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Pupillometry reveals the physiological
underpinnings of the aversion to holes
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Department of Psychology, Emory University, Atlanta, GA, United States of America

ABSTRACT

An unusual, but common, aversion to images with clusters of holes is known as

trypophobia. Recent research suggests that trypophobic reactions are caused by visual
spectral properties also present in aversive images of evolutionary threatening animals
(e.g., snakes and spiders). However, despite similar spectral properties, it remains

unknown whether there is a shared emotional response to holes and threatening

animals. Whereas snakes and spiders are known to elicit a fear reaction, associated with
the sympathetic nervous system, anecdotal reports from self-described trypophobes

suggest reactions more consistent with disgust, which is associated with activation of
the parasympathetic nervous system. Here we used pupillometry in a novel attempt
to uncover the distinct emotional response associated with a trypophobic response to
holes. Across two experiments, images of holes elicited greater constriction compared
to images of threatening animals and neutral images. Moreover, this effect held when
controlling for level of arousal and accounting for the pupil grating response. This

pattern of pupillary response is consistent with involvement of the parasympathetic
nervous system and suggests a disgust, not a fear, response to images of holes. Although
general aversion may be rooted in shared visual-spectral properties, we propose that
the specific emotion is determined by cognitive appraisal of the distinct image content.

Subjects Anatomy and Physiology, Psychiatry and Psychology
Keywords Holes, Vision, Fear, Pupillometry, Trypophobia, Psychophysiology, Disgust

INTRODUCTION

The relation between fear and disgust has long been debated (Darwin, 1872/1998; Rachman,
1998; Rozin & Fallon, 1987; Woody ¢ Teachman, 2000). Although both emotions elicit
defensive responses and have clear adaptive value to the organism, accumulating evidence
suggests that fear and disgust are accompanied by distinct behavioral profiles and
physiological underpinnings (Calder, Lawrence & Young, 2001; Chapman & Anderson,
2012; Ohman et al., 2007; Phillips et al., 1998). Fear is considered a response to perceived
danger (Rachman, 1998), with activation from the sympathetic nervous system (Bradley
et al., 2008; Gray, 1987; Kreibig, 2010). By contrast, disgust is considered a reaction to
contamination (Davey, Forster & Mayhew, 1993; Rozin ¢ Fallon, 1987) and is commonly
associated with activation of the parasympathetic nervous system (Calder, Lawrence ¢
Young, 2001; Murphy, Nimmo-Smith ¢ Lawrence, 2003). When experienced in excess,
both fear and disgust can become associated with phobic reactions. In particular, animal
phobias such as arachnophobia and ophidiophobia are thought to be predominately rooted
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in fear (Ohman & Mineka, 2001; Sarlo et al., 2002), whereas blood-injection-injury phobia
and obsessive-compulsive disorder (OCD) are more strongly associated with disgust
(Hermann et al., 2007; Tolin et al., 1997). In the present study, we examined individuals’
reactions to images known to elicit trypophobia, an unusual, but common, phobia with
ambiguous emotional underpinnings (Cole ¢» Wilkins, 2013; Le, Cole ¢ Wilkins, 2015). And
as discussed in more detail below, we used pupillometry in a novel attempt to dissociate
fear and disgust in the case of the trypophobic response.

Trypophobia has been described as an aversion to a cluster of innocuous holes
(Aminuddin & Lotfi, 2017; Cole ¢» Wilkins, 2013; Imaizumi et al., 2016a). Though not
listed in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American
Psychiatric Association, 2013), recent empirical studies and Internet-based support groups
confirm the specificity of the aversion to images in both self-described trypophobes
and the general population depicting holes or porous textures (e.g., lotus seed plant,
honeycomb, and aerated chocolate). An analysis of the visual spectral properties of such
images revealed an excess of contrast energy in midrange spatial frequencies, suggesting a
perceptual basis to this aversion (Cole ¢ Wilkins, 2013; Le, Cole ¢ Wilkins, 2015; Sasaki et
al., 2017). Consistent with such an account, Van Strien ¢~ Van der Peijl (2015) found that
early posterior negativity (EPN), an ERP component thought to reflect visual processing of
emotionally significant stimuli, was larger for trypophobic images than non-trypophobic
images (i.e., birds) in occipital cortex.

Although an account emphasizing the visual-perceptual roots of trypophobia has
gained increasing empirical support, many questions remain about the nature of the
emotional response in trypophobia as well as its physiological etiology. Trypophobia
is often referred to as a “fear” of holes (Cole ¢ Wilkins, 2013; Le, Cole ¢~ Wilkins, 2015;
Pipitone, Gallegos &~ Walters, 2017) and, indeed, Cole ¢» Wilkins (2013) demonstrated that
the spectral properties that characterized trypophobic images (i.e., high contrast energy
at midrange spatial frequencies) were comparable to those in images of evolutionary
threatening animals such as snakes and spiders, which are known to induce fear reactions
inindividuals (Ohman, Flykt & Esteves, 2001; Sarlo et al., 2002; Vagnoni, Lourenco & Longo,
2012). However, testimonials of self-described trypophobes suggest another possibility—
namely, that the emotional reaction may, instead, reflect disgust. When describing their
aversion to holes, individuals use terms such as “repulsive” and “gross” (Cole & Wilkins,
2013). Empirical support for disgust as the core emotion in trypophobic reactions comes
from a research study by Imaizumi et al. (2016a) in which trypophobia proneness (as
measured by the Japanese version of the Trypophobia Questionnaire; [maizumi et al.,
2016b) was predicted by disgust (as measured by the Disgust Scale-Revised; Haidt, McCauley
& Rozin, 1994; Olatunji et al., 2007). But there were no measures of fear included in this
study, making it impossible to rule out that trypophobic reactions reflected fear responses
instead of disgust. In summary, questions remain about the accompanying emotional
reaction of the aversion to holes. Characterizing the emotional etiology of the trypophobic
reaction as well as how it may relate to other known phobic reactions (e.g., fear of spiders)
will not only inform theoretical models concerned with dissociating fear and disgust
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(Woody & Teachman, 2000), but it may also play a crucial practical role in evaluating
different interventions, since aversive reactions with different emotional underpinnings
may, under extreme conditions, necessitate treatments tailored to the specific emotional
dysfunction.

In the present study, we used pupillometry to differentiate fear and disgust reactions
to images of holes. Pupillometry provides a measure of pupil size, which is regulated
by dilator and sphincter muscles (Granholm & Steinhauer, 2004; Sirois ¢ Brisson, 2014).
Crucially, these two muscles are differentially influenced by activity in sympathetic and
parasympathetic branches of the nervous system. There is much evidence for a relation
between fear and activation of the sympathetic nervous system, known for triggering a
“fight-or-flight” response (Bradley et al., 2008; Gray, 1987; Kreibig, 2010). A fear response
includes an increase in overall cardiovascular function, namely heart rate acceleration
(Folkow, 20005 Levenson, 1988), and a response in the dilator muscles, prompting pupil
dilation (i.e., larger pupil size). By contrast, disgust is largely characterized by a response
of the parasympathetic nervous system, known for “rest-and-digest” functions (De Jong,
Van Overveld & Peters, 2011; Levenson, 1988; Van Overveld, De Jong ¢ Peters, 2009). These
functions include slowing of cardiovascular functions, specifically decreased heart rate
(Hermann et al., 2007; Kreibig, 2010; Stark et al., 2005), and a response in the sphincter
muscles, prompting pupillary constriction (i.e., smaller pupil size).

Across two experiments, we compared changes in pupil size when participants viewed
images of holes (known to elicit trypophobia; Fig. 1A) and images of threatening
animals, namely snakes and spiders (Fig. 1B). Previous research suggests that snakes
and spiders largely elicit a fear response (Ohman, Flykt ¢ Esteves, 2001), such that pupil
dilation associated with the sympathetic nervous system activation would be expected. If
trypophobic images similarly elicit a fear response, then there should be pupil dilation
comparable to that for snakes and spiders. However, if images of holes elicit a disgust
response, then the prediction is that there will be less dilation (i.e., pupillary constriction),
consistent with involvement of the parasympathetic nervous system. As contrastive
controls, we also included images of animals and objects not known to elicit a fear or
disgust reaction (Fig. 1C; Experiment 1), and non-hole patterns similar in repetitive
patterning as the hole images but not associated with trypophobia (Fig. 1D; Experiment
2). Participants’ pupillary responses to hole images were compared to both images of
evolutionary threatening animals (i.e., snakes and spiders) and different categories of
control images, allowing for comprehensive comparisons and unambiguous interpretations
of pupillary responses in these experiments. Notably, images of holes are uncomfortable to
individuals in the general population, not simply to those who profess to trypophobia
(Cole & Wilkins, 2013; Le, Cole ¢ Wilkins, 2015). We thus tested random samples of
participants from a large population of college students in these experiments to inform our
understanding of the physiology underlying the general aversion to holes.
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Figure 1 Example stimuli from each stimulus category used in Experiments 1 and 2. (A) Images from
the holes category known to elicit an aversive response in trypophobes and the general population. (B)
Images from the threat category generally associated with a fear response in individuals with snake and
spider phobias (arachnophobia and ophidiophobia, respectively) as well as the general population. (C)
Images from the neutral category used as controls in Experiment 1. (D) Images from the control category
(i.e., controls for the pupil grating response) included in Experiment 2.

Full-size &al DOI: 10.7717/peer;j.4185/fig-1
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EXPERIMENT 1

Method
Participants

Forty-one undergraduate students (Mg = 19.84 years; 30 females) participated in this
experiment for course credit. All participants had normal or corrected-to-normal vision.

Stimuli and procedure

Stimulus presentation consisted of 60 images (512 x 512 px; 13.5° x 13.5°): 20 images
of “holes” from the trypophobia image set used by Wilkins and colleagues ((Le, Cole &
Wilkins, 2015); obtained from Arnold Wilkins), 20 images of snakes and spiders (Vagnoni,
Lourenco ¢ Longo, 2012), and 20 neutral objects (see Fig. 1). The trypophobia image set
included individual objects with multiple holes (e.g., sea sponge) as well as images of porous
textures (e.g., lotus seed plant; see Fig. 1A). Images of snakes and spiders constituted the
“threat” category and were selected so as to include the entirety of the animal (see Fig. 1B).
The neutral category of images included individual objects (e.g., cup), displays (e.g., a
pile of coffee beans), and neutrally-valenced animals (e.g., butterfly; see Fig. 1C). In the
case of single objects or animals, the items were presented centrally within the image. All
images were centered on a uniform gray background (RGB: 106, 106, 106). Prior to image
presentation, participants viewed a gray screen that served as the baseline on each trial.
All images were gray-scaled using Adobe Photoshop and equated for luminance using
the SHINE toolbox for Matlab (mean luminance = 105.76; Mathworks; Willenbockel et
al., 2010), ensuring that any effects of pupil size could not be explained by differences in
luminance (Bradley et al., 2008).

Stimulus presentation was controlled with a custom Visual Basic Program and presented
on a 22-inch computer monitor (1,920 x 1,080 px; 75 Hz refresh rate). Pupillary responses,
specifically pupil area, were recorded using an Eyelink-1000 plus eye-tracker (SR-Research)
recording at 1,000 Hz. By default, the eye-tracker records the size of the pupil in arbitrary
camera units with a possible resolution as small as 5 pm (0.005 mm; SR-Research).
Camera units provide an accurate measure of pupil size across variations in eye shape and
camera angle.

During viewing, participants were seated in a chinrest 60 cm from the computer monitor.
All participants were tested in the same brightly lit room. Eye gaze was calibrated using a
5-point calibration routine. Each trial began with the baseline phase (6 s) and was followed
by the image phase (6 s; see Bradley et al., 2008). Participants were instructed to view the
images for the entirety of their presentation. Images were presented in a randomized order.

Ethics

Participants provided written informed consent prior to participation. Experimental
procedures were approved by the Institutional Review Board (IRB) at Emory University
and performed in accordance with IRB guidelines (IRB protocol #003388).

Results
Following previous research, the interest period for baseline and image phases was set
to between 1 and 6 s (Bradley, Sapigao ¢» Lang, 2017). Pupillary responses prior to the
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Figure 2 Pupillary waveforms across time for each stimulus type in Experiment 1. The x-axis reflects
trial time in seconds (s) and the y-axis reflects the percentage of pupil-size change from baseline, such that
greater percent change corresponds to a smaller pupil size. Shaded colors represent standard error of the
mean (SEM).

Full-size & DOI: 10.7717/peer;j.4185/fig-2

first second are thought to include a light reflex and thus were not analyzed (Beatty ¢
Lucero-Wagoner, 2000). To enable comparisons across participants and to account for
differences in baseline pupil size, we analyzed the mean percent change in pupil size
between baseline and image phases over the full interest period for each phase. The image
phase elicits an overall smaller pupil compared to the baseline phase, such that a larger
change corresponds to a larger decrease in pupil size. Trials in which participants did not
fixate to the screen (during the baseline or image phase) were excluded from the analyses
(5.8% of trials).

To test for an effect of stimulus type (i.e., holes, neutral, and threat) on pupillary size, we
conducted a repeated measures analysis of variance (ANOVA) with the dependent variable
of percent pupil-size change. This analysis revealed a significant main effect of stimulus
type, F(2,80) = 18.556, p < 0.001, nf) =0.317 (see Fig. 2). Post-hoc tests, corrected for
multiple comparisons using the Holm-Bonferroni method, revealed significantly greater
pupil-size change to images of holes than to threatening images (p < 0.001), suggesting
less dilation and sustained constriction to holes within the interest period, and providing
support for a dissociation in pupillary responses between images of holes and threatening
animals. Post-hoc tests also revealed a significant difference in pupil-size change between
holes and neutral images (p < 0.001), such that pupil size was smaller to holes than neutral
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images, again, consistent with constriction to the images of holes. Taken together, these
results suggest an influence of the parasympathetic nervous system during the viewing of
holes and are consistent with a disgust response to holes but not the other types of images.

The post-hoc comparisons revealed no significant difference in pupil-size change
between neutral images and threatening animals (p = 0.879). Although we did not make a
specific prediction about the relative pupillary response to threatening images, one might
have expected larger pupil size to threatening animals than neutral images because of
potential differences in arousal (Bradley et al., 2008). We cannot address this issue directly,
however, as we did not collect arousal ratings for any of the images in this first experiment.
As discussed below, we control directly for individual differences in arousal level in the
next experiment.

Discussion

The results of this first experiment demonstrate a dissociation between pupil responses
when viewing images of holes compared with images of threatening animals (as well as
various neutral images). Although photographs (image phase) that follow a blank screen
(baseline phase) elicit pupillary constriction for all image categories (Sirois &~ Brisson,
2014), we found that images of holes resulted in greater pupil-size changes compared to
threatening animals (snakes and spiders) and neutral images. These pupil-size changes are
consistent with relatively less pupillary dilation throughout the interest period and thus
greater constriction for holes. We suggest that participants’ pupillary responses to holes in
this experiment lend support to the hypothesis that the trypophobic response experienced
by individuals is associated with activation of the parasympathetic nervous system and,
thus, more likely associated with the emotional reaction of disgust than fear.

However, because pupillary responses are also heavily influenced by low-level visual
properties of an image, independent of its emotional affect, an alternative explanation
of our findings is that the differential change in pupil size was due specifically to these
properties. Studies examining the relation between pupillary responses and spectral image
properties have found that pupil size correlates with contrast frequency gratings, such that
high contrast, high spatial frequencies (HSF) are associated with a smaller pupil size, the
so-called pupil grating response (Barbur ¢» Thomson, 1987; Cocker et al., 1994). Thus, it is
possible that the sustained pupillary constriction to holes observed in Experiment 1 was not
reflective of a disgust response but, instead, a response to high contrast, HSF information
in these images. To address this possibility, in a subsequent experiment, we included a
novel set of neutral images that contained high-contrast repeating patterns similar to those
in images of holes (e.g., checkboard; see Fig. 1D). Crucially, unlike the images of holes,
these images are not known to elicit trypophobia.

Yet another possibility not addressed in Experiment 1 was that arousal level affected
the pupillary response. Bradley et al. (2008) found a relation between arousal and pupillary
response, such that greater arousal elicited greater dilation. Indeed, hole images may have
been less arousing than the threatening category and, therefore, less likely to cause dilation.
In the subsequent experiment, we addressed this possibility by collecting arousal ratings
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for each image and including participants’ arousal ratings in our analyses of pupillary
responses to the presented images.

EXPERIMENT 2

Method
Participants

Forty-four undergraduate students (M,ge = 19.80 years; 30 females) participated for
course credit. None of the participants in the current experiment participated in the
previous experiment. Two participants from the current sample were removed from the
results reported below because of a failure to fixate on the images for at least half of the
experiment. In this experiment, participants also completed the trypophobia questionnaire
designed by Le, Cole ¢ Wilkins (2015). The questionnaire was completed after participants
viewed all of the images during which their pupillary responses were recorded. Participants’
scores on the trypophobia questionnaire (M = 25.5, Mdn = 20, range = 17-83) fell within
the normal range of the population who experience aversion to the images of holes but
who may not self-identify as trypophobes (Le, Cole ¢ Wilkins, 2015).

Stimuli and procedure

Stimulus presentation consisted of 60 images (512 x 512 px; 13.5° x 13.5°): 20 images of
holes, 20 images of threatening animals (i.e., spiders and snakes), and 20 non-hole control
images (see Fig. 1). The images of holes and threatening animals were identical to those
used in Experiment 1. The non-hole control images consisted of individual objects or
patterns with contrasting textures (e.g., checkerboard; see Fig. 1D). As in Experiment 1, all
images were gray-scaled and equated for luminance using the SHINE toolbox for Matlab
(mean luminance = 115.17; Mathworks; Willenbockel et al., 2010).

All aspects of image presentation were identical to Experiment 1. In particular, each trial
began with the baseline phase (6 s) and was followed by the image phase (6 s). Images were
presented in a randomized order. Any trials where participants did not fixate to the screen
(during baseline or image phase) were excluded from statistical analyses (1.6% of trials).
Participants were tested in a brightly lit room, seated in a chinrest 60 cm from the computer
monitor. Eye gaze was calibrated using a 5-point calibration routine, and pupil area was
recorded using an Eyelink-1000 plus eye-tracker (SR-Research) recording at 1,000 Hz.

In this experiment, participants also rated the images for level of arousal. Participants
provided ratings of their subjective arousal to each image following the free viewing phase.
Each image was presented onscreen (randomized order) with the question, “how does this
image make you feel overall?” Participants responded on a 7-point scale ranging from -3
(“very negative”) to 3 (“very positive”). Arousal was calculated as the absolute value of
the rating, regardless of valence (Bradley ¢» Lang, 2007; but see, Kuppens et al., 2013, for
alternative perspectives on measuring arousal).

We also collected ratings of fear and disgust in this experiment in an effort to
corroborate the pupillary data. After rating images for arousal, participants rated each
image (randomized order) on fear and disgust with the questions, “How fearful does this
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image make you feel?” and “How disgusted does this image make you feel?” on a 7-point
scale ranging from 1 (“not at all”’) to 7 (“extremely”).

Ethics
Participants provided written informed consent prior to participation. Experimental

procedures were approved by the IRB at Emory University and performed in accordance
with IRB guidelines (IRB protocol #003388).

Results
As discussed above, the relatively greater pupillary constriction to images of holes could
reflect high contrast, HSF information in these images. To address this possibility, we
included control images with similar repetitive features and we then conducted an analysis
of spatial frequency on the three image categories (holes, threat, and control) to ensure that
the images were comparable. Images were analyzed for spatial frequency at five contrast
energy levels (10%, 30%, 50%, 70%, and 90%; Bainbridge ¢ Oliva, 2015). A Pearson
correlation analysis revealed a negative relation between spatial frequency and pupil size,
rs(58) = —0.415 to —0.616 (across energy levels), such that images with higher spatial
frequencies elicited a smaller pupil, consistent with the pupil grating response (Barbur ¢
Thomson, 1987; Cocker et al., 1994). Next, we compared stimulus categories across contrast
energy levels with a 5 x 3 repeated-measures ANOVA with contrast energy (10%, 30%,
50%, 70%, and 90%) as the within-subjects factor and stimulus type (holes, threat, and
control) as the between-subjects factor. This analysis revealed a main effect of contrast
energy, F(4,228) =217.220, p < 0.001, nf) =0.792, such that spatial frequency increased
with contrast energy, as expected for this image set. But, critically, there was no main effect
of stimulus type (p =0.213, nf) =0.053), nor a contrast energy by stimulus type interaction
(p=0.189, n}z) =0.047), demonstrating that spatial frequency was comparable across the
image categories. However, because this analysis relies on the interpretation of a null effect,
we also computed the expected power of this image set (Cohen, 1992), as well as the Bayes
factor (BF;¢; Rouder et al., 2012) for the contrast energy by stimulus type interaction. These
analyses revealed that with 60 images we had 99% power (1-f) to detect a medium-sized
effect, and that the posterior distribution was in favor of the null hypothesis, BF;y = 0.220.
Thus, although a pupil grating response was evident in our data, these analyses suggest that
spatial frequency was comparable across the image categories at all contrast energy levels.
As in the previous experiment, we then tested for an effect of stimulus type (i.e.,
holes, threat, and control) on pupillary size by conducting a repeated measures ANOVA
with the dependent variable of percent pupil-size change. There was a significant main
effect of stimulus type, F(2,82) = 15.469, p < 0.001, nf, =0.274 (see Fig. 3). Post-hoc
tests (Holm-Bonferroni corrected) revealed that pupil-size change was, again, greater
for holes than threatening images (p < 0.001), replicating the effect of Experiment 1.
Moreover, and crucially, pupil-size change was also greater for holes than the control
images (p < 0.001), which, in this experiment, consisted of high contrast repetitive patterns
similar to holes, and which we confirmed were comparable in spatial frequency. Finally,
there was a non-significant trend in the expected direction for the difference between
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Figure 3 Pupillary waveforms across time for each stimulus type in Experiment 2. The x-axis reflects
trial time in seconds (s) and the y-axis reflects the percentage of pupil-size change from baseline, such that
greater percent change corresponds to a smaller pupil size. Shaded colors represent SEM.

Full-size G4l DOI: 10.7717/peerj.4185/fig-3

threatening images and the control images (p = 0.085), with greater pupil dilation to
spiders and snakes than control images. These findings replicate those of Experiment

1 by demonstrating a dissociation between pupillary responses to holes compared with
threatening animals. They also demonstrate that the pupillary response to holes is not
identical to that of other high-contrast, repetitive stimuli, thereby providing additional
support for a parasympathetic response to holes and consistent with our hypothesis that
holes elicit a disgust reaction.

However, an alternative possibility for these findings is that the images differed in arousal
level. To address this possibility, we first conducted a one-way ANOVA on stimulus type
(holes, threat, and control), which yielded a significant main effect of stimulus type on
participants’ arousal ratings, F(2,57) = 162.780, p < 0.001, 1]127 =0.851. Post-hoc tests
(Holm-Bonferroni corrected) revealed significant differences for all pairwise comparisons
(ps < 0.001). Specifically, control images induced the least arousal, followed by holes,
followed by the threatening category (see Table 1). Given these differences in arousal level,
we conducted an additional analysis of stimulus type (holes, threat, and control) on pupil-
size change while controlling for the effects of arousal. Participants’ pupil measurements
for each image were regressed on arousal level, and a repeated-measures ANOVA was
conducted on the residual values. This analysis yielded a significant main effect of stimulus
type, F(2,82) =13.373, p < 0.001, nf) =0.246. Post-hoc tests (Holm-Bonferroni corrected)
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Table 1 Mean ratings of arousal, fear, and disgust for each stimulus category. Standard deviations in

parentheses.
Stimulus type Rating

Arousal Fear Disgust
Holes 0.91 (0.96) 1.94 (1.53) 2.47 (1.85)
Control 0.42 (0.79) 1.11 (0.50) 1.09 (0.44)
Threat 1.51 (1.06) 3.58 (2.19) 3.57 (2.24)

revealed significant differences between holes and threatening images (p < 0.001), as well
as between holes and controls (p < 0.001; no difference between threatening images and
controls, p =0.663), generally consistent with the analyses above. Taken together, the
results from this experiment suggest that greater pupil constriction is specific to images
of holes and not more generally applicable to non-hole repetitive images. Moreover,
these results demonstrate that pupillary constriction to holes cannot be accounted for by
differences in arousal level.

Finally, we examined participants’ fear and disgust ratings for each image (see Table 1),
which converged with their pupillary responses. We conducted a 2 x 3 repeated measures
ANOVA with emotion rating (fear and disgust) as the within-subjects factor and stimulus
type (holes, threat, and control) as the between-subjects factor. This analysis revealed a
main effect of emotion rating, F(1,57) =4.362, p < 0.001, 1]}27 =0.415, and stimulus type,
F(2,57) =316.765, p < 0.001, nf) =0.917, as well as an emotion rating by stimulus type
interaction, F(2,57) =48.386, p < 0.001, 7112; = 0.629. Post-hoc analyses (Holm-Bonferroni
corrected) of these ratings revealed that images of holes were rated as more disgusting
than fearful, (p < 0.001), as well as more disgusting than control images (p < 0.001).
Critically, images of snakes and spiders were rated as more fear-inducing than both images
of holes (p < 0.001) and control images (p < 0.001), but were rated as significantly more
disgusting than images of holes, (p < 0.001; no difference between disgust and fear ratings
for threatening images, p = 0.876). Taken together, participants’ ratings corroborate our
interpretation of participants’ pupillary responses, as well as the anecdotal reports of
self-described trypophobes, namely that the response to these images reflects disgust, not
fear. The finding that images of snakes and spiders were rated as both fearful and disgusting
relative to the other image categories was unexpected, but likely reflects either relatively
greater non-specific arousal to the threatening animals (i.e., snakes and spiders were rated
as more arousing than both holes and control images), or a combination of fear and disgust
responses to threatening animals (see ‘General Discussion’).

Discussion

In Experiment 2, we replicated the dissociation in participants’ pupillary responses to
images of holes and threatening animals (snakes and spiders) reported in our first
experiment. Moreover, we extended this finding by demonstrating greater pupil-size
changes to holes than non-hole repetitive stimuli. Participants’ pupillary responses to
holes were consistent with greater constriction compared with threatening animals and
non-hole control images throughout the interest period. These findings rule out alternative
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explanations of pupillary constriction to images of holes. In particular, our findings cannot
be accounted for by the pupil grating response since holes and control images elicited
differential pupillary responses, despite comparable visual spectral properties. However,
because this finding relies on a null spatial frequency difference between stimulus categories,
future research would do well to ensure that pupillary constriction to trypophobic images
occurs independently of spectral properties, or to assess the unique effects of spatial
frequency and disgust on the pupillary response to holes. Importantly, though, our findings
could not be accounted for by differences in arousal level since participants’ differential
pupil responses to holes held when accounting for their subjective ratings of arousal to
the images. Finally, participants’ explicit ratings provided confirmation that participants
regarded images of holes as more disgusting than fearful. Taken together, we suggest that
the current findings provide evidence for an emotional response to images of holes that
reflects parasympathetic activation and, thus, most likely captures a disgust reaction.

GENERAL DISCUSSION

Across two experiments, we found a dissociation between images of holes, known to
elicit trypophobia, and images of threatening animals (snakes and spiders). In particular,
we found that holes, in contrast to the threatening animals and other control images,
elicited larger pupil-size changes following baseline, a pattern of responding consistent
with greater pupillary constriction during viewing. This pattern of pupillary responding
suggests involvement of the parasympathetic nervous system while viewing images of holes,
which we have argued is consistent with a disgust, not a fear, response.

Studies using vision science techniques (Cole ¢» Wilkins, 2013; Le, Cole ¢ Wilkins, 2015)
and recent correlational research (Imaizumi et al., 2016a) suggest that trypophobia is
largely rooted in the visual spectral properties of images. Moreover, it has been argued
that general visual discomfort is associated with such spectral properties (Fernandez ¢
Wilkins, 2008; O’Hare ¢» Hibbard, 2011; Penacchio ¢ Wilkins, 2015; Wilkins, 1995). Our
research does not argue against this perspective. Indeed, an aversive reaction to images of
holes and threatening animals such as snakes and spiders may stem from common visual
properties. However, our work provides an important qualification on extant research
by suggesting that these visual properties alone may not determine the specific emotional
reaction experienced by the viewer. Indeed, we argue that although a general aversion may
be rooted in visual spectral properties, the specific emotional reaction is determined by the
content of the image. In other words, the emotional reaction may depend on an additional,
top-down, cognitive appraisal. Consistent with this possibility is the acknowledgement
from the original work of Cole ¢» Wilkins (2013) in which it was stated that a trypophobic
reaction is more likely for holes that appear on human skin as opposed to holes on inanimate
objects (see also Kupfer ¢ Le, 2017). If the aversion to these images were strictly due to the
visual spectral properties of the image, this type of modulation would not be predicted.
Although images of holes and those of snakes and spiders share a critical visual-spectral
profile, individuals nevertheless show a dissociation in their pupillary responses, consistent
with a distinction between physiological responses to disgusting and fearful stimuli.
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Using electrodermal activity (EDA) and heartrate (BPM: heart-Beats Per Minute),
Pipitone, Gallegos & Walters (2017) recently examined participants’ physiological responses
to images of holes (similar to those used in the present study). They found that images
of holes elicited higher levels of EDA relative to control images, which is consistent with
a sympathetic nervous system response, but in apparent contradiction to our findings,
which suggests a parasympathetic response to holes. It should be noted, however, that
BPM did not converge with the EDA result. Pipitone, Gallegos & Walters (2017) found
that BPM did not dissociate trypophobic and control images. In fact, BPM was lower,
though not statistically, to holes than control images (p =0.1, d = —0.28), which would
suggest parasympathetic activation. Moreover, because ratings of arousal were not taken
into consideration, it is unclear whether a sympathetic nervous system response could
be accounted for by differences in arousal to the trypophobic and control images. It
thus remains an important question for future research to determine whether different
measures—pupillometry, electrodermal activity and heartrate—provide converging support
for a common physiological response to images of holes, suggestive, as proposed here, of a
disgust emotional response (Mauss ¢ Robinson, 2009).

The current findings are consistent with evolutionary perspectives that hold that fear
has roots in danger avoidance and predator—prey interactions. Disgust, however, may
instead allow for the avoidance of sources of disease such as rotten food or the visibly sick
(Woody & Teachman, 2000). It has been suggested that a trypophobic reaction may be an
extension of an intrinsic disgust for decomposing items, sores and scars, which would aid
in the avoidance of contaminated stimuli specifically and disease more generally (Cole
& Wilkins, 2013; Deacon & Olatunji, 2007; Rozin & Fallon, 1987; Skaggs, 2014). Holes, but
not spiders and snakes, or other repetitive patterns, may have come to be associated with
disease transmission (Rozin ¢ Fallon, 1987), either over the course of evolution or learned
during ontogenetic development (Can, Zhuoran ¢ Zheng, 2017; Kupfer ¢ Le, 2017). The
result of this association may be a corresponding withdrawal response controlled by the
parasympathetic nervous system.

Nevertheless, one question left unanswered by our data concerns the muted pupillary
dilation to snakes and spiders. In neither experiment did we find definitive evidence
that changes in pupil size were consistent with larger dilation for snakes and spiders
in comparison to control images (the effect in Experiment 2 did not reach statistical
significance), which one might have predicted if threatening animals elicit a fear response.
One possibility is that the participants in this study were simply not especially fearful
of these stimuli. Another possibility is that the response to snakes and spiders reflects a
combination of fear and disgust such that the additional component of disgust tempers
the pupillary dilation. Indeed, our own ratings and previous research suggests that spider
phobics report both fear and disgust to spider photos, with a strong correlation between
the two emotions (Thorpe ¢ Salkovskis, 1998). It is therefore possible that the contrasting
influence of both fear and disgust could have muted pupillary dilation in our participants.
Future research would do well to investigate pupillary responses to stimuli that elicit a fear
or disgust response exclusively.
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A possible concern about the present work is that participants may not have been
trypophobes. However, we would argue that the use of a normative sample of participants
should be considered a strength. That we found a pupillary dissociation between holes and
images of spiders and snakes, even when the accompanying emotions were likely not at
the extreme is important because it allows for a crucial baseline by which to subsequently
compare phobic individuals. In Experiment 2 of the present study, some individuals would
qualify as trypophobes based on their scores on the trypophobia questionnaire (values >31;
Le, Cole & Wilkins, 2015). However, given the relatively small number of participants who
met this criterion (N =9), we did not conduct separate analyses on these participants. One
possibility is that the results reported in the present study will replicate in a large sample of
trypophobes and that the dissociation will be even more pronounced. Indeed, one could
straightforwardly predict stronger effects in these individuals. However, another possibility
is that the dissociation might be less pronounced in the trypophobes. Perhaps trypophobes
will experience some combination of disgust and fear, as has been found for spider phobics
(Thorpe & Salkovskis, 1998). The fact that spider phobics show a correlation between these
emotions when viewing images of spiders would be consistent with such a possibility.
Future research might consider making greater efforts to include both types of populations
(phobics and non-phobics) to understand the full spectrum of fear and disgust.

CONCLUSION

Despite trypophobes describing their aversion to holes as “disgusting,” the emotional
response to images of holes has been characterized as “fearful” because of how similar their
visual spectral properties are to images of threatening animals. Here we used pupillometry
to investigate the physiological underpinnings of the aversion to holes in order to determine
whether the specific emotional response reflects fear or disgust. Across two experiments,
we found greater pupillary constriction to holes than to snakes and spiders, as well as
different types of neutral images. Importantly, this effect could not be explained by arousal
or low-level visual properties (though more research would be useful to ensure that spatial
frequency alone does not account for pupillary responses). These findings are consistent
with involvement of the parasympathetic nervous system when viewing images of holes
and is suggestive of a disgust, not fear, response to these images. These data suggest that
although a general aversion may be rooted in common visual spectral properties, the
specific emotional response may reflect cognitive appraisal of image content.
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