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The phylogenetic position of three taxa from two trematode genera, belonging to the

subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using

28S ribosomal DNA and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference

and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2

sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and

A. burminis) and paraphyly of the genera Acanthostomum and Timoniella

acanthostomines. These phylogenetic relationships were consistent analysing 28S by itself

and the concatenated 28S + ITS1 + 5.8S + ITS2 sequences. Based on molecular

phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon,

in contrast with previous classifications based on morphological data. Phylogenetic

patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also

well-supported. However, analyses using additional genera and species are necessary to

support the phylogenetic inferences from this study. Our molecular phylogenetic

reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae.

Here, we present the evolutionary and ecological implications of parasitic infections in

freshwater and brackish environments.
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13 Abstract 

14 The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily 

15 Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using 28S ribosomal 

16 DNA and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference and Maximum 

17 likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the 

18 monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of 

19 the genera Acanthostomum and Timoniella acanthostomines. These phylogenetic relationships 

20 were consistent analysing 28S by itself and the concatenated 28S + ITS1 + 5.8S + ITS2 

21 sequences. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is 

22 therefore a paraphyletic taxon, in contrast with previous classifications based on morphological 

23 data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid 

24 taxa are also well-supported. However, analyses using additional genera and species are 

25 necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic 

26 reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, 

27 we present the evolutionary and ecological implications of parasitic infections in freshwater and 

28 brackish environments. 

29
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30 Introduction

31 The Cryptogonimidae Ward, 1917, is a speciose family (≥ 370 species), consisting of 93 genera 

32 associated with the intestine or pyloric caeca of marine and freshwater teleosts, reptiles and 

33 occasionally amphibians around the world (Miller and Cribb 2008a, 2013; Miller et al. 2009, 

34 2010a, b; Cribb and Gibson 2010; Tkach and Bush 2010; Fernandes et al. 2013). Since 

35 taxonomic identification based on morphological characters is complex (i.e., it is based on 

36 combinations of characters), the taxonomic classification of species within Cryptogonimidae 

37 (e.g., at the subfamily level) has been reworked several times (Miller and Cribb 2008a). 

38 Taxonomic schemes of subfamilies can also be detected based on ecological factors and host 

39 preference. For example, studies based on phylogenetic approaches infer hierarchical-taxonomic 

40 patterns between cryptogonimid species associated with specific marine fish hosts (e.g., 

41 Retrovarium spp. that are associated with perciform marine fishes), or cryptogonimid genera 

42 associated with reptile taxa (e.g., the subfamily Acanthostominae Looss, 1899) (Brooks 1980; 

43 Miller and Cribb 2007a, 2008a). In particular, the Acanthostominae was inferred based on 

44 morphology, phylogeny and biogeographical and host-parasite association patterns (Brooks 

45 1980; Brooks and Holcman 1993). The criteria for the subfamily Acanthostominae, as 

46 recognized by Brook and Holcman (1993), was based on six characters: 1) terminal oral sucker; 

47 2) body armed with single row of spines; 3) preacetabular pit; 4) genital pore not in preacetabular 

48 pit; 5) seminal vesicle coiled posteriorly; and 6) sucker-like gonotyl. Based on these criteria, the 

49 acanthostomine trematodes include five genera: Timoniella Rebecq, 1960; Proctocaecum 

50 Baught, 1957; Gymnatrema Morozov, 1955; Caimanicola Freitas and Lent, 1938; and 

51 Acanthostomum Looss, 1899 (Brooks 2004). Nevertheless, Miller and Cribb (2008a) were not 

52 convinced by the morphological characteristics that were used to justify subfamily-level 
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53 divisions in Cryptogonimidae because several subfamilies were separated by few and trivial 

54 characters. Miller and Cribb (2008a) also recognized that the phylogenetic analyses of 

55 acanthostomines by Brooks (1980) could be used to infer intergeneric relationships between 

56 cryptogonimids.

57 To explore the diversity of helminth parasite fauna from aquatic invertebrate and 

58 vertebrate hosts in Mexico (Vidal-Martínez et al. 2001; Aguirre-Macedo et al. 2017), we 

59 collected specimens of cryptogonimid metacercariae presumed to be of the subfamily 

60 Acanthostominae: Acanthostomum americanum (= Atrophecaecum astorquii), Pérez-Vigueras, 

61 1956, and Timoniella (= Pelaezia) loossi Pérez-Vigueras, 1956, from the Ria Celestun Biosphere 

62 Reserve, Yucatan Peninsula, Mexico (based on Moravec 2001; Vidal-Martínez et al. 2001; 

63 Brooks 2004; Miller and Cribb 2008a). These metacercariae were collected from the euryhaline 

64 fish Cichlasoma urophthalmus (Günter, 1862) (Perciformes: Cichlidae) from the Yaxaá water 

65 spring (20° 53’ 12.57” N; 90° 20’ 58.86” W), located in the Celestun tropical lagoon (Fig. 1). 

66 We also collected cercariae presumed to be of the Cryptogonimidae from the aquatic gastropod 

67 Pyrgophorus coronatus (Pfeiffer, 1840) (Gastropoda: Hybrobiidae) (see Scholz et al. 2000), at 

68 the same location, to test for possible life-cycle links between the cercariae and metacercariae 

69 with molecular data. To examine the systematic framework of representative species of our 

70 specimens of cercariae and metacercariae, we carried out a phylogenetic reconstruction based on 

71 molecular markers, i.e., 28S ribosomal DNA and the internal transcribed spacers (ITS1–5.8S–

72 ITS2). Additionally, to investigate the monophyly of the taxa included in Cryptogonimidae at the 

73 subfamily level, we included sequences from additional species of two sister taxa, i.e., 

74 Opisthorchiidae and Heterophyidae (Trematoda: Opisthorchioidea) (Thaenkham et al. 2011, 

75 2012). To do this, we used sequence data for the 28S and ITS1–5.8S–ITS2 rDNA markers 
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76 (available through GenBank) of species belonging to these two families. Based on the results of 

77 the molecular phylogenetic analyses, the systematic position of the acanthostomines genus 

78 Acanthosthomum and Timoniella was evaluated, with a brief discussion of the taxonomic 

79 implications for the subfamily Acanthostominae, and phylogenetic evidence to support the 

80 different intergeneric relationships among Cryptogonimidae is provided.

81 Material and methods

82 Collection of hosts and trematode parasites

83 As part of our ongoing study in the Celestun lagoon (Sosa-Medina et al. 2015), in March 2016 

84 we collected 223 hydrobiid snails of P. coronatus from two localities: Baldiocera spring (20° 

85 54’ 6.29” N; 90° 20’ 26.46” W) (156 snails) and Yaxaá spring (67 snails) (the two springs are 

86 approximately 1,400 metres apart). The snails were collected using strainers, placed separately 

87 into glass tubes and maintained in artificial light in the laboratory to stimulate the emergence of 

88 cercariae. After 2–3 days, portions of the snails were removed from their shells by dissection 

89 under a stereomicroscope. The only representatives of Cyptogonimidae (3 cercariae) were 

90 collected from a single P. coronatus from Yaxaá spring. As for representatives of other families, 

91 of the 156 P. coronatus examined from Baldiocera spring, we observed two cercaria of 

92 Ascocotyle (Phagicola) nana Ransom, 1920 (Heterophyidae) in each of two individual snails; 

93 and one metacercaria of Crassicutis cichlasomae Manter, 1936 (Apocreadiidae) from one snail. 

94 Both larvae were previously recorded from P. coronatus (Scholz et al. 2000). Of the 67 P. 

95 coronatus examined from Yaxaá spring, the only cercariae observed belonged to the 

96 aforementioned cryptogonimids. We also sampled specimens of other adult cryptogonimids, e.g., 

97 Oligogonotylus mayae Razo-Mendivil et al. 2008, from the cichlid fish C. urophthalmus. The 

98 protocols for host dissection, examination, collection and preservation, and the morphological 
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99 study of parasitic specimens followed Vidal-Martínez et al. (2001). We also collected specimens 

100 of other adult trematode species from the same fish host, Crassicutis cichlasomae. The 

101 apocreadiid was used as an outgroup taxon for the phylogenetic analysis in this study, based on 

102 previously established sister group relationship of Ophisthorchioidae (Bray et al. 2009; Fraija-

103 Fernandez et al. 2015). Trematodes were identified based on morphological criteria suggested by 

104 Vidal-Martínez et al. (2001), Miller and Cribb (2008a) and Razo-Mendivil et al. (2008, 2010). 

105 The identification to genus level for both Timoniella and Acanthosthomum is certain based on 

106 metacercariae morphology. Microphotographs of both taxa can be found in Supplementary 

107 information Fig. S1. However, identification to species level may be questioned, therefore we 

108 hereafter refer to the species as T. cf. loossi and A. cf. americanum. Several metacercarian and 

109 adult specimens collected for morphological analysis were deposited as voucher specimens [T. 

110 cf. loossi (No. 525), A. cf. americanum (No. 526), C. cichlasomae (No. 527) and O. mayae (No. 

111 528)] in the Colección Helmintológica del CINVESTAV (CHCM), Departamento de Recursos 

112 del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 

113 Unidad Mérida, Yucatán, México. Acanthostomine cercariae were not deposited because each 

114 specimen was required for the molecular study. Comisión Nacional de Acuacultura y Pesca 

115 (PPF/DGOPA-070/16) issued the collecting permits.  

116 DNA extraction, PCR amplification and sequencing

117 DNA was extracted from individual cercariae, metacercariae and adult trematodes. DNA 

118 extraction was performed using the DNAeasy blood and tissue extraction kit (Qiagen, Valencia, 

119 CA, USA) following the manufacturer’s instructions. For the four trematode taxa, the 28S 

120 ribosomal gene region was amplified by Polymerase Chain Reaction (PCR) (Saiki 1988), using 

121 28sl forward (5´-AAC AGT GCG TGA AAC CGC TC- 3´) (Palumbi et al 1996) and LO reverse 
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122 (5´-GCT ATC CTG AG(AG) GAA ACT TCG- 3´) (Tkach et al. 2000). The primers BD1 

123 forward (5´ -GTC GTA ACA AGG TTT CCG TA- 3´) and BD2 reverse (5´-TAT GCT TAA 

124 ATT CAG CGG GT-3´) (Bowles et al., 1995) were used for ITS1–5.8S–ITS2. The reactions 

125 were prepared using the Green GoTaq Master Mix (Promega). This procedure was carried out 

126 using an Axygen Maxygen thermocycler. PCR cycling conditions by both molecular markers 

127 were as follows: an initial denaturing step of 5 min at 94 °C, followed by 35 cycles of 92 °C for 

128 30 s, 55 °C for 45 s, and 72 °C for 90 s, and a final extension step at 72 °C for 10 min. The PCR 

129 products were analysed by electrophoresis in 1% agarose gel using TAE 1X buffer and observed 

130 under UV light using the QIAxcel®Advanced System. The purification and sequencing of the 

131 PCR products were carried out by Genewiz, South Plainfield, NJ, USA 

132 (https://www.genewiz.com/).

133 Molecular data and phylogenetic reconstruction

134 To obtain the consensus sequences of the larvae and adults of A. cf. americanum, T. cf. loossi, O. 

135 mayae and C. cichlasomae, we assembled and edited the chromatograms of forward and reverse 

136 sequences using the Geneious Pro v5.1.7 platform (Drummond et al. 2010). The 28S, ITS1, 5.8S 

137 and ITS2 sequences that were generated during this study were aligned with sequences of 

138 cryptogonimid, heterophyid and opisthorchiid taxa obtained from GenBank (see GenBank 

139 accession numbers in Supplementary Table S1), using an interface available with MAFFT 

140 v.7.263 (Katoh and Standley 2016), an “auto” strategy and a gap-opening penalty of 1.53 with 

141 Geneious Pro, and a final edition by eye in the same platform. The best partitioning scheme and 

142 substitution model for each molecular marker was selected by using the “greedy” search strategy 

143 in Partition Finder v.1.1.1 (Lanfear et al. 2011, 2014) and applying the Bayesian Information 

144 Criterion (BIC) (Schwarz 1978). The nucleotide substitution model that best fit the 28S data was 
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145 TVM + I + G (Posada 2003); for ITS1 and ITS2 it was TVMef + G (Posada 2003); and for 5.8S, 

146 it was JC + G (Jukes and Cantor 1969). Hypervariable regions of 28S, ITS1 and ITS2 alignments 

147 were excluded using the Gblocks Web Server (Castresana 2000; Talavera and Castresana 2007).

148 The datasets were analysed with Bayesian inference (BI) and Maximum likelihood (ML) 

149 using the CIPRES Science Gateway v. 3.3 (Miller et al. 2010). The ML was conducted in 

150 RaxML v. 8 (Stamatakis 2014) using the GTRCAT approximation as a model of nucleotide 

151 substitution (Yang 1994, 1996; Stamatakis 2006). The BI was carried out with MrBayes v. 3.2.1 

152 (Ronquist et al. 2012). The Bayesian phylogenetic trees were reconstructed for each gene 

153 separately using two parallel analyses of Metropolis-Coupled Markov Chain Monte Carlo 

154 (MCMC) for 20 x 106 generations each. Topologies were sampled every 1,000 generations and 

155 the average standard deviation of split frequencies was observed until it reached < 0.01, as 

156 suggested by Ronquist et al. (2012). A majority consensus tree with branch lengths was 

157 reconstructed for the two runs after discarding the first 5,000 sampled trees. For both ML and BI 

158 analyses, model parameters were independently optimized for each partition. Node support was 

159 evaluated by non-parametric bootstrapping (Felsenstein 1985) with 1,000 replicates performed 

160 with RAxML (ML) and BI by Posterior probabilities (PP), where bootstrap values ≥ 75% and PP 

161 ≥ 0.95, were considered strongly supported.

162 Results

163 DNA sequences and dataset analyses

164 In total, 36 bi-directional 28S and ITS1-5.8S-ITS2 sequences were obtained from three 

165 individual cercariae and three individual metacercariae from A. cf. americanum, as well as three 

166 individual metacercariae from T. cf. loossi, O. mayae (one adult specimen), and C. cichlasomae 
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167 (one adult specimen, outgroup) (Table 1). The 28S rDNA sequence fragment consisted of 881 

168 base-pairs (bp) for the cercariae and metacercariae of A. cf. americanum; 880 bp in T. cf. loossi, 

169 871 bp in O. mayae, and 870 bp in those of C. cichlasomae. The 28S sequences of cercariae and 

170 metacercariae of A. cf. americanum from P. coronatus were identical, while the sequences of T. 

171 cf. loossi showed a divergence of 0.03%. Nucleotide sequence variation in the 28S alignment 

172 from cryptogonimids (excluding the outgroup taxon) from 28S included 722 conserved sites, 537 

173 variable sites, 403 parsimony-informative sites, and 134 singleton sites. The sequence fragments 

174 for the ITS1 nuclear marker were between 709 and 781 bp in length for A. cf. americanum; and 

175 were 805 bp in T. cf. loossi, 613 bp in O. mayae, and 424 bp in C. cichlasomae. The 5.8S nuclear 

176 marker was composed of 160 bp in A. cf. americanum, T. cf. loossi, O. mayae and C. 

177 cichlasomae. The length of the ITS2 nuclear marker ranged from 259 bp to 277 bp in A. cf. 

178 americanum and from 268 bp to 277 bp in T. cf. loossi; 260 bp in O. mayae, and 295 bp in C. 

179 cichlasomae. The ITS1 and ITS2 sequences of A. cf. americanum displayed 4% and 0.7% 

180 divergence, respectively, and those from T. cf. loossi displayed 0.9% divergence and 100% 

181 pairwise identity; the 5.8S sequences were identical. Nucleotide sequence variation (excluding 

182 the outgroup taxa) for ITS1, 5.8S and ITS2 were 62/69/50 conserved, 406/92/212 variable, 

183 341/36/184 parsimony-informative, and 65/56/28 singleton sites, respectively.

184 Phylogenetic reconstructions

185 We inferred the phylogenetic relationships of Cryptogonimidae, based on the BI and ML 

186 analyses, from the following two datasets. The 28S gene dataset contained 92 terminals 

187 belonging to 81 species, and the combined dataset (28S + ITS1 + 5.8S + ITS2) contained 294 

188 sequences belonging to 81 taxa concatenated (all sequences available from GenBank, see 

189 Supplementary Table S1). The phylogenetic trees constructed from the 28S and the concatenated 

PeerJ reviewing PDF | (2017:08:20015:0:1:NEW 30 Aug 2017)

Manuscript to be reviewed



190 datasets (28S + ITS1 + 5.8S + ITS2), based on BI and ML analyses, were broadly congruent. For 

191 example, all clades with high nodal support values (PP ≥ 0.95 and bootstrap ≥ 75%) and 

192 analysed with the concatenated and 28S datasets were recovered with both BI and ML (Fig. 2; 

193 Supplementary Figs. S2–4). Only three high nodal support values (PP ≥ 0.95) from three clades 

194 were identified with BI [i.e., (Gynichthys diadikidnus, Neoparacryptogonimus ovatus); 

195 (Metagonimus takahashii, M. yokogawai); and (Haplorchis yokogawai (Haplorchis popelkae, 

196 Haplorchis pumilio))], while only one high nodal support value (bootstrap ≥ 75%) for one clade 

197 was identified with ML [i.e., (Haplorchoides sp. (Stictodora sp. isolate St1, Stictodora sp. isolate 

198 St2)) (Fig. 2). Conversely, only one difference was observed between the topology of the 

199 phylogenetic trees obtained from the 28S and concatenated datasets with BI and ML. Namely, 

200 only the phylogenetic tree obtained from the ML analysis of the 28S sequence dataset contained 

201 a polyphyletic group (without nodal support value), i.e., Siphodera vinaledwardsii, Gynichthys 

202 diakidnus, Chelediadema marjoriae, Caecincola parvulus, and Tabascotrema verai 

203 (Supplementary Fig. S3). In all trees, acanthostomines form a paraphyletic group, with high 

204 nodal support values (PP ≥ 0.95), with Acanthostomum and Timoniella not clustering together. 

205 Lastly, based on all trees, the family Cryptogonimidae appears to have arisen from a paraphyletic 

206 Heterophyidae/Opisthorchiidae group.

207 The phylogenetic relationships among Cryptogonimidae at the generic level had high 

208 support (PP ≥ 0.95) and in several cases, the clades with high nodal support values were coherent 

209 with their geographic distribution and their association with the host group that they parasitize. 

210 For example, the genera Siphoderina, Belusca, Varialvus, Caulanus and Latuterus form a 

211 monophyletic group (Clade I) (Fig. 2), with geographical distribution associated with the Indo-

212 Pacific region (I-P); at the same time, the genera Belusca and Varialvus [the latter with 
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213 distribution only in the Indo-West Pacific (IW-P)], Caulanus, and Latuterus genera are 

214 associated with hosts of the marine fish families Haemulidae and Lutjanidae. Furthermore, 

215 Retrovarium spp. is associated with Lutjanidae and Haemulidae from the IW-P (Fig. 2). 

216 Geographical and host congruence was also found in cryptogonimid groups from North and 

217 Central America, although the clade did not receive high nodal support values in either analysis.

218 Discussion

219 The phylogenetic trees obtained from BI and ML analyses, inferred from the 28S and 

220 concatenated dataset, identified the phylogenetic position of the acanthostomines A. cf. 

221 americanum and T. cf. loossi, and illustrate differents intergeneric relationships among 

222 cryptogonimids (see below). Phylogenetic analyses show that the Heterophyidae and 

223 Opisthorchiidae are paraphyletic as previously reported (Thaenkham et al. 2011, 2012; Fraija-

224 Fernández et al. 2015; Stoyanov et al. 2015; Borges et al. 2016). The family Cryptogonimidae 

225 appears to have arisen from the paraphyletic Heterophyidae/Opistorchiidae. This phylogenetic 

226 inference is based on a dataset of 51 taxa of Cryptogonimidae that included 24 genera. At present, 

227 the family Cryptogonimidae includes 93 genera (Cribb and Gibson 2012). It’s indicate that we 

228 analysed almost 40% (38.75%) of recorded genera of Cryptogonimidae. Therefore, the 

229 phylogenetic inference of Cryptogonimidae has appropriate taxonomical representation, but it is 

230 necessary to complete it.

231 Based on the phylogenetic position of A. cf. americanus, A. burminis (which formed a 

232 separate single clade) and T. cf. loossi (independent lineage), we find that the subfamily 

233 Acanthostominae is paraphyletic. Therefore, the monophyly proposed for the subfamily 

234 Acanthostominae based on morphological analyses (i.e., Brooks 1980, 2004; Brooks and Caira 

235 1982; Brooks and Holcman 1993) does not appear to be valid. These data support the proposed 
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236 invalidity of the subfamily-level division of Acanthostominae into Cryptogonimidae, suggested 

237 by Miller and Cribb (2008a). Therefore, it is necessary to include more acanthostomine taxa (i.e., 

238 Proctocaecum, Gymnatrema, Caimanicola) in future studies to determine their phylogenetic 

239 position and test their monophyly.

240 Based on the phylogenetic positions of Acanthostomum spp. and T. loossi in this study, 

241 we postulate a probable host-specificity pattern at a supra-specific level. The adult trematodes A. 

242 burminis, A. americanum and T. loossi are associated with freshwater diapsid sauropsids, i.e., 

243 Xenochrophis piscator (Schneider, 1799) (snake) (Reptilia: Colubridae) and Crocodylus 

244 moreletii Duméril & Bibron, 1851 (crocodile) (Reptilia: Crocodylidae) (Moravec 2001; 

245 Jayawardena et al. 2013; Sosa-Medina et al. 2015). The molecular evidence that links the two 

246 larval stages of A. americanum to the freshwater environment (from their intermediate hosts: 

247 snail and fish) and their later development as adults in freshwater crocodiles, may reflect an 

248 ecological preference to a freshwater environment. More specifically, the first larval stage (i.e., 

249 cercaria) of A. cf. americanum is restricted to freshwater environments due to the intermediate 

250 host snail’s intolerance to brackish water (Scholz et al. 2000). The trematode’s intermediate and 

251 definitive vertebrate hosts (C. urophthalmus and C. moreletii) are both tolerant to brackish water 

252 and can move between the two aquatic environments (Platt et al. 2010; Miller et al. 2009); 

253 however, the freshwater environment is essential to completing the trematode’s life cycle. This 

254 assertion is supported by taxonomic records of metacercariae of A. cf. americanum being only 

255 from freshwater fishes of the families Characidae, Cichlidae, Clupeidae and Poeciliidae (Sosa-

256 Medina et al. 2015; Salgado-Maldonado 2006).

257 Our phylogenetic trees indicated that the Acanthostominae was a freshwater group that 

258 was sister to the remaining marine cryptogonimids (supporting the sister-group relation found by 
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259 Stoyanov et al. 2015) (Fig. 2). If the acanthostomine taxa are truly sister to the remaining 

260 Cyrptogonomidae, there would be a strong argument for the hypothesis that the cryptogonimids 

261 originated in a freshwater environment and later diversified and colonized brackish and marine 

262 environments. The transition from a freshwater environment to a brackish environment to a 

263 marine environment is an evolutionary process also inferred for other platyhelminth groups (e.g., 

264 Torchin et al. 2002; Boeger et al. 2003; Van Steenkiste et al. 2013). Future studies may test the 

265 hypothesis regarding the colonization from freshwater to marine environments (e.g., Waters and 

266 Wallis 2001; Grosholz 2002; Lee and Gelembiuk 2008). The identification of the link between 

267 the cercariae and metacercariae of A. cf. americanum may represent a step in the understanding 

268 of the evolutionary strategies employed within different aquatic environments and the potential 

269 repercussions on food webs (e.g., Shoop 1988; Dobson et al. 2006; Poulin 2006).

270 It is noteworthy that the hydrobiid snail P. coronatus is highly susceptible to trematode 

271 infection having been reported to harbour 12 trematode species, e.g., Genarchella astyanactis 

272 Watson 1976; Echinochasmus leopoldinae Scholz et al. 1996; Echinochasmus macrocaudatus 

273 Ditrich et al. 1996; Saccocoelioides ? sogandoresi Lumsden 1963; Crassicutis cichlasomae 

274 Manter 1936; Homalometridae gen. sp.; Oligogonotylus manteri Watson 1976; A. (Phagicola) 

275 nana Ransom 1920; Ascocotyle (Ascocotyle) sp.; Xiphidiocercaria type 1, Xiphidiocercaria type 

276 2 and Xiphidiocercaria type 3 (Scholz et al. 2000). The record of A. cf. americanum in P. 

277 coronatus is a new cercaria record for this snail. However, unfortunately, we did not collect 

278 sufficient cercariae of A. cf. americanum to describe their morphology.

279 Patterns of specific associations (e.g., codivergence (Page 2003; Martínez-Aquino 2016)) 

280 between other cryptogonimids were also revealed in our analyses; e.g., we detected a 

281 monophyletic group (Clade I) that included Belusca, Caulanus, Latuterus, Siphoderina and 
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282 Varialvus with a geographical distribution associated with the I-P (Miller and Cribb 2007a, 

283 2008b; Miller et al. 2010b) (Fig. 2). Based on the diversity of genera in this clade, possible 

284 taxonomic implications include the erection a new taxonomic hierarchy at the subfamily level. 

285 Future studies based on morphological evidence may support or reject this taxonomic inference. 

286 Alternatively, a host specificity pattern at the supra-specific level (marine fishes of the 

287 Lutjanidae and Haemulidae families from IW-P) is also supported in Euryakaina spp. and 

288 Retrovarium spp., as previously recorded (Miller et al. 2007b, 2010a, 2011). Presently, more 

289 than 50 cryptogonimid taxa have been recorded from fishes belonging to the Lutjanidae and 

290 Haemulidae of the IW-P (Miller and Cribb 2007b; Cribb et al. 2016). These specific associations 

291 of cryptogonimids with fish from the IP and the IW-P, can be observed in the phylogenetic 

292 topology revealed in this study; e.g., the genera Beluesca, Varialvus, Caulanus, Latuterus, 

293 Siphomutabilus, Metadena, Chelediadema, and Gynichthys (Fig. 2) (Miller and Cribb 2007c, 

294 2009, 2013; Miller et al. 2010a,b, 2011; Overstreet et al. 2009). Another possible case of host 

295 specificity is Adlardia novaecaledoniae with Nemipteridae from the IW-P (Miller et al. 2009). 

296 Future taxonomical studies of cyryptogonomid trematodes from marine fishes from other parts of 

297 the world will shed more light on host-specificity patterns (e.g., Barger 2010; Montoya-Mendoza 

298 et al. 2014).

299 Additionally, several non-acanthostomine cryptogonimid clades associated with the 

300 freshwater environment are specialist parasites of particular families of freshwater fishes from 

301 North and Central America; e.g., Caecincola parvulus is associated with Centrarchidae from 

302 North America (NA), and Tabascotrema verai, O. mayae and O. manteri are associated with 

303 Cichlidae from Central America (CA) (Choudhury et al. 2016). Even though these groups did not 

304 have valid nodal support in this study (Fig. 2), it is important to mention three points. First, the 
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305 freshwater cryptogonimids appear to arise from among the marine taxa. Second, C. parvulus and 

306 Oligogonotylus spp. occur in freshwater fishes as both adults and metacercariae (Stoyanov et al. 

307 2015; Choudhury et al. 2016). If new data reveal that species with a two-host life-cycle are 

308 monophyletic, the adaptation to the short life span of the fish host should be considered a derived 

309 state of the general life-cycle of cryptogonimids (Stoyanov et al. 2015; Lefebvre and Poulin 

310 2005). Third, considering that centrarchids and cichlids are both members of Percomorpha and 

311 have marine affinities, Choudhury et al. (2016) suggest testing the hypothesis that a close 

312 relationship exists between Middle-American cryptogonimids of cichlids and cryptogonimids of 

313 North American centrarchids. The phylogenetic relationship we found between cryptogonimids 

314 of cichlids and centrarchids would supports this hypothesis. However, recent records of C. 

315 parvulus from other freshwater fish families should also be considered (McAllister et al. 2015, 

316 2016).

317 Studies of cryptogonimids (and trematodes in general) are negatively impacted by the 

318 lack of taxonomical records of helminth parasites of freshwater and marine fishes of different 

319 regions (Scholz and Choudhury 2014; Cribb et al. 2016; Vidal-Martínez et al. 2016), as well as 

320 the lack of knowledge concerning intermediate and definitive host life cycles (Cribb and Bray 

321 2011; Blasco-Acosta and Poulin 2017). This has led to a reduction in postulated evolutionary 

322 hypotheses on the diversification patterns of parasites. However, the development of 

323 phylogenetic hypotheses, as presented, provide a modern framework in parasite evolutionary 

324 ecology (e.g., Littlewood 2011; Gómez Nichols 2013; Poulin et al. 2016).
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Figure 1(on next page)

Map of the study area, Yaxaá spring, Celestun coastal lagoon, Yucatan, Mexico.
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Figure 2(on next page)

Phylogenetic tree obtained from Bayesian inference analysis of the concatenated data

(28S + ITS1 + 5.8S + ITS2) of species of the Cryptogonimidae.

The scale bar represents the number of nucleotide substitutions per site. Codes following

taxon names are cross-referenced in Table 1 and Supplementary Table S1. Filled black circles

above and white circles below the branches represent Bayesian posterior probability ≥ 0.95

and Maximum likelihood bootstrap support values ≥ 75%, respectively. Diffused green =

Freshwater environment; Diffused green-yellow = Brackish environment; Diffused blue =

Marine environment; IH = Intermediate host; DH = Definitive host; ? = Intermediate host

unknown. I-P = Indo-Pacific; IW-P = Indo-west Pacific; CA = Central America; GM = Gulf of

Mexico; NA = North America; EA = Eastern Atlantic; Se-A & SL = South-eastern Asia and Sri

Lanka. The black snail outline corresponds to Pyrgophorus coronatus. The black fish outline

corresponds to Cichlasoma urophthalmus. The black crocodile outline corresponds to

Crocodylus moreletii. The black fishes outline on the remaining Cryptogonomidae refer to

host specificity at family (ies) recording to species, species groups or genus (black line) of

cryptogonomids. The animals´ silhouettes were modified from Ditrich et al. (1997) (snail);

Gray (1830) (snake); Nelson (2006) (fishes), and Sánchez-Herrera et al. (2011) (crocodile).

The cryptogonomid taxa without black fish outline are not specific to one host. See text for

more details.
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Table 1(on next page)

GenBank accession numbers for cryptogonimid species sequences newly generated for

this study.

Codes used for each cryptogonimid sequenced are as shown in the terminal taxa names of

Figure 2 and Supplementary figures S3–4.
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1 Table 1. GenBank accession numbers for cryptogonimid species sequences newly generated for 

2 this study. Codes used for each cryptogonimid sequenced are as shown in the terminal taxa 

3 names of Figure 1 and Supplementary Figures S2–4.

4

Name Code Life cycle stage

GenBank Accession

              28S       ITS1-5.8S-ITS2

Timoniella cf. loossi 1 Metacercarie XXXXX XXXXX

Timoniella cf. loossi 2 Metacercarie XXXXX XXXXX

Timoniella cf. loossi 3 Metacercarie XXXXX XXXXX

Timoniella cf. loossi 4 Metacercarie XXXXX XXXXX

Timoniella cf. loossi 5 Metacercarie XXXXX XXXXX

Acanthostomum cf. 

americanum 1c Cercarie

XXXXX XXXXX

Acanthostomum cf. 

americanum 2c Cercarie

XXXXX XXXXX

Acanthostomum cf. 

americanum 3c Cercarie

XXXXX XXXXX

Acanthostomum cf. 

americanum 1m Metacercarie

XXXXX XXXXX

Acanthostomum cf. 

americanum 2m Metacercarie

XXXXX XXXXX

Acanthostomum cf. 

americanum 3m Metacercarie

XXXXX XXXXX

Oligogonotylus mayae Adult XXXXX XXXXX

Crassicutis cichlasomae Adult XXXXX XXXXX

5
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