
is especially true in typical measurement situations where there are smaller number of
averages, lower SNR, and higher variability.

Our results lead us to think that the effect of visual attention on TEOAEs does not
exist. Apart from this negative conclusion, what other explanation might there be for
our findings? It might be argued that the effect exists, but that the current procedure
is not sensitive enough to detect it. However we reiterate that very strict criteria were
used (SNR >12 dB), much higher than in standard measurements (e.g., SNR >3 or
>6 dB, Mishra & Lutman, 2013; Lisowska et al., 2014; Micarelli et al., 2016; Killan et al.,
2017). Another reason for seeing no effect might be because all TEOAE parameters, and
especially contralateral suppression effects on TEOAEs, have high variability, even when
refitting of the probe is avoided (Mishra & Lutman, 2013; Stuart & Cobb, 2015; Jedrzejczak
et al., 2016). In the same vein, previous studies by other teams (Marshall et al., 2014;
Mertes & Goodman, 2016; Killan et al., 2017) have also found that suppression varies
greatly from one subject to another, suggesting that effects can only be seen in particular
subjects. The general conclusion of these recent studies was that TEOAE measurements
with CAS might be not sufficiently repeatable to detect subtle changes in MOC activity
(Mertes & Goodman, 2016; Killan et al., 2017). The case might also be made that the effect
is more pronounced with other types of OAEs—e.g., distortion product OAEs (DPOAEs)
(Wittekindt, Kaiser & Abel, 2014; Srinivasan et al., 2014) or stimulus frequency OAEs
(SFOAEs) (Walsh, Pasanen & McFadden, 2015). We leave it to others to explore these
slight possibilities.

There is also some work (Delano et al., 2007) that suggests that the effect of visual
attention is stronger for higher attentional demand tasks, from which it might be inferred
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that the task used here was too easy. Countering this suggestion, the visual task we chose
was one that was able to generate robust VEPs. There has been one study where a more
complicated visual task was chosen (Srinivasan et al., 2014), and indeed this study found
that visual attention had an effect on DPOAEs; unfortunately, however, there was no
monitoring of the level of attention using evoked potentials.

Finally, the limitations of this study should be mentioned. The group studied was quite
small (18 subjects), although it was similar in size to those in which an effect of attention
was detected (Froehlich et al., 1990; Meric & Collet, 1992; Garinis, Glattke & Cone, 2011;
Harkrider & Bowers, 2009; Smith & Cone, 2015; Wittekindt, Kaiser & Abel, 2014). There is
also the possibility of the middle-ear muscle reflex confounding the results, as it is possible
to activate the reflex in some subjects even with a 60 dB SPL stimulus (e.g.: Guinan et al.,
2003;Marks & Siegel, 2017).

It is also possible that tiredness had an effect. To reduce this factor to a minimum, we
tried to keep the experiment as simple as possible. Adding some other requirements to
arouse attention (e.g., attending to clicks or contralateral stimuli) might allow our results
to be strengthened, but some of our subjects reported that the test was quite tiring as it was.

It would also be interesting to compare visual and auditory attention within the same
paradigm. However it is not easy to do in terms of P3 alone. One solution might be to
embed stimuli within the click train or the contralateral noise which need to be attended
to (a technique similar to that used by De Boer & Thornton, 2007). In the present work,
however, the aim was to use as simple a paradigm as possible and not introduce too many
additional factors.

CONCLUSIONS
The present study indicates that there seems to be no effect of visual attention on the level
of suppression of TEOAEs. There are several possible explanations: (1) There is no effect
at all; (2) there is an effect but it manifests only under more demanding conditions (i.e.,
the present task was too easy); (3) the effect is present under the conditions used but it is
smaller than the reliability of measurements.

In short, we cannot definitely say that there is no effect of visual attention on TEOAEs
and the effect of their contralateral suppression. It is impossible to prove a negative, and
all we can conclude is that the effect is simply not measurable under current conditions.
The present study, along with other recent studies, showed quite high variability in TEOAE
contralateral suppression, a factor which makes detecting small effects very difficult.
Nevertheless, we can say there seems to be no need to control visual attention during
standard TEOAE tests or TEOAE suppression tests. The main TEOAE parameters seem to
be unaffected, even with eyes closed. An alternative way of saying the same thing is that
experimenters should be free to use any visual task they like while recording TEOAEs (if,
for example, it is necessary to keep the subject awake during long periods of testing) as
there is little risk that visual stimuli will influence the results.

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 13/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.4199


ACKNOWLEDGEMENTS
Preliminary results were presented at ARO 2017 conference. We thank Andrew Bell for
comments on an earlier version of this article, Elzbieta Gos for expertise in statistical
analysis, and Edyta Pilka and Malgorzata Ganc for assistance with data collection.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The study was supported by the grant OPUS 2014/15/B/NZ4/00700 financed by the Polish
National Science Centre and by the Institute of Physiology and Pathology of Hearing,
Warsaw, Poland. There was no additional external funding received for this study. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
PolishNational Science Centre and by the Institute of Physiology and Pathology of Hearing,
Warsaw, Poland: OPUS 2014/15/B/NZ4/00700.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• W. Wiktor Jedrzejczak and Rafal Milner conceived and designed the experiments,
performed the experiments, analyzed the data, wrote the paper, prepared figures and/or
tables, reviewed drafts of the paper.
• Lukasz Olszewski performed the experiments, wrote the paper, reviewed drafts of the
paper.
• Henryk Skarzynski wrote the paper.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

All procedures were approved by the Ethics Committee of the Institute of Physiology
and Pathology of Hearing, Poland (IFPS:KB/09/2015), and conformed to the tenets of the
Declaration of Helsinki for medical research involving human subjects.

Data Availability
The following information was supplied regarding data availability:

The raw data has been provided as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.4199#supplemental-information.

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 14/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.4199#supplemental-information
http://dx.doi.org/10.7717/peerj.4199#supplemental-information
http://dx.doi.org/10.7717/peerj.4199#supplemental-information
http://dx.doi.org/10.7717/peerj.4199


REFERENCES
Avan P, Bonfils P. 1992. Analysis of possible interactions of an attentional task with

cochlear micromechanics. Hearing Research 57(2):269–275
DOI 10.1016/0378-5955(92)90156-H.

Bell A, Fletcher NH. 2004. The cochlear amplifier as a standing wave: ‘‘squirting’’
waves between rows of outer hair cells? Journal of the Acoustical Society of America
116(2):1016–1024 DOI 10.1121/1.1766053.

De Boer J, Thornton AR. 2007. Effect of subject task on contralateral suppression
of click evoked otoacoustic emissions. Hearing Research 233(1–2):117–123
DOI 10.1016/j.heares.2007.08.002.

Delano PH, Elgueda D, Hamame CM, Robles L. 2007. Selective attention to vi-
sual stimuli reduces cochlear sensitivity in chinchillas. Journal of Neuroscience
27(15):4146–4153 DOI 10.1523/JNEUROSCI.3702-06.2007.

Ferber-Viart C, Duclaux R, Collet L, Guyonnard F. 1995. Influence of auditory
stimulation and visual attention on otoacoustic emissions. Physiology and Behavior
57(6):1075–1079 DOI 10.1016/0031-9384(95)00012-8.

Froehlich P, Collet L, Chanal JM, Morgon A. 1990. Variability of the influence of a
visual task on the active micromechanical properties of the cochlea. Brain Research
508(2):286–288 DOI 10.1016/0006-8993(90)90408-4.

Garinis AC, Glattke T, Cone BK. 2011. The MOC reflex during active listening to
speech. Journal of Speech, Language, and Hearing Research 54(5):1464–1476
DOI 10.1044/1092-4388(2011/10-0223).

Goodman SS, Mertes IB, Lewis JD,Weissbeck DK. 2013.Medial olivocochlear-
induced transient-evoked otoacoustic emission amplitude shifts in individual
subjects. Journal of the Association for Research in Otolaryngology 14(6):829–842
DOI 10.1007/s10162-013-0409-9.

Guinan Jr JJ. 2006. Olivocochlear efferents: anatomy, physiology, function, and the
measurement of efferent effects in humans. Ear and Hearing 27(6):589–607
DOI 10.1097/01.aud.0000240507.83072.e7.

Guinan Jr JJ, Backus BC, LilaonitkulW, Aharonson V. 2003.Medial olivocochlear
efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the
advantages of stimulus frequency OAEs. Journal of the Association for Research in
Otolaryngology 4(4):521–540 DOI 10.1007/s10162-002-3037-3.

Harkrider AW, Bowers CD. 2009. Evidence for a cortically mediated release from
inhibition in the human cochlea. Journal of the American Academy of Audiology
20(3):208–215 DOI 10.3766/jaaa.20.3.7.

Jasper HH. 1958. The ten twenty electrode system of the international federation.
Electroencephalography and Clinical Neurophysiology 10:371–375.

JedrzejczakWW, Bell A, Skarzynski PH, Kochanek K, Skarzynski H. 2012. Time–
frequency analysis of linear and nonlinear otoacoustic emissions and removal
of a short-latency stimulus artifact. Journal of the Acoustical Society of America
131(3):2200–2208 DOI 10.1121/1.3682043.

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 15/17

https://peerj.com
http://dx.doi.org/10.1016/0378-5955(92)90156-H
http://dx.doi.org/10.1121/1.1766053
http://dx.doi.org/10.1016/j.heares.2007.08.002
http://dx.doi.org/10.1523/JNEUROSCI.3702-06.2007
http://dx.doi.org/10.1016/0031-9384(95)00012-8
http://dx.doi.org/10.1016/0006-8993(90)90408-4
http://dx.doi.org/10.1044/1092-4388(2011/10-0223)
http://dx.doi.org/10.1007/s10162-013-0409-9
http://dx.doi.org/10.1097/01.aud.0000240507.83072.e7
http://dx.doi.org/10.1007/s10162-002-3037-3
http://dx.doi.org/10.3766/jaaa.20.3.7
http://dx.doi.org/10.1121/1.3682043
http://dx.doi.org/10.7717/peerj.4199


JedrzejczakWW,Milner R, Kochanek K, Skarzynski H. 2017. Influence of visual
attention on contralateral suppression of transiently evoked otoacoustic emissions.
In: 40th ARO midwinter meeting 2017. Poster.

JedrzejczakWW, Pilka E, Olszewski L, Skarzynski H. 2016. Short-term repeatability of
contralateral suppression of transiently evoked otoacoustic emissions: preliminary
results. Journal of Hearing Science 6:51–57 DOI 10.17430/899578.

Jung TP, Makeig S, Humphries C, Lee TW,McKeownMJ, Iragui V, Sejnowski TJ.
2000. Removing electroencephalographic artifacts by blind source separation.
Psychophysiology 37(2):163–178 DOI 10.1016/S0167-8760(00)00088-X.

KalaiahMK, Theruvan NB, Kumar K, Bhat JS. 2017. Role of active listening and lis-
tening effort on contralateral suppression of transient evoked otoacousic emissions.
Journal of Audiology & Otology 21(1):1–8 DOI 10.7874/jao.2017.21.1.1.

KempDT. 1978. Stimulated acoustic emissions from within the human audi-
tory system. The Journal of the Acoustical Society of America 64(5):1386–1391
DOI 10.1121/1.382104.

KempDT. 2002. Otoacoustic emissions, their origin in cochlear function, and use. British
Medical Bulletin 63:223–241 DOI 10.1093/bmb/63.1.223.

Killan E, Brooke R, Farrell A, Merrett J. 2017. Clinically relevant long-term reliability of
contralateral suppression of click-evoked otoacoustic emissions. Journal of Hearing
Science. 7:27–36 DOI 10.17430/902926.

Lisowska G, Namyslowski G, Orecka B, MisiolekM. 2014. Influence of aging on medial
olivocochlear system function. Clinical Interventions in Aging 9:901–914
DOI 10.2147/CIA.S61934.

Marks KL, Siegel JH. 2017. Differentiating middle ear and medial olivocochlear effects
on transient-evoked otoacoustic emissions. Journal of the Association for Research in
Otolaryngology 18(4):529–542 DOI 10.1007/s10162-017-0621-0.

Marshall L, Lapsley Miller JA, Guinan JJ, Shera CA, Reed CM, Perez ZD, Delhorne
LA, Boege P. 2014. Otoacoustic-emission-based medial-olivocochlear reflex
assays for humans. Journal of the Acoustical Society of America 136(5):2697–2713
DOI 10.1121/1.4896745.

Meric C, Collet L. 1992. Visual attention and evoked otoacoustic emissions: a
slight but real effect. International Journal of Psychophysiology 12(3):233–235
DOI 10.1016/0167-8760(92)90061-F.

Mertes IB, Goodman SS. 2016.Within- and across-subject variability of repeated mea-
surements of medial olivocochlear-induced changes in transient-evoked otoacoustic
emissions. Ear and Hearing 37(2):e72–e84 DOI 10.1097/AUD.0000000000000244.

Micarelli A, Viziano A, Genovesi G, Bruno E, Ottaviani F, Alessandrini M. 2016. Lack
of contralateral suppression in transient-evoked otoacoustic emissions in multiple
chemical sensitivity: a clinical correlation study. Noise Health 18(82):143–149
DOI 10.4103/1463-1741.181997.

Michie PT, LePage EL, Solowij N, Haller M, Terry L. 1996. Evoked otoacoustic
emissions and auditory selective attention. Hearing Research 98(1–2):54–67
DOI 10.1016/0378-5955(96)00059-7.

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 16/17

https://peerj.com
http://dx.doi.org/10.17430/899578
http://dx.doi.org/10.1016/S0167-8760(00)00088-X
http://dx.doi.org/10.7874/jao.2017.21.1.1
http://dx.doi.org/10.1121/1.382104
http://dx.doi.org/10.1093/bmb/63.1.223
http://dx.doi.org/10.17430/902926
http://dx.doi.org/10.2147/CIA.S61934
http://dx.doi.org/10.1007/s10162-017-0621-0
http://dx.doi.org/10.1121/1.4896745
http://dx.doi.org/10.1016/0167-8760(92)90061-F
http://dx.doi.org/10.1097/AUD.0000000000000244
http://dx.doi.org/10.4103/1463-1741.181997
http://dx.doi.org/10.1016/0378-5955(96)00059-7
http://dx.doi.org/10.7717/peerj.4199


Mishra SK. 2014. Attentional modulation of medial olivocochlear inhibition: evidence
for immaturity in children. Hearing Research 318:31–36
DOI 10.1016/j.heares.2014.10.009.

Mishra SK, LutmanME. 2013. Repeatability of click-evoked otoacoustic emission-
based medial olivocochlear efferent assay. Ear and Hearing 34(6):789–798
DOI 10.1097/AUD.0b013e3182944c04.

Polich J. 2007. Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysi-
ology 118(10):2128–2148 DOI 10.1016/j.clinph.2007.04.019.

Puel JL, Bonfils P, Pujol R. 1988. Selective attention modifies the active micromechanical
properties of the cochlea. Brain Research 447(2):380–383
DOI 10.1016/0006-8993(88)91144-4.

RuggMD, Coles MGH. 1995. Electrophysiology of mind. In: Event-related brain
potentials and cognition. New York: Oxford University Press.

Siegel JH, KimDO. 1982. Efferent neural control of cochlear mechanics? Olivocochlear
bundle stimulation affects cochlear biomechanical nonlinearity. Hearing Research
6(2):171–182 DOI 10.1016/0378-5955(82)90052-1.

Smith SB, Cone B. 2015. The medial olivocochlear reflex in children during active
listening. International Journal of Audiology 54(8):518–523
DOI 10.3109/14992027.2015.1008105.

Srinivasan S, Keil A, Stratis K, Osborne AF, Cerwonka C,Wong J, Rieger BL, Polcz V,
Smith DW. 2014. Interaural attention modulates outer hair cell function. European
Journal of Neuroscience 40(12):3785–3792 DOI 10.1111/ejn.12746.

Stuart A, Cobb KM. 2015. Reliability of measures of transient evoked otoacoustic
emissions with contralateral suppression. Journal of Communication Disorders
58:35–42 DOI 10.1016/j.jcomdis.2015.09.003.

Veuillet E, Collet L, Duclaux R. 1991. Effect of contralateral acoustic stimulation on
active cochlear micromechanical properties in human subjects: dependence on
stimulus variables. Journal of Neurophysiology 65(3):724–735.

Vigário RN. 1997. Extraction of ocular artefacts from EEG using independent compo-
nent analysis. Electroencephalography and Clinical Neurophysiology 103(3):395–404
DOI 10.1016/S0013-4694(97)00042-8.

Walsh KP, Pasanen EG, McFadden D. 2014. Selective attention reduces physiological
noise in the external ear canals of humans. II: visual attention. Hearing Research
312:160–167 DOI 10.1016/j.heares.2014.03.013.

Walsh KP, Pasanen EG, McFadden D. 2015. Changes in otoacoustic emissions during
selective auditory and visual attention. Journal of the Acoustical Society of America
137(5):2737–2757 DOI 10.1121/1.4919350.

Wittekindt A, Kaiser J, Abel C. 2014. Attentional modulation of the inner ear:
a combined otoacoustic emission and EEG study. Journal of Neuroscience
34(30):9995–10002 DOI 10.1523/JNEUROSCI.4861-13.2014.

Jedrzejczak et al. (2017), PeerJ, DOI 10.7717/peerj.4199 17/17

https://peerj.com
http://dx.doi.org/10.1016/j.heares.2014.10.009
http://dx.doi.org/10.1097/AUD.0b013e3182944c04
http://dx.doi.org/10.1016/j.clinph.2007.04.019
http://dx.doi.org/10.1016/0006-8993(88)91144-4
http://dx.doi.org/10.1016/0378-5955(82)90052-1
http://dx.doi.org/10.3109/14992027.2015.1008105
http://dx.doi.org/10.1111/ejn.12746
http://dx.doi.org/10.1016/j.jcomdis.2015.09.003
http://dx.doi.org/10.1016/S0013-4694(97)00042-8
http://dx.doi.org/10.1016/j.heares.2014.03.013
http://dx.doi.org/10.1121/1.4919350
http://dx.doi.org/10.1523/JNEUROSCI.4861-13.2014
http://dx.doi.org/10.7717/peerj.4199

