The first observations of *Ischnochiton* (Mollusca, polyplacophora) movement behaviour, with comparison between habitats differing in complexity (#20798)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes

Editor and deadline

Wayne O'Connor / 19 Oct 2017

Files 4 Figure file(s)

1 Table file(s)

1 Raw data file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

DeclarationsNo notable declarations are present

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The first observations of *Ischnochiton* (Mollusca, polyplacophora) movement behaviour, with comparison between habitats differing in complexity

Kiran Liversage $^{Corresp.,-1}$, Kirsten Benkendorff 2

Corresponding Author: Kiran Liversage Email address: kiran.liversage@ut.ee

Most species of *Ischnochiton* are habitat specialists and are almost always found underneath unstable marine hard-substrata such as boulders. The difficulty of experimenting on these chitons without causing disturbance means little is known about their ecology despite their importance as a group that often contributes greatly to coastal species diversity. In the present study we measured among-boulder distributional patterns of Ischnochiton smaragdinus, and used time-lapse photography to quantify movement behaviours within different habitat types. Chitons were significantly overdispersed among boulders, as most boulders had few individuals but a small proportion harboured large populations. <u>L. smaragdinus</u> emerge from underneath boulders during nocturnal low-tides and moves amongst the inter-boulder matrix (pebbles or rock-platform). Seventy-two percent of chitons in the pebble matrix did not move from one pebble to another within the periods of observation (55-130 minutes) but a small proportion moved across as many as 5 pebbles per hr, indicating a capacity for adults to migrate among disconnected habitat patches. Chitons moved faster and movement paths were less tortuous across rockplatform compared to pebble substrata, which included more discontinuities among substratum patches. Overall, we show that patterns of distribution at the boulder-scale, such as the observed overdispersion, must be set largely by active dispersal of adults across the substratum, and that differing substratum-types may affect the degree of dispersal for this and possibly other under-boulder chiton species.

¹ Estonian Marine Institute, University of Tartu, Tallinn, Estonia

² Marine Ecology Research Centre, Southern Cross University, Lismore, Australia

The first observations of <i>Ischnochiton</i> (Mollusca, polyplacophora) movement behaviour, with
comparison between habitats differing in complexity
Kiran Liversage ¹ *, Kirsten Benkendorff ²
School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia
¹ Current address: Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618, Tallinn,
Estonia
² Current address: Marine Ecology Research Centre, School of Environmental Science and
Management, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
*Corresponding author: Email: kiran.liversage@ut.ee
Keywords: Chitons, rock-pool, distribution, dispersal, habitat structure
Short running head: Movement behaviour of Ischnochiton

Abstract

1	4
L	U

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

25

Most species of *Ischnochiton* are habitat specialists and are almost always found underneath unstable marine hard-substrata such as boulders. The difficulty of experimenting on these chitons without causing disturbance means little is known about their ecology despite their importance as a group that often contributes greatly to coastal species diversity. In the present study we measured among-boulder distributional patterns of *Ischnochiton smaragdinus*, and used timelapse photography to quantify movement behaviours within different habitat types. Chitons were significantly overdispersed among boulders, as most boulders had few individuals but a small proportion harboured large populations. I. smaragdinus emerge from underneath boulders during nocturnal low-tides and moves amongst the inter-boulder matrix (pebbles or rock-platform). Seventy-two percent of chitons in the pebble matrix did not move from one pebble to another within the periods of observation (55-130 minutes) but a small proportion moved across as many as 5 pebbles per hr, indicating a capacity for adults to migrate among disconnected habitat patches. Chitons moved faster and movement paths were less tortuous across rock-platform compared to pebble substrata, which included more discontinuities among substratum patches. Overall, we show that patterns of distribution at the boulder-scale, such as the observed overdispersion, must be set largely by active dispersal of adults across the substratum, and that differing substratum-types may affect the degree of dispersal for this and possibly other underboulder chiton species.

45

46

47

Introduction

49	Dispersal of mobile benthic species can occur by a combination of movement processes
50	occurring as adults (Little 1989, Grantham et al. 2003) and by "supply-side" processes
51	(Underwood & Fairweather 1989) for species with larval stages. Contributions of adult and larval
52	processes to dispersal have been measured for species with easily observable larval processes
53	(e.g. larval settlement/recruitment; Rowley 1989) or adult processes (e.g. movement of slow-
54	moving species on rock platforms exposed during low tide; Underwood & Chapman 1989).
55	There are many species, however, that occur almost exclusively in cryptic/hidden habitats that are
56	not easily observed, such as underneath unstable hard-substrata. The species are mostly hidden
57	from view and in order to observe them it is generally required to disturb the habitat (Chapman &
58	Underwood 1996). Consequently, we have little information about their natural dispersal
59	capacities as adults. Our knowledge about intertidal invertebrate behavioural ecology (see
60	reviews by Grantham et al. 2003, Ng et al. 2013) would be improved by incorporating under-
61	boulder species, because the specialist species there often have high levels of rarity or endemism
62	(Benkendorff & Przesławski 2008, Chapman et al. 2009, Liversage 2015) and ecological
63	information is needed to inform conservation management.
64	
65	One of the most widespread groups of boulder habitat specialists are chitons within the
66	Ischnochiton genus. While much research has focussed on movement behaviours of other chitons
67	that live on exposed (i.e. non-cryptic) rocky habitats (Thorne 1968, Chelazzi et al. 1983, Chelazzi
68	et al. 1987, Chelazzi et al. 1988) practically nothing is known of natural movement behaviours of
69	Ischnochiton that are primarily associated with boulders. Palmer (2012) suggested that patterns of
70	among-boulder overdispersion could be explained by philopatric behaviour, with chitons rarely
71	dispersing from their natal boulders. Chapman (2002) observed high rates of dispersal onto
72	artificially deployed boulders, and questioned whether such dispersal may occur by "drifting" or

"crawling". Smith & Otway (1997) and Jörger et al. (2008) noted that some chitons readily drop off overturned boulders and fall into the water to be passively transported by water motion. This was considered an "escape-response" that may affect the movements and distribution of species that use this behaviour. Empirical data about movement ecology of *Ischnochiton* is required to determine whether dispersal behaviours such as these are occurring in reality and contributing to distributional patterns such as overdispersion. This pattern occurs when large variation among replicates causes data to not approximate a Poisson distribution (Richards 2008), and has been observed repeatedly for distribution data of other *Ischnochiton* species (Grayson & Chapman 2004, Liversage & Benkendorff 2013).

The only direct observations of *Ischnochiton* movements are notes of movement occurring on exposed rock surfaces, mostly nocturnally (Kangas & Shepherd 1984). Using shell patterns to identify individual chitons, Liversage et al. (2012) found that approximately two-thirds of the individuals emigrate from their original boulder over three days, while an average of three new chiton individuals move onto boulders. Similarly, in an intertidal cobble reef, McClintock et al. (2007) marked and relocated a habitat-generalist chiton species (*Sypharochiton pelliserpentis*) and found that the percentage of chitons that stayed under their original cobble after two tidal cycles varied from 10% (small cobbles) to 45% (large cobbles). These studies suggest chitons may move frequently across boulder habitat patches. The boulders/cobbles in these studies were, however, overturned for sampling and hence physically disturbed (Chapman & Underwood 1996), so the relatively high levels of movement recorded may not fully reflect natural movement patterns. To our knowledge no previous study has quantified undisturbed movement patterns of

any Ischnochiton species, which was our aim in this study.

98

99

100

101

Temperate boulder reefs of the south-eastern Australian intertidal-zone harbour populations of Ischnochiton smaragdinus. This small chiton attains a maximum length of approximately 2cm and has an atypical carnivorous diet of sponges, bryozoans and ascidians (Kangas & Shepherd 1984). Another unique trait is this species is occasionally noted on exposed-rock habitats nocturnally (Kangas & Shepherd 1984).

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

The present study focused on *I. smaragdinus*, a common chiton in South Australian rock pools comprised of a variety of substrata including boulders, cobbles, pebbles and rock platforms. First, we measured distributional patterns to test the hypothesis that adult individuals are overdispersed among boulders, similarly to many other representatives of *Ischnochiton* (Grayson & Chapman 2004, Liversage & Benkendorff 2013). These distributions may be caused by movement behaviours. Accordingly, we measured movement paths of chitons using time-lapse photography during nocturnal low tides. To determine the generality of the finding from Liversage et al. (2012), that chitons migrate among habitat patches that have been disturbed by sampling, we tested the hypothesis that chitons will not remain on individual habitat patches, but migrate amongst the boulders, pebbles or cobbles that have been left undisturbed (i.e. not overturned or moved). Measurements of chiton movements were also made within pools that included rockplatform habitat, which includes fewer discontinuities (i.e. interstices and areas of sand between adjacent hard-substrata) among habitat patches compared to rock pools containing pebbles and cobbles. We tested the hypothesis that variables including speed and directionality were affected by the different habitat types.

118

119

120

Materials and Methods

138

139

140

141

142

143

144

122	Distributions and movement patterns of <i>I. smaragdinus</i> were measured during diurnal low tides
123	at four sheltered intertidal boulder fields on the Fleurieu Peninsula, South Australia. For
124	distribution measurements, 30 haphazardly selected boulders were overturned and numbers of
125	attached <i>I. smaragdinus</i> were counted during October 2007 at two sites (Myponga Beach –
126	35°22'12.6"S 138°23'18.2"E) and (Second Valley – 35°30'39.6"S 138°12'58.4"E). The boulder
127	at both locations were approximately 30cm long and 15cm high, and were siltstone or sandstone.
128	Sampled boulders were separated from each other by approximately 1m. Frequency distributions
129	of chitons across boulders at each site were compared to a Poisson distribution (expected if
130	chitons are distributed randomly) using a one-sample Kolmogorov-Smirnov test. If patterns of
131	overdispersion produce non-random frequency distributions, this test will indicate a significant
132	difference between observed and expected (Poisson) distributions.
133	
134	Movement paths of <i>I. smaragdinus</i> were measured using time-lapse photography techniques
135	involving photography from above the water surface in randomly selected rock-pools.
136	Observations were made at night during seven low-tide periods at two sites at Myponga Beach
137	between August and December 2006. One site (35°22'12.6"S 138°23'18.2"E) had rock-pools

with pebble substrata (Fig 1a); the mean length of pebbles was measured from four rock-pools to be 4.14cm (SE = 0.35) and all measured rock-pools had pebbles of similar length (ANOVA $F_{(3)}$ $_{36)} = 0.88, P > 0.25$). The pebbles were flattened with their height about half their length, and were partially buried in sand. The second site (35°22'01.9"S 138°24'19.1"E) had rock-pools with a substratum of unbroken rock-platform (Fig. 1b). At each rock-pool, a camera (Olympus C5050®) was positioned on a tripod directly above to photograph an area of approximately 50x50cm. The camera took digital images at one minute intervals. Periods of photography were

initiated when the tide had receded and there were no visual distortions of the substratum from moving water. Observations were ended when distortion from increasing water depth during the advancing tide again prevented resolution of the substratum. This method provided an observation time that varied from 55 to 130 min.

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

145

146

147

148

Images were processed using Photoshop CS[®] imaging software. The locations of all chitons within the rock-pool in the first image in a given time series was marked on a Photoshop® workspace layer separate from the image, then the next image in the time series was superimposed on the first. The next image was adjusted in scale to offset the effects of changes in water level (which magnifies or reduces the view of the substratum when viewed above the water surface), and the subsequent position of all chitons was then added to the layer onto which the initial positions were marked. This process was used for all subsequent images in the time series until the entire movement paths of all chitons were delineated. To ensure each chiton followed was an independent replicate, they were only included if no interaction occurred with other chitons (i.e. direct contact or movement across another chiton's path). Studies using photographs to measure habitat characteristics on larger boulder habitats have used techniques to correct for the curvature of boulders (e.g. applying a corrective factor of ≈1.2 to area measurements from boulder edges; Liversage et al. 2012). While no distortion would be caused when delineating movement paths leading around edges of pebbles, there may be distortion of paths leading from edges over the pebble tops. However, because the pebbles were flattened in shape, and the chitons were large (mean 0.64cm) in relation to the pebbles (mean 4.14cm), it was not considered necessary in this case to apply any corrective adjustments.

169

170

171

172

173

174

175

176

177

178

179

Three movement variables were measured as well as the length of each chiton. Net speed was calculated as the total distance travelled divided by the total time observed. Maximum speed was considered as the largest distance travelled by an individual in any five minute period. We calculated the net:gross displacement ratio to provide an indication of the tortuosity of movement paths, as done for sea stars (Swenson & McClintock 1998), copepods (Buskey 1984), fish (Parrish et al. 2002) and seals (Davis et al. 2001). This metric is calculated as net displacement (the straight distance between the start and end point of a movement path) divided by gross displacement (the actual distance travelled; Fig 1). A net:gross displacement ratio close to 0 indicates the movement path is highly tortuous, and most movement has not contributed to dispersal away from the starting point. A value close to 1 indicates the path is straighter with most movement having resulted in dispersal. The net:gross displacement ratio was measured only for chitons that moved a minimum of 30mm during the period of observation.

180

181

182

183

184

185

186

187

188

189

190

191

The number of chitons in each rock-pool was variable, so comparisons among treatments were done with univariate PERMANOVA, using PRIMER v6 (Anderson & Walsh 2013). We considered substratum-type as a fixed factor and the different rock-pools as a random factor. There was only one substratum type in each of the rock-pools, so the rock-pool factor was nested in substratum-type. Attempts were made to find rock-pools with different substratum-types within the same area, but appropriate substratum-types were only found separated spatially. Distributional patterns vary over small spatial scales (i.e. among boulders) for *Ischnochiton* (Grayson & Chapman 2004, Liversage & Benkendorff 2013), but few differences in other among-boulder movement patterns have been found during comparisons of separate larger-scale locations (Liversage et al. 2012). This suggests that spatial confounding between the sites can be considered unlikely in our comparisons between these substratum-types. The analyses used

192	Euclidean distances and 9999 permutations. Homogeneity of variances was tested with
193	PERMDISP, using medians, which in univariate analyses is equivalent to Levene's test
194	(Anderson et al. 2008). If the P values of the random factor was > 0.25 , it was eliminated to
195	provide a more powerful test for the relevant null hypothesis (Underwood 1997).
196	
197	
198	Results
199	
200	At our two study sites, most boulders had no <i>Ischnochiton smaragdinus</i> or only a small number
201	(1-3 individuals; Fig. 2) living under them. A small percentage of boulders harboured large
202	population sizes, reaching up to 30 individuals at Myponga beach and 13 at Second Valley (Fig.
203	2). These right-skewed frequency distributions differed strongly to the roisson distributions
204	expected if chitons were distributed randomly for analyses of data from both sites (Myponga
205	Beach Kolmogorov-Smirnov goodness-of-fit test $P < 0.001$; Second Valley $P < 0.001$). These
206	measurements were taken diurnally, and all 143 individuals were sheltering underneath the
207	boulders and cobbles. None occurred in exposed areas that were visible without overturning the
208	substrata.
209	
210	Movement paths of 113 individuals were analysed. Only 2 individuals did not move. The
211	frequency of movement generally did not result in dispersal across substatum units (pebbles or
212	cobbles), but a smaller proportion of individuals displayed more extensive dispersal (Fig. 3).
213	Substratum-type appeared to affect all movement variables measured (Table 1). Significantly
214	lower speeds were observed in rock-pools with a pebble substratum, and this difference was

particularly evident regarding the maximum speeds attained (Fig. 4a). The fastest individual

Peer J

overall speed over a five min period was 55cm.hr⁻¹ on a rock-platform surface. Although mean sizes of chitons varied among random rock-pools, they did not vary between the two habitat types (Table 1), so this variable did not affect differences in speed between fixed factor treatments.

219

220

221

222

223

216

217

218

The net:gross displacement ratio was significantly greater in rock-pools with a rock-platform substratum (Table 1; Fig. 4b), indicating more directional, less tortuous movement paths. Although chitons on pebble substrata often had highly tortuous paths, in no instances was it observed that a given chiton returned to the same position where it had previously been resting.

224

225

Discussion

227

228

229

230

231

232

233

234

235

236

237

238

239

226

Movement patterns of mobile intertidal species vary from almost no movement (e.g. Branch 1975), to movement to and from a "home" position (e.g. Mackay & Underwood 1977, Chelazzi 1990), to regular and widespread dispersal among habitat patches (e.g. Underwood 1977). The results from the present study show for the first time that the undisturbed movement behaviour of Ischnochiton smaragdinus involves dispersal among multiple patches of substrata. Many individuals did not move across pebbles and cobbles during the observation periods, but a small proportion moved across as many as five within an hour. These individuals clearly did not remain in their natal habitat, thus such behaviour is unlikely to explain patterns of overdispersion in this species. No instances of chitons being "drifted" in the water were observed, indicating that adult dispersal occurs via "crawling", at least during low tide (Chapman 2002). It is possible that movements are similar to those of the intertidal limpet Cellana tramoscerica which alternates between homing behaviour and randomly directed movement (Mackay & Underwood 1977). The

241 (i.e. pebble) for a certain time and then subsequently moving quickly though adjacent patches. 242 Similar to other intertidal molluscs (Underwood & Chapman 1989, Chapman & Underwood 243 244 1994, Erlandsson et al. 1999, Underwood 2004), movements of *I. smaragdinus* appear to be 245 affected by topography of the substratum. A discontinuous layer of pebbles and cobbles was 246 associated with reduced speed of movement and resulted in more convoluted movement paths. Complex topographies are known to reduce movement speeds of some gastropods and result in 247 248 faster population turn-over rates in less complex areas with greater immigration and emigration 249 (Underwood & Chapman 1989). It may be advantageous for chitons to minimise time spent on 250 exposed rock-platforms to avoid predation, especially from fish and brachyurans known to prev 251 on Ischnochiton (Shepherd & Clarkson 2001, Mendonça et al. 2016). 252 253 The differences in dispersal capacity between the habitat types may also be useful in 254 understanding processes involving disturbance and restoration ecology. Disturbance in the form 255 of movement or overturning of boulders, or disruption of the under-boulder substratum, reduces 256 densities of chitons before a subsequent process of re-colonisation (Chapman & Underwood 257 1996, Smith & Otway 1997, Liversage et al. 2012). Similarly, when boulders are artificially 258 added to a shoreline for habitat restoration, it is important to know how species such as chitons 259 will colonise those boulders (Chapman 2012, 2013). The present study suggests adult colonisation will occur most readily when the substratum among boulders is a rock-platform or 260 261 other substrata of low complexity.

observations here could be explained by *I. smaragdinus* individuals remaining in a "home" patch

263	Smith & Otway (1997) showed that <i>I. smaragdinus</i> is less sensitive to disturbance (boulder
264	overturning) compared to other chiton species. Nevertheless, our results indicate it has a highly
265	overdispersed distribution among boulders, similar to most other species of Ischnochiton
266	(Grayson & Chapman 2004, Liversage & Benkendorff 2013). Adults of other species may
267	disperse in similar ways to <i>I. smaragdinus</i> , but less frequently, explaining why no other species
268	except Callochiton crocinus were visible during the present study.
269	
270	
271	Conclusions
272	
273	This study shows that dispersal by adults of an <i>Ischnochiton</i> species occurs via active benthic
274	movement during noctural low tides, with the extent of dispersal dependent on the type of
275	substratum. This provides information necessary to predict responses to changes in habitat and
276	the potential to colonise new areas during habitat restoration (e.g. Chapman, 2012; Chapman,
277	2013). The novel methods in this study will be useful in additional studies as there is increasing
278	interest in evaluating movements of mobile intertidal invertebrates in natural (Martinez et al.
279	2017) and artificial (Browne & Chapman 2014, Evans et al. 2016, Firth et al. 2016) rock-pools.
280	
281	
282	References
283	
284	Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to Software
285	and Statistical Methods, Vol. PRIMER-E, Plymouth

286	Anderson MJ, Walsh DCI (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of
287	heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs
288	83:557-574
289	Benkendorff K, Przesławski R (2008) Multiple measures are necessary to assess rarity in macro-
290	molluscs: a case study from southeastern Australia. Biodiversity and Conservation
291	17:2455-2478
292	Branch GM (1975) Mechanisms reducing intraspecific competition in <i>Patella</i> spp.: migration,
293	differentiation and territorial behaviour. Journal of Animal Ecology 44:575-600
294	Browne MA, Chapman MG (2014) Mitigating against the loss of species by adding artificial
295	intertidal pools to existing seawalls. Marine Ecology Progress Series 497:119-129
296	Buskey EJ (1984) Swimming pattern as an indicator of the roles of copepod sensory systems in
297	the recognition of food. Marine Biology 79:165-175
298	Chapman MG (2002) Early colonization of shallow subtidal boulders in two habitats. Journal of
299	Experimental Marine Biology and Ecology 275:95-116
300	Chapman MG (2012) Restoring intertidal boulder-fields as habitat for "specialist" and
301	"generalist" animals. Restoration Ecology 20:277-285
302	Chapman MG (2013) Constructing replacement habitat for specialist and generalist molluscs: the
303	effect of patch size. Marine Ecology Progress Series 473:201-214
304	Chapman MG, Underwood AJ (1994) Dispersal of the intertidal snail, Nodilittorina pyramidalis,
305	in response to the topographic complexity of the substratum. Journal of Experimental
306	Marine Biology and Ecology 179:145-169
307	Chapman MG, Underwood AJ (1996) Experiments on effects of sampling biota under intertidal
308	and shallow subtidal boulders. Journal of Experimental Marine Biology and Ecology
309	207:103-126

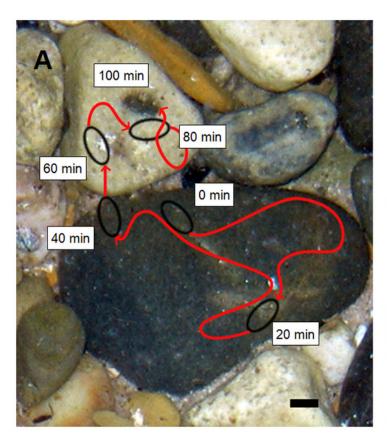
310	Chapman MG, Underwood AJ, Clarke KR (2009) New indices for ranking conservation sites
311	using 'relative endemism'. Biological Conservation 142:3154-3162
312	Chelazzi G (1990) Eco-ethological aspects of homing behaviour in molluscs. Ethology, Ecology
313	& Evolution 2:11-26
314	Chelazzi G, Della Santina P, Parpagnoli D (1987) Trail following in the chiton Acanthopleura
315	gemmata: operational and ecological problems. Marine Biology 95:539-545
316	Chelazzi G, Focardi S, Deneubourg JL (1983) A comparative study on the movement patterns of
317	two sympatric tropical chitons (Mollusca: Polyplacophora). Marine Biology 74:115-125
318	Chelazzi G, Focardi S, Deneubourg JL (1988) Analysis of movement patterns and orientation
319	mechanisms in intertidal chitons and gastropods. In: Behavioral adaptation to intertidal
320	life. Springer US, p 173-184
321	Davis RW, Fuiman LA, Williams TM, Le Boeuf BJ (2001) Three-dimensional movements and
322	swimming activity of a northern elephant seal. Comparative Biochemistry and Physiology
323	Part A: Molecular & Integrative Physiology 129:759-770
324	Erlandsson J, Kostylev V, Williams GA (1999) A field technique for estimating the influence of
325	surface complexity on movement tortuosity in the tropical limpet Cellana grata Gould.
326	Ophelia 50:215-224
327	Evans AJ, Firth LB, Hawkins SJ, Morris ES, Goudge H, Moore PJ (2016) Drill-cored rock pools:
328	an effective method of ecological enhancement on artificial structures. Marine and
329	Freshwater Research 67:123-130
330	Firth LB, Browne KA, Knights AM, Hawkins SJ, Nash R (2016) Eco-engineered rock pools: a
331	concrete solution to biodiversity loss and urban sprawl in the marine environment.
332	Environmental Research Letters 11:094015

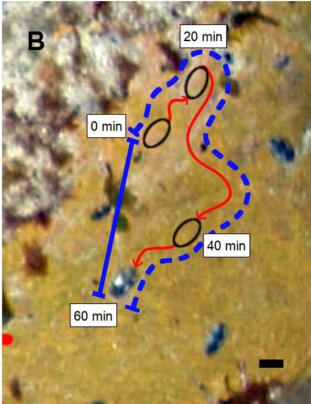
333	Grantham BA, Eckert GL, Shanks AL (2003) Dispersal potential of marine invertebrates in
334	diverse habitats. Ecological Applications 13:s108-s116
335	Grayson JE, Chapman MG (2004) Patterns of distribution and abundance of chitons of the genus
336	Ischnochiton in intertidal boulder fields. Austral Ecology 29:363-373
337	Jörger KM, Meyer R, Wehrtmann IS (2008) Species composition and vertical distribution of
338	chitons (Mollusca: Polyplacophora) in a rocky intertidal zone of the Pacific coast of Costa
339	Rica. Journal of the Marine Biological Association of the United Kingdom 88:807-816
340	Kangas M, Shepherd SA (1984) Distribution and feeding of chitons in a boulder habitat at West
341	Island, South Australia. Journal of the Malacological Society of Australia 6:101-111
342	Little C (1989) Factors governing patterns of foraging activity in littoral marine herbivorous
343	molluscs. Journal of Molluscan Studies 55:273-284
344	Liversage K (2015) Habitat associations of a rare South Australian sea star (Parvulastra
345	parvivipara) and a co-occurring chiton (Ischnochiton variegatus): implications for
346	conservation. Pacific Conservation Biology 21:234-242
347	Liversage K, Benkendorff K (2013) A preliminary investigation of diversity, abundance, and
348	distributional patterns of chitons in intertidal boulder fields of differing rock type in South
349	Australia. Molluscan Research 33:24-33
350	Liversage K, Cole VJ, McQuaid CD, Coleman RA (2012) Intercontinental tests of the effects of
351	habitat patch type on the distribution of chitons within and among patches in intertidal
352	boulder field landscapes. Marine Biology 159:2777-2786
353	Mackay DA, Underwood AJ (1977) Experimental studies on homing in the intertidal patellid
354	limpet Cellana tramoserica (Sowerby). Oecologia 30:215-237

355	Martinez AS, Queiroz EV, Bryson M, Byrne M, Coleman RA (2017) Incorporating in situ habitat
356	patchiness in site selection models reveals that site fidelity is not always a consequence of
357	animal choice. Journal of Animal Ecology:doi: 10.1111/1365-2656.12668
358	McClintock JB, Angus RA, McClintock FE (2007) Abundance, diversity and fidelity of
359	macroinvertebrates sheltering beneath rocks during tidal emersion in an intertidal cobble
360	field: Does the intermediate disturbance hypothesis hold for less exposed shores with
361	smaller rocks? Journal of Experimental Marine Biology and Ecology 352:351-360
362	Mendonça V, Vinagre C, Boaventura D, Cabral H, Silva ACF (2016) Chitons' apparent
363	camouflage does not reduce predation by green crabs Carcinus maenas. Marine Biology
364	Research 12:125-132
365	Ng TPT, Saltin SH, Davies MS, Johannesson K (2013) Snails and their trails: the multiple
366	functions of trail-following in gastropods. Biological Reviews 88:683-700
367	Palmer ANS (2012) Spatial and genetic investigation of aggregation in Ischnochiton
368	(Polyplacophora; Neoloricata; Ischnochitonina; Ischnochitonidae; Ischnochitoninae)
369	species with different larval development. Austral Ecology 37:110-124
370	Parrish JK, Viscido SV, Grünbaum D (2002) Self-organized fish schools: an examination of
371	emergent properties. The Biological Bulletin 202:296-305
372	Richards SA (2008) Dealing with overdispersed count data in applied ecology. Journal of
373	Applied Ecology 45:218-227
374	Rowley RJ (1989) Settlement and recruitment of sea urchins (Strongylocentrotus spp.) in a sea-
375	urchin barren ground and a kelp bed: are populations regulated by settlement or post-
376	settlement processes? Marine Biology 100:485-494

377	Shepherd SA, Clarkson PS (2001) Diet, feeding behaviour, activity and predation of the
378	temperate blue-throated wrasse, Notolabrus tetricus. Marine and Freshwater Research
379	52:311-322
380	Smith KA, Otway NM (1997) Spatial and temporal patterns of abundance and the effects of
381	disturbance on under-boulder chitons. Molluscan Research 18:43-57
382	Swenson DP, McClintock JB (1998) A quantitative assessment of chemically mediated rheotaxis
383	in the asteroid Coscinasterias tenuispina. Marine and Freshwater Behaviour and
384	Physiology 31:63-80
385	Thorne MJ (1968) Studies on homing in the chiton Acanthozostera gemmata. Marine and
386	Freshwater Research 19:151-160
387	Underwood AJ (1977) Movements of intertidal gastropods. Journal of Experimental Marine
388	Biology and Ecology 26:191-201
389	Underwood AJ (1997) Experiments in Ecology: Their Logical Design and Interpretation Using
390	Analysis of Variance, Vol. Cambridge University Press, Cambridge
391	Underwood AJ (2004) Landing on one's foot: small-scale topographic features of habitat and the
392	dispersion of juvenile intertidal gastropods. Marine Ecology Progress Series 268:173-182
393	Underwood AJ, Chapman MG (1989) Experimental analyses of the influences of topography of
394	the substratum on movements and density of an intertidal snail, Littorina unifasciata.
395	Journal of Experimental Marine Biology and Ecology 134:175-196
396	Underwood AJ, Fairweather PG (1989) Supply-side ecology and benthic marine assemblages.
397	Trends in Ecology and Evolution 4:16-20
398	
399	
400	

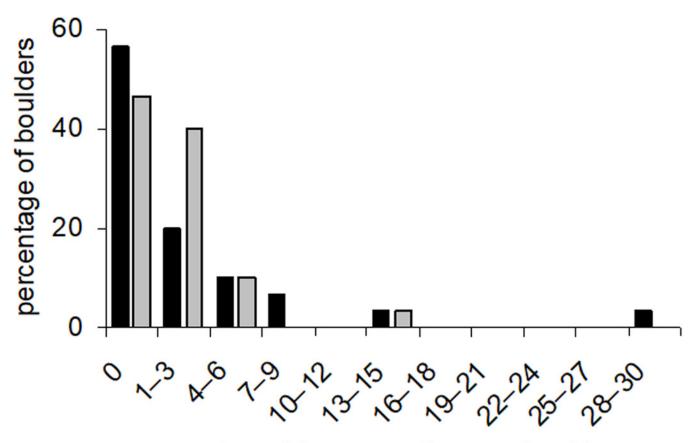
Table 1(on next page)


Univariate PERMANOVA comparing the length, movement speed, and tortuosity of movement paths for *Ischnochiton smaragdinus* individuals on a pebble or rock-platform substratum.


Measurements were taken from 7 randomly selected rock-pools. Substratum-type was a fixed factor and rock-pool was random and nested. PERMDISP tests determined if variances were significantly heterogenous. When the P-value of the random factor was >0.25 it was eliminated from the analysis to provide a more powerful test for the relevant null hypothesis (Underwood 1997). "–" designates eliminated term; *P < 0.05; **P < 0.01.

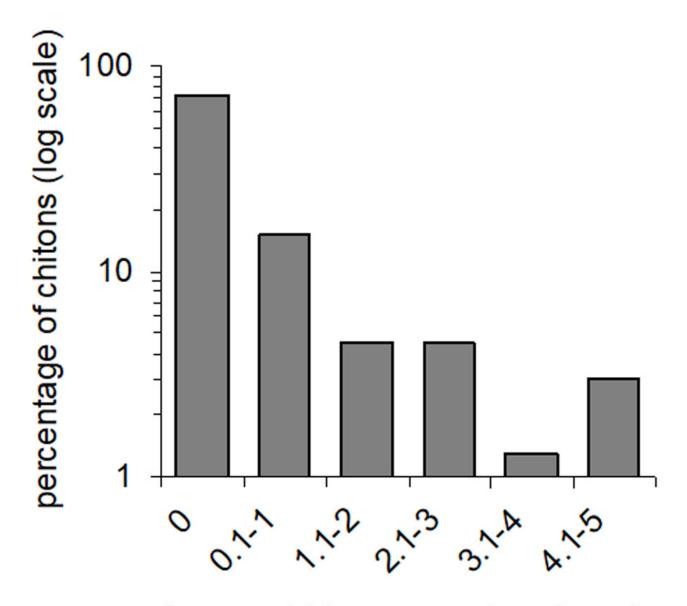
	Cl	.:4 1	41-	NI-t 1			Mariana			Net: gross displacement		
	Chiton length			Net speed			Maximum speed			ratio		
source	df	MS	F	df	MS	F	df	MS	F	df	MS	\overline{F}
Substratum-type	1 0	0.001	0.11	1	3937	6.12 **	1	121.44	9.28 **	1	0.412	7.978 *
Rock-pool (nested)	5 0	0.130	2.84 *	5	_	-	5	_		5	0.007	2.304
residual	106 4	1.687		112	643		112	13.08		80	0.003	
	PERM	ERMDISP $P > 0.75$ PERMDISP $P > 0.1$				PERMDISP $P > 0.1$			PERMDISP $P > 0.1$			

Representative movement paths of Ischnochiton smaragdinus.


Movement paths are from (A) pebble substratum (100 min) and (B) rock-platform substratum (60 min). The dashed blue line shown in (B) represents the Gross Displacement and the solid blue line indicates Net Displacement, with the ratio of these measures calculated to indicate the tortuosity of the movement path. Black lines at bottom right = 1cm.

Frequency distributions of *Ischnochiton smaragdinus* among boulders.

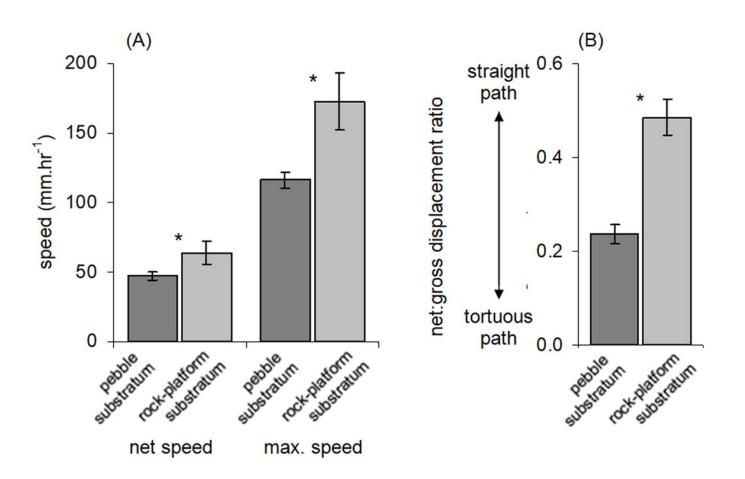
Percentages are shown of the total number of boulders that harboured different numbers of *Ischnochiton smaragdinus* individuals, from the sites Myponga Beach and Second Valley.



number of I. smaragdinus on boulder

■ Myponga Beach ■ Second Valley

Amounts of movement across pebble habitat patches.


Percentages of *Ischnochiton smaragdinus* individuals that had different rates of movement across pebbles in rock pools with a pebble substratum.

no. of new pebbles encountered per hour

Movement characteristics of *Ischnochiton smaragdinus* in habitats of differing complexity.

Mean (\pm SE) (A) speed of movement and (B) tortuosity of the movement path (measured as net:gross displacement ratio; see Fig. 1). "Net speed" refers to the speed averaged over the entire observation period (55 - 130 minutes) and "max. speed" refers to fastest rate of movement by a chiton in any five minute period. Data are from four rock-pools with pebble substratum and three with rock-platform substratum. The number of chitons per rock pool ranged from 3-32. *P <0.05.

