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ABSTRACT: Arbuscular mycorrhizal fungi (AMF) played an essential role in complex 9 

ecosystems. However, the species diversity and composition of AMF community remain 10 

unclear in semi-arid mountain. Further, it is not well understood if the characteristics of AMF 11 

community assembly differs for different habitat types, e.g., agricultural arable land, artificial 12 

forest land, natural grassland, and bush/wood land.Here, using the high-throughput 13 

technology by Illumina sequencingon MiSeq platform, we explored the species diversity and 14 

composition of soil AMF communities among different habitat types in a semi-arid mountain 15 

(Mid-western region of China). Then we analyzed the effect of nutrient composition and soil 16 

texture on AMF community assembly.Our results showed that members of the Glomus genera 17 

were predominated in all soil types. The distance-based redundancy analysis indicated that the 18 

content of water, available phosphorus, and available potassium were the most crucial 19 

geochemical factors that significantly affected AMF communities (p < 0.05). The analysis of 20 

thesoil texture confirmed that AMF diversity was negatively correlated with soil clay content. 21 

The comparison of AMF diversity among the various habitat types revealed that the artificial 22 

forest land had the lowest AMF diversity in comparison with other land types. Our findings 23 

suggest that there were differences in species diversity and composition of soil AMF 24 

communities among different habitat types.These findings shed new light on the 25 

characteristics of community structure and drivers of community assembly in AMF in 26 
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semi-arid mountains, and point to the potential importance of different habitat types on AMF 27 

communities. 28 

Key words: Illumina sequencing; AMF communities; soil properties; semi-arid field. 29 
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INTRODUCTION 31 

Arbuscular mycorrhizal fungi (AMF) play high value for ecosystem restoration and 32 

sustainability (Herder et al., 2010; Sanders, 2010; Verbruggen et al., 2010). The majority of 33 

land plant species has the potential ability to form symbiotic relationships with AMF, which 34 

can significantly enhance plant growth (Lekberg & Koide, 2005), improve soil structure 35 

(Piotrowski et al., 2004; Caravaca et al., 2006; Wilson et al., 2009), and contribute to plant 36 

resistance toenvironmental stress (Benjamina, Karl & Johnn, 2009; Balliu, Sallaku & Rewald, 37 

2015). And AMF also can maintain ecosystems stability and promote ecosystem development 38 

(Larsen, Williams & Kremen, 2005; Fuhrman, 2009; Rosindell, Hubbell & Etienne, 2011). 39 

Therefore, to explore the ecological environment in diverse regions, understanding the AMF 40 

diversity and biogeography will be of primary importance (Fitter, 2005; Chaudhry et al., 41 

2012).  42 

In recent years, lots ofstudies have reportedthe AMF communitycomposition in different 43 

environmental condition (Öpik et al., 2006; Wubet et al., 2006; Heijden & Scheublin, 2007; 44 

Lee, Lee & Young2008; Krüger et al., 2009).Scholars have argued that the composition of 45 

AMF communities will vary along the gradients of land-use intensity under the same climatic 46 

conditions and region of agricultural ecosystems (Dumbrell et al., 2010; Fritz et al., 2010; 47 

Lekberg et al., 2011; Mirás-Avalos et al. 2011, Meadow & Zabinski , 2012). And several 48 

papersalso confirmed that the AMFdistributions are caused by their ability to tolerate high 49 

nutrient concentrationsin different vegetation soil types (Porras-Alfaro et al., 2007; 50 

Egertonwarburton, Johnson & Allen, 2008; Thomson, Robson & Abbott, 2010). Meanwhile, 51 

through the investigation ofnatural or agricultural habitats, scholars shown that a high 52 

diversity of rhizosphere AMF was found in natural habitat(Öpik et al., 2008; Bonfim et al., 53 

2016),and the AMF communities inhabiting plant roots tended to have a lower diversity in 54 

agricultural ecosystems(Daniell et al., 2001; Alguacil et al. 2011, Schnoor et al. 2011, 55 

Bainard et al., 2012). However, most of the previous research works focused on single 56 

ecosystems(Helgason et al., 1998; Lumini et al., 2010; Verbruggen&Toby, 2012),andthere are 57 

no comparative analyses on the AMF conditionamong different soil typesunder the same 58 

climate conditions in semi-arid regions.  59 

Hitherto, traditional studies of AMF community composition have been scarce, partly 60 

due to the limitations of spore morphological features, which are easily influenced by external 61 

disturbances (Oehl et al., 2004), such as integrity of the spores (e.g., ability to identify spores). 62 

Due to the above defects,new researchtechnologies are constantly updated. For instance, the 63 

development of molecular methods has greatly facilitated the studies of AMF taxonomic and 64 

phylogenetic reconstruction and has enhanced the sensitivity of AMF identification and 65 
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quantification (Lekberg et al., 2007; Helgason&Fitter, 2009; Balestrini et al. 2010, Gast et al., 66 

2011). Moreover, significant improvements have been made in the analysis of AMF condition 67 

by the high-throughputtechnology (Margulies et al., 2006). And the small ribosomal subunit 68 

(SSU) has been used to anlysis the diversity of AMF, and due to technology advancements, it 69 

can provide the most comprehensive reference sequence data set (Öpik et al., 2010),and the 70 

sequencing data can providedetailed analyses on AMF communities among complex habitat 71 

types(Öpik et al., 2013). In summary, the application of new technologies will greatly 72 

improve the study of AMF communities. 73 

Thus, our study applied the high-throughput sequencing (Illumina platform) toanalysis 74 

the soil AMF communities in four habitat types, including agricultural arable land, artificial 75 

forest land, natural grassland, and bush/wood land, and in contrast to the first two soil habitat 76 

types, the last two types were undisturbed (without human interference). All habitat types 77 

were located in the Taihang Mountain, which belongs to the semi-arid ecosystem. We aimed 78 

to identify the relative importance of soil characteristics on AMF diversity and illustrate the 79 

differences in AMF communities among the predominant four soil types.The research would 80 

be a valuable contribution toward a clearer better understanding on the way human activities 81 

have changed the composition of the current AMF communities,and the results will facilitate 82 

achieving would contribute to developeing a more precise guidance on local soil reclamation, 83 

vegetation restoration, and the maintenance of biodiversityin semi-arid regions.  84 

MATERIALS AND METHODS 85 

Study Area 86 

The research site was located in the south of Taihang Mountain (112°28'–112°30'E, 87 

35°01'–35°03'N), a site which belongs to the semi-arid area of China. The climate in the test 88 

area is temperate continental monsoon, with an annual average temperature of 14.3 °C andan 89 

average annual sunshine rate of 54%; the elevation gradient of our study sites ranged from 90 

231 to 432 m above sea level. Soil in the study areais cinnamon (main part is similar to ustalf 91 

USDA),and the parent rock was composed mainly of sandstone and shale. The habitat types 92 

in this study were bush/wood land, forest land, grassland, and arable land. The bush/wood 93 

land included mainly Vitex negundoL, Lespedeza bicolorTurcz and Ziziphus jujuba Mill. var. 94 

spinosa (Bunge)Hu ex H. F. Chow,Forest land included mainly Quercus variabilisBl., 95 

Platycladus orientalis(L.) Franco, and Robinia pseudoacaciaL. Dominant herbaceous plants 96 

in the grassland were Setaria viridis (L.) Beauv., Artemisia princepsH. Lév. and Vaniot, 97 

Pennisetum alopecuroides (L. ) Spreng., Arthraxon hispidus (Thunb.) Makino, and 98 

Rehmannia glutinosa(Gaetn.) Libosch. ex Fisch. et Mey.Finally, the prevalentherbaceous 99 
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plants in the arable land wereZea maysL., Triticum aestivum L., Ipomoea batatasL., Brassica 100 

campestris L., and Lycopersicon esculentumMill. 101 

Sample collection 102 

In October 2016, soil sampleswere collected in triplicate at four sites (W1, BW, WL, and 103 

F). The sample collection occurred at the root zone of the plant at a soil depth of 5–10 cm 104 

(Table 1). Site W1 represented the forest land soil type; site BW had bush/wood soil type; site 105 

WL was characterized by grassland soil type; and arable land soil type was represented in site 106 

F. These 12 soil samples collected were placed in sterile plastic bags and transported in 107 

freezing boxes to the laboratory, and they were stored at −70 °C until further analysis. 108 

Soil Geochemical Analyses 109 

We analyzed eight different soil factors, including soil pH, water content, available 110 

nitrogen (NH
+

4 -N), available potassium (K
+
 -K) and phosphate phosphorus (PO

3-
4 -P). Soil 111 

pH was examined bya pH meter ( PX-KS06, Guangzhou Puxi Instrument, Guangzhou, China). 112 

Water content was measured by drying soil method, . Aand the content of soil clay, silt, and 113 

sand was performed by using a Malvern Mastersizer (Mastersizer2000, Malvern Instruments, 114 

Malvern, UK). Theavailable nitrogenand available potassium were analyzed by an 115 

Autoanalyzer (SEAL-AA3, SEAL Analytical, Milwaukee, WI, USA); phosphate phosphorus 116 

analyzed by NaHCO3 Mo-Sb colorimetric method. 117 

Molecular analyses DNA extraction 118 

50 mg soil was used for metagenomic DNA extraction in each sample, using the Fast 119 

DNA Isolation Kit (Q-BIOgene, Heidelberg, Germany). The extracts were stored at -20 °C for 120 

PCR. 1.0% agarose gels for checking DNA concentration and purity. 121 

Miseq sequencing step 122 

Using the 18S rRNA geneand primer sets of AMV4.5NForward 123 

5'-AAGCTCGTAGTTGAATTTCG-3' and AMDG R 5'-CCCAACTATCCCTATTAATCAT-3' 124 

to amplify the sequences (from soil DNA extracts), the primer had been reported to be 125 

acceptable in several previous studies (Sato et al., 2005). The initial PCR reactions were 126 

similar to the existing studies of Xiao, including :25 µL total volumes, 1-2 µL DNA template, 127 

250 mM dNTPs, 0.25 mM of primer, 1X reaction buffer and 0.5U Phusion DNA Polymerase 128 

(Xiao et al., 2005). 129 

The reactions used a 2720 modelThermal Cycler, and initialPCR amplification was 130 

conducted under the steps below: 94 °C for 2-min, then 25 cycles of 30-s denaturation at 131 
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94 °C , 30-sannealing at 56 °C, 30-sextension at 72 °C, 5-minextension at 72 °C.The second 132 

step PCR used a template, which come from the first 5uL product (without dilution). The 133 

second step PCR include: one cycle of 3-min at 94 °C, then8 cycles of 30-s at 94 °C, 56 °C 134 

for 30-s and 72 °C for 30-s, and a 5-min extension at 72 °C.The PCR products were separated 135 

by electrophoresis (1.5% agarose gel in 0.5 × TBE) and purified using agel xxtraction kit 136 

(Axygen Biosciences, Corning, NY, USA), thenthe libraries were sequenced by PE300 137 

sequencing onMiSeq v3 Reagent Kit (Illumina)platform (at Tiny Gene Company, Shanghai). 138 

Bioinformatics methods 139 

The sequence reads were analyzed bythe combination of software Mothur v. 140 

1.33.3,UPARSE (usearch version v8.1.1756)and R 3.2.2,the original FASTQ files were 141 

demultiplexed through the barcode(Schloss et al., 2009). The PE reads for all samples were 142 

merged based on mothur. The low quality contigs were removed based on screen.seqs 143 

command bythe settings filter (maxambig=0, minlength = 200, maxlength =580, the higher 144 

threshold can protect some longer sequences, which may be the correct fragment, 145 

maxhomop= 8). The decoded data information were aggregated (97% homology) to 146 

operational taxonomic units (OTUs) (Edgar, 2013).  147 

BLAST analysis was conducted using the “Nucleotide collection (nr/nt)” database. No 148 

threshold was set for E values, alignment length and identity settings. For each OTU 149 

representative sequence, a list of top BLAST hits was compiled. Uncultured clones were 150 

deleted from the list of top hits. The BLAST get the highest score was identifed as the match’s 151 

species. 152 

Statistical Analyses 153 

For the alpha-diversity analysis, Mothur v. 1.33.3 software was used to analyze the OTU 154 

richness, Coverage, Chao, and Shannon’s indices as reported earlier by Schloss et al (2009) 155 

(Schloss et al., 2009).The values of soil properties and diversity parameters were statistically 156 

calculated analysed  bySPSS V. 19 software ( one-way ANOVA ). 157 

To identify the AMF relationship in different habitat types, the clustering method based 158 

on OTU abundance-based using the R v. 3.1.1. And to identify the AMF associated with 159 

different habitat types (agricultural arable land, artificial forest land, natural grassland, and 160 

bush/wood land.), we used indicator species analysis approach of Dufrene and Legendre  161 

(Dufrene &Legendre P, 1997). 162 

Using the Canoco software (Canoco for Windows 4.5 package)(Braak&Smilauer, 2002), 163 

we utilized Monte Carlo permutation and distance-based redundancy (db-RDA) tests to 164 

explain the correlation between soil AMFand geochemical factors. In addition,the heatmap 165 
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results of the abundance percentages of AMF generawere obtained by Mothur v. 1.33.3 166 

software. The raw sequence information have been deposited into the NCBI database 167 

(Accession No. SRP116770). 168 

RESULTS 169 

Soil Properties  170 

For the eight geochemical factors measured, the arable land obtained the maximum 171 

values of water content, available phosphorus and available potassium (site F). Meanwhile the 172 

minimum values of water content and available phosphoruswere established in the grassland 173 

(site WL). In the bush/wood land (site BW), the maximum values of sand content (average 174 

28.9%), but minimum silt content (35.5%) were established (Table 1). 175 

AMF Diversity Data and Community Composition 176 

In the current study, we have identified a total of 532,841 sequences and 803 OTUs from 177 

the total dataset, there were 320,899 sequencesbelonged to phylum Glomeromycotina 178 

(accounting for 60.2%). The number ofsequences in each of the samples ranged from 15,095 179 

to 35,206, and the number of AMF OTUs ranged from 52 to 83 (genetic distances of 3%). The 180 

OTUs’coverage in all soil types reached 99% (Table 2). On the basis of the OTU richness 181 

calculated by Chao’s index, the grasslandobserved a greatest AMF value(site WL: 81). 182 

Through the analysis of Shannon’s index, we discovered that the largest AMF diversity was 183 

also present in the grassland(site WL: 3.49–3.52 with an average value of 3.51), followed by 184 

the arable land(site F: 3.38–3.46 with an average value of 3.43), bush/wood land (site BW: 185 

3.38–3.46 with average 3.42), and the forest land soils (site W1: 2.53–3.15 with an average 186 

value of 2.87) (Table 2).  187 

Some variations in AMF community composition at the genus level were also detected 188 

among all soil samples. The 119 OTUs that could be classified were affiliated with ten AMF 189 

genera, whereas those that could not be identified were assigned as unclassified. TheGlomus 190 

were the most abundant genera in all samples: 60%–75% in grassland, 70%–75% in arable 191 

land, 75%–80% in bush/wood, and 50%–70% in forest land. Meanwhile, their levels varied in 192 

the different soil types.Ambispora were found in all samples, but a greater abundance was 193 

detected in the grassland and arable land samples than in those of the bush/wood and forest 194 

land soils (Figure 1). 195 

Correlation among the three factors (AMF Communities, Soil Types and Environmental 196 

condition) 197 
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To determine the differences in soil AMF community, the OTU cluster analysis showed 198 

that the 12 soil sampleswere divided into fourSoil Types (Figure 2), and the indicator species 199 

analysis revealed that there were 60 AMF indicators (indicator value > 0.25, p < 0.05) in this 200 

4 groups types, it mainly included bush/wood (Glomus and Diversispora taxon), arable land 201 

(Glomus, Septoglomusand Rhizophagustaxon), grassland (Glomus and Septoglomus taxon), 202 

forest land (Glomus and Paraglomus taxon) (TableS1). The top 50 OTUs of all samples were 203 

selected and their abundances were compared through theby heatmap software. It , which 204 

revealed their the relative distributions and abundances of the top 50 OTUs in all samples 205 

(Figure 3). There is a listing of all AMF OTUs and their closest matches in Table S2. 206 

The distance-based redundancy analysis (db-RDA) showed that there was a significant 207 

correlation between the combination of the eight environmental factors and soil AMF 208 

community structure, and that 81.9% of the soil community variation was attributed to the 209 

eight all environmental factors (Figure 4 and Table 3). However, Uusing the Monte Carlo 210 

permutation test, we found that water content (r
2
 = 0.7332, p < 0.01), available phosphorus (r

2
 211 

= 0.7576, p < 0.01), available potassium (r
2
 = 0.7973, p < 0.01), silt (r

2
 = 0.6461, p < 0.05), 212 

and sand (r
2
 = 0.6293, p < 0.05) were important properties (Table 3). 213 

DISCUSSION  214 

As mentioned earlier, the study area was located in the South Taihang Mountains of 215 

China, whose climate characterizes the region as a typical semi-arid climate zone. Under 216 

natural conditions, the thin soil layer, low forest coverage and much gravel are the 217 

characteristics of this area. ,and iIts forest types wereare mainly dominated by human 218 

intervention of Quercus variabilisBl andPlatycladus orientalis(L.); , and the vegetation was is 219 

poor and only limited species could be planted(Zhao, 2007). Thus, improving local soil 220 

conditions and promoting plant growth are urgent tasks. The fact that AMF communitie was a 221 

crucial factor in plant growth and soil improvement under environmental stress (Oehl et al., 222 

2004; Smith&Read, 2008).However, some information had remained unexplored for the 223 

Taihang Mountain area, such as the distribution of AMF communities, the variation of AMF 224 

diversity, and the influence of various soil types on AMF composition. Therefore, in this study, 225 

we investigated the AMF communities among the predominant four soil types in the South 226 

Taihang Mountain region. , and tThe results will providecould be a valuable reference for 227 

improving the local ecological environment. 228 

By analyzing the results of the 4 different soil types, the research showed that the 229 

diversity of AMF communities in undisturbed grassland soil type was greater than that in 230 

artificial forest land (Table 2), itThat was consistent with Öpik et al. (2008), they whose 231 

discovered that rich biological species composition and low external disturbance may lead to 232 
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higher diversity of rhizosphere AMF of the natural vegetation soil. AndOur results also 233 

showed that the value of Shannon’s index in arable land was larger than that in artificial forest 234 

land. This outcome might have been caused by the cultivation practices implemented by the 235 

farmers, including the application of farmyard manure (food residues, livestock manure, etc.), 236 

which increased the number of microbial communities by raising the level of available 237 

nutrients (Helgason &Fitter, 2009). MoreoverIndeed, it is generally accepted that the organic 238 

agriculture farming methods are regarded as a useful measure to increase AMF 239 

diversity(Aroca, Porcel & Ruizlozano, 2007), and the farmers in study that region usually 240 

apply farmyard manure with cultivation methods that were are closed to those of organic 241 

agriculture farming.On the other hand, probably due to thebecause  growth and reproduction 242 

of specific AMF communities requiring particular host plant species, which it leads to a less 243 

abundant community under a single artificial plantation habitat(Long et al., 2010). In general, 244 

human disturbance caused changes in the forest land environment, which reduced the 245 

transportation and distribution of AMF communities (Yuan et al., 2008), and the artificial 246 

forest land had the lowest AMF diversity in comparison with other land types. 247 

Meanwhile, the results of the sequence data analysis of AMF community composition 248 

showed that members of both genera Ambispora and Glomus existed in different soil types, 249 

including forest land, bush/wood, grassland, and arable land. Nevertheless, the representatives 250 

of Glomus were identified to be the main genus, and Glomus taxon served as indicator species 251 

for each habitat. These results are similar to some scholars, who confirmed that the species of 252 

Glomus were the most abundant in the AMF assemblage (Oehl et al., 2005). Some researchers 253 

also revealed that although Rhizophagus, Ambispora, and Glomus dominated in soils, only 254 

Glomus was found in almost all soil samples from the rhizosphere soil (Giovannetti, Azzolini 255 

&Citernesi, 1999; Yang et al., 2010). The influence of certain factors may be the reason why 256 

Glomus was the dominance dominant members in the AMF assemblage among those of other 257 

genera. On the one hand, the species of Glomus genus can usually produce large numbers of 258 

spores and hypha fragments, which can colonize and extensively spread onto the roots of 259 

plants (Öpik et al., 2006). And Glomus also has also a certain resistance in complex 260 

environments (Miransari et al., 2008; Bever et al., 2009; Barto et al., 2011). Therefore, these 261 

features facilitate the survival and spread of Glomus genus members in a semi-arid mountain, 262 

and the emergence of this phenomenon is aslo also the result of adaptation to the local 263 

ecological environment. 264 

Moreover, our investigation established that water content is a significant factor which 265 

has an obvious effect on the AMF communities. This finding is similar to the results of 266 

existing studies (Sieverding, Toro & Mosquera, 1989), which confirmed that the variations in 267 
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the water content can contribute to changes in the physiological status of local AMF and its 268 

ecological niche directly, and water content can also indirectly exert an impact on the 269 

utilization of soil nutrients by AMF community. In addition, our research also confirmed that 270 

there are significant relationships between the available phosphorus, available potassium, and 271 

soil AMF community structure. These interactions may be due to the influence that soil 272 

nutrients can have on the growth of local AMF communities as the lack of nutrients inhibits 273 

the production and separation of spores (Zaller, Frank & Drapela, 2011). Thus, this work 274 

confirmed that environmental factors can drive the composition and distribution of AMF 275 

communities. 276 

Furthermore, the composition of AMF communities seems to be been strongly 277 

influenced by the soil texture distribution, and our results showed that the content of silt and 278 

sand were significantly related to the soil AMF community communities (Table 1). , and tThe 279 

AMF diversity was higher in the samples from low-clay but high-sand content soil types. The 280 

appearance of the result was probably due to the fact that AMF is an aerobic organism, and 281 

the lower clay content provided better aeration, which was advantageous for plant root growth 282 

and soil humus decomposition, leading also to accelerated fungal propagation(Torrecillas et 283 

al., 2014). The research confirmed that AMF communities was negatively correlated with soil 284 

clay content. 285 

CONCLUSIONS 286 

In conclusion, this study first delineated the species diversity and composition of AMF 287 

community in Taihang Moutain, China. The members of the Glomus genus were predominant 288 

in all soil types. The findings also suggested that nutrient composition and soil texture were 289 

the most important factors affecting AMF community. Moreover, there were differences in 290 

species diversity and composition of soil AMF communities among different habitat types. 291 

These findings shed new light on the characteristics of community structure and drivers of 292 

community assembly in AMF in semi-arid mountains, and point to the potential importance of 293 

different habitat types on AMF communities. 294 
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Figures: 483 

Figure 1. Abundance percentages of AMF genera for all soil samples. 484 

Figure 2. Clustering analysis of AMF communities based on OTU abundance for each soil.  485 

Figure 3. Heat map of top 50 OTUs in all samples. The color intensity (log scale) in each 486 

panel shows the percentage of a genus in a sample, referring to color key at the bottom. 487 

Figure4. Distance-based redundancy (db-RDA) tests used to interpret the correlations between 488 

the AMF communities and environmental properties. 489 

 490 
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Tables: 

Table 1. Geochemical characteristics of the soil samples and other information of the site of the 

present study. 

Table 2. The results of data in the present study. 

Table 3. Monte Carlo permutation tests were used to detect the relationship betweencommunity 

composition and soil variables. 

 


