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ABSTRACT
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over

400 known host plants, and is the causal agent of white mold on dry bean. Currently,

there are no known cultivars of dry bean with complete resistance to white mold. For

more than 20 years, bean breeders have been using white mold screening nurseries

(wmn) with natural populations of S. sclerotiorum to screen new cultivars for

resistance. It is thus important to know if the genetic diversity in populations of

S. sclerotiorum within these nurseries (a) reflect the genetic diversity of the

populations in the surrounding region and (b) are stable over time. Furthermore,

previous studies have investigated the correlation between mycelial compatibility

groups (MCG) and multilocus haplotypes (MLH), but none have formally tested

these patterns. We genotyped 366 isolates of S. sclerotiorum from producer fields and

wmn surveyed over 10 years in 2003–2012 representing 11 states in the United States

of America, Australia, France, and Mexico at 11 microsatellite loci resulting in

165 MLHs. Populations were loosely structured over space and time based on

analysis of molecular variance and discriminant analysis of principal components,

but not by cultivar, aggressiveness, or field source. Of all the regions tested, only

Mexico (n = 18) shared no MLHs with any other region. Using a bipartite network-

based approach, we found no evidence that the MCGs accurately represent MLHs.

Our study suggests that breeders should continue to test dry bean lines in several

wmn across the United States to account for both the phenotypic and genotypic

variation that exists across regions.
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INTRODUCTION
Sclerotinia sclerotiorum (Lib.) de Bary is an ascomycete plant pathogen with a

worldwide distribution (Bolton, Thomma & Nelson, 2006). This is a necrotrophic

pathogen that is primarily homothallic (self-fertilization) and has the ability to survive for

more than five years in soil using melanized survival structures called sclerotia (Bolton,
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Thomma & Nelson, 2006; Sexton, Whitten & Howlett, 2006). It causes disease on more

than 400 plant species belonging to 75 families (Boland & Hall, 1994) including crops

of major economic importance such as sunflower (Helianthus spp.), soybean (Glycine

max L.), canola (Brassica rapa L., Brassica campestris L.), and dry bean (Phaseolus vulgaris L.)

(Bolton, Thomma & Nelson, 2006).

On dry bean, Sclerotinia sclerotiorum is the causal agent of white mold, a

devastating disease that can be yield-limiting in temperate climates (Steadman, 1983).

All above-ground tissues (flowers, stems, leaves, pods) are susceptible to infection,

first appearing as wet lesions with white mycelial tufts, and then bleaching as the tissue

senesces (Steadman, 1983; Bolton, Thomma &Nelson, 2006). For many years, white mold has

been the most serious dry bean disease in the Northwestern United States (Otto-Hanson

et al., 2011; Knodel et al., 2012, 2015, 2016). The impact of white mold on the dry bean

industry in the Northwestern United States alone has been estimated at a loss of 140 kg/ha

with just 10% disease incidence (Ramasubramaniam, del Rı́o Mendoza & Bradley, 2008).

Currently, there are no commercially available resistant cultivars of dry bean

(Otto-Hanson et al., 2011). Organized breeding efforts have used a common-garden

approach with white mold screening nurseries (wmn) in dry bean production areas across

the United States with additional sites in Australia, France, and Mexico (Steadman,

Eskridge & Powers, 2003; Steadman, Otto-Hanson & Powers, 2004, 2005; Steadman,

Otto-Hanson & Breathnach, 2006; Otto-Hanson & Steadman, 2007, 2008; McCoy &

Steadman, 2009). These wmn use no chemical or cultural treatments against

S. sclerotiorum and employ standardized protocols for screening new cultivars for

resistance to white mold (Steadman, Eskridge & Powers, 2003; Otto-Hanson et al., 2011).

These protocols included three established cultivars used for comparison in the trials:

Beryl (great northern bean, susceptible), Bunsi (a.k.a. Ex Rico, navy bean, low

susceptibility), and G122 (cranberry bean, partial resistance) (Tu & Beversdorf, 1982;

Steadman, Otto-Hanson & Powers, 2005; Otto-Hanson et al., 2011). It was previously

shown that aggressiveness (the severity of disease symptoms on the host) is significantly

different across white mold screening nursery sites in separate geographic regions

(Otto-Hanson et al., 2011). The genetic structure and mode of reproduction in these

populations, however, is currently unknown.

Understanding genetic relationships and reproduction behavior of S. sclerotiorum

populations is beneficial for breeders seeking to develop new resistant cultivars for

worldwide deployment (Milgroom, 1996; McDonald & Linde, 2002). In particular,

genetically diverse populations with high rates of sexual reproduction are more likely to

overcome host resistance. Most populations of S. sclerotiorum are predominantly clonal

with low genetic diversity and have a large degree of population fragmentation (Kohli

et al., 1995; Cubeta et al., 1997; Kohli & Kohn, 1998; Carbone & Kohn, 2001; Ekins et al.,

2011; Attanayake et al., 2012). Some studies, however have found populations that show

signatures of sexual reproduction (Atallah et al., 2004; Sexton & Howlett, 2004; Attanayake

et al., 2013; Aldrich-Wolfe, Travers & Nelson, 2015).

Nearly all population genetic studies of S. sclerotiorum employ a macroscopic assay to

determine mycelial compatibility, the ability for fungal hyphae from different colonies to
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appear to grow together without forming a barrier of dead cells between them (known as a

barrage line, Fig. S1B) (Leslie, 1993; Sirjusingh & Kohn, 2001). Mycelial compatibility has

been used as a proxy for vegetative compatibility, a fungal trait controlled by several

independent genes that mitigate the ability for two hyphae to fuse and grow as a single

unit (Fig. S1A) (Leslie, 1993; Schafer & Kohn, 2006). Because of the genetic connection to

vegetative compatibility, two isolates that are mycelially compatible were considered

clones (Leslie, 1993); but correlation with genetic markers, such as microsatellites, have

shown inconsistent results (Ford et al., 1995; Micali & Smith, 2003; Jo et al., 2008;

Attanayake et al., 2012; Papaioannou & Typas, 2014; Lehner et al., 2017). Thus, the

relationship between mycelial compatibility groups (MCGs) and clonal genotypes

remains unclear.

In the present study, we analyze and characterize the genetic and phenotypic diversity

of 366 S. sclerotiorum isolates collected between 2003 and 2012 from dry bean cultivars

among different geographic locations in the Australia, France, Mexico, and the

United States. We wanted to know if the S. sclerotiorum populations from wmn were

representative of the producer fields within the same region. As these nurseries were not

treated with any chemical or cultural control of white mold, we hypothesized that these

nurseries would represent the natural population of S. sclerotiorum. Furthermore, we

wanted to investigate the potential effect of cultivar on genetic diversity of the pathogen by

assessing three dry bean cultivars with different levels of resistance, Beryl (great northern

bean, susceptible), Bunsi (navy bean, low susceptibility), and G122 (cranberry bean,

partial resistance) (Otto-Hanson et al., 2011). We additionally wanted to determine

categorical or phenotypic variables that best predicted genetic structure and if there

was correlation between multilocus haplotype (MLH) and MCG. Knowing what

variables predict genetic structure can help direct breeding efforts. By investigating

these aims, we will effectively describe the population structure of S. sclerotiorum

in the United States and make available our database of isolates for use in future dry bean

breeding efforts.

MATERIALS AND METHODS
Isolate collection
Several (156) of the isolates used for this study were collected as reported in previous

studies using the same methods (Otto-Hanson et al., 2011). Broadly, isolates were

collected from two sources: wmn or producer fields. wmn were 5 � 10 m in size and

maintained without application of fungicides to observe natural incidence of white mold.

The early nursery plots were incorporated with a basal dressing of N:P:K = 1:3:2 and side

dressing of 0:3:2 during the growing season (Steadman, Eskridge & Powers, 2003).

Sampling was carried out by collecting sclerotia from diseased tissue in zigzag

transects across field plots. Because sampling depended on disease incidence, the

number of samples isolated varied from year to year. Although the nursery locations

were the same over sampling years, sampling plots within a location varied for

sampling years.
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Sclerotia of S. sclerotiorum were collected over several years from grower fields and/or

wmn in 11 states of the Australia, France, Mexico, and the United States (Table S1). After

collection, sclerotia were stored in Petri plates lined with filter paper, then stored at 20 �F
or -4 �C. Sclerotia were surface-sterilized with 50% Clorox bleach (at least 6% NaOCl,

The Clorox Company, Oakland, CA, US) solution for 3 min, and double rinsed with

ddH2O for 3 min. The sterilized sclerotia were then placed on water agar plates (16 g of

Bacto agar per liter of ddH2O; BD Diagnostic Systems, Sparks, MD, US), with four to five

sclerotia of each isolate separated on each plate and stored on the counter top at room

temperature for five to six days. An 8 mm plug from a 5- or 6-day-old culture was

transferred from the advancing margin of the mycelia onto a plate of Difco potato

dextrose agar (PDA at 39 g/l of ddH2O) (Otto-Hanson et al., 2011). In combination with

the 156 isolates described previously, we collected 210 isolates for a total of 366 isolates

(Otto-Hanson et al., 2011).

Mycelial compatibility
Mycelial compatibility groups was determined as described previously through

co-culturing pairs of 2-day-old isolates 2.5 cm apart on Diana Sermons (DS) Medium

(Fig. S1) (Cubeta, Sermons & Cody, 2001). Incompatibility of different MCGs resulted in

formation of a barrage line accompanied by formation of sclerotia on either side of the

barrage line, indicating the limits of mycelial growth (Kohn, Carbone & Anderson, 1990;

Leslie, 1993; Otto-Hanson et al., 2011). Isolates were compared in a pairwise manner for

each site and then representatives among sites were compared to determine MCGs by

scoring compatible and incompatible interactions (Otto-Hanson et al., 2011). No

MCGs were compatible with any other MCG.

Aggressiveness
Aggressiveness of each isolate was assessed using a straw test as described in Otto-Hanson

et al. (2011) that rated necrotic lesion size (Petzoldt & Dickson, 1996; Teran et al., 2006).

Briefly, the straw test uses 21-day-old G122 plants as the host in a greenhouse setting.

Clear drinking straws cut to 2.5 cm and heat sealed were used to place two mycelial plugs

of inoculum on the host plant after removing plant growth beyond 2.5 cm above the

fourth node. Measurements of the necrotic lesion were taken eight days later using the

Modified Petzoldt and Dickson scale of 1–9, where 1 is no disease and 9 is plant death

(Petzoldt & Dickson, 1996; Teran et al., 2006).

Microsatellite genotyping
Prior to DNA extraction, isolates were grown on PDA and plugs were subsequently

transferred to potato dextrose broth where they were grown until there was significant

mycelial growth, but before the mycelial mat became solidified (four to five days).

Each mycelial mat was collected in a filtered Büchner funnel, agar plugs removed,

lyophilized and pulverized manually inWhirl-pak� HDPE sampling bags (Sigma-Aldrich,

St. Louis, MO, US). Lyophilized mycelia was then stored in microcentrifuge tubes

at -20 �C until needed for DNA extraction. DNA from 25 mg of pulverized mycelia was
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purified using a phenol–chloroform extraction method followed by alcohol precipitation

and evaporation, suspending the DNA in 200 ml TE (Sambrook, Fritsch &Maniatis, 1989).

Suspended DNA was stored at 4 �C until genotyping.

We genotyped each S. sclerotiorum isolate using 16 microsatellite primer pairs

developed previously (Sirjusingh & Kohn, 2001). PCR was carried out as described

previously, using primers labeled with FAM fluorophore. Resulting amplicons were first

resolved in a 1.5% agarose gel stained with ethidium bromide to ensure product was

within the expected size range prior to capillary electrophoresis. Capillary electrophoresis

(fragment analysis) of amplicons, with size standard GeneScanTM 500 LIZ�, was

performed using an ABI 3730 genetic analyzer (Life Technologies Corporation,

Carlsbad, CA, US) at the Michigan State University Genomic Sequencing Center

(East Lansing, MI, US). Alleles were scored using PeakScanner version 1.0 (Life Technologies

Corporation, Carlsbad, CA, US) and recorded manually in a spreadsheet.

Data processing and analysis
All data processing and analyses were performed in a Rocker “verse” project container

running R version 3.4.2 (Boettiger & Eddelbuettel, 2017; R Core Team, 2017). These

analyses were rendered as dynamic documents with the R packages knitr (version 1.17)

and ezknitr (version 0.6) and are openly available and reproducible at https://github.com/

everhartlab/sclerotinia-366/ (Attali, 2016; Xie, 2017). Of the 16 microsatellite loci

genotyped, five included compound repeats, which made it challenging to accurately/

confidently bin alleles into fragment sizes expected for each locus based on the described

repeat motif. Loci with compound repeats were removed for the reported statistics. To

ensure the integrity of the results we additionally processed these loci and included them

in concurrent analyses. We assessed the power of our 11 markers by generating a genotype

accumulation curve in the R package poppr version 2.5.0, looking for evidence of

saturation, which would indicate that loci were sufficiently sampled to adequately

represent the full set of haplotypes (Arnaud-Hanod et al., 2007; Kamvar, Brooks &

Grünwald, 2015). We additionally assessed within-locus allelic diversity by measuring

Nei’s gene diversity (h) (Nei, 1978) and allelic evenness (E5) (Pielou, 1975; Grünwald et al.,

2003). To avoid including isolates potentially collected from the same plant (which

increases the probability of collecting sclerotia from the same point of infection more than

once), data were clone-corrected on a hierarchy of Region/Source/Host/Year—meaning

that duplicated genotypes were reduced to a single observation when they were collected

in the same year from the same host cultivar located in the same source field (wmn or

producer)—for subsequent analysis. We assessed haplotype diversity by calculating

Stoddart and Taylor’s index (G) (Stoddart & Taylor, 1988), Shannon’s index (H) (Shannon,

1948), Simpson’s index (�) (Simpson, 1949), evenness (E5), and the expected number of

multilocus haplotypes via rarefaction (eMLH) with 10 samples (Hurlbert, 1971; Heck, van

Belle & Simberloff, 1975; Pielou, 1975; Grünwald et al., 2003). If all haplotypes in are

equally abundant, both G and eH (the exponentiation ofH) are expected to be equal to the

number of haplotypes, � and E5 are expected to equal one, and eMLH is expected to be at

its maximum value (in this case, 10) (Grünwald et al., 2003). To assess the potential for
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random mating, we tested for linkage disequilibrium with the index of association, IA and

its standardized version, �rd using 999 permutations (Brown, Feldman & Nevo, 1980; Smith

et al., 1993; Agapow & Burt, 2001). Both haplotype diversity and linkage disequilibrium

were calculated in poppr (Kamvar, Tabima & Grünwald, 2014).

Assessing importance of variables
Distance-based redundancy analysis
A distance-based redundancy analysis (dbRDA) (Legendre & Anderson, 1999) was

performed with the function capscale() in the vegan package version 2.4.4 (Oksanen

et al., 2017). This method uses constrained ordinations on a distance matrix representing

the response variable to delineate relative contribution of any number of independent

explanatory variables. We used this method to delineate the phenotypic (Aggressiveness,

MCG), geographic (Region, Host, Location), and temporal (Year) components in

predicting genetic composition of the populations. The distance matrix we used as the

response variable was generated using Bruvo’s genetic distance from clone-corrected data

(procedure described above) as implemented in poppr, which employed a stepwise

mutation model for microsatellite data (Bruvo et al., 2004; Kamvar, Tabima & Grünwald,

2014). Because aggressiveness measures differed between isolates that were reduced to

a single observation during clone-correction, aggressiveness was first averaged across

clone-corrected isolates. To identify explanatory variable(s) correlated with genetic

variation, a forward–backward selection process was applied with the vegan function

ordistep(). An analysis of variance (ANOVA) was then performed to test for

significance of the reduced model and marginal effects using 999 permutations.

The varpart() function of vegan was used to determine variation partitioning of

explanatory variables.

Aggressiveness assessment
We used ANOVA to assess if aggressiveness (determined via straw test on a scale of 1–9

as described above) was significantly different with respect to Region, MCG, or MLH.

To minimize complications due to small sample sizes, we chose the top 10 MCGs,

representing 56.5% of the isolates collected, the 10 most abundant MLHs representing

26.7% of the isolates, and populations with more than five isolates. If ANOVA results were

significantly different at a = 0.05, pairwise differences were assessed using Tukey’s HSD

test (a = 0.05) using the HSD.test() function in the package agricolae version 1.2.8

(Mendiburu & Simon, 2015).

Correlating MLH with MCGs
We wanted to assess if there was correlation between MLHs and MCGs. This was

performed using a network-based approach where both MLHs and MCGs were

considered nodes and the number of isolates in which they were found together was the

strength of the connection between an MLH and MCG node. The network-based

approach allowed us to assess the associations betweenMLHs andMCGs. To construct the

network, a contingency table was created with MLHs and MCGs and converted to a

directed and weighted edgelist where each edge represented a connection from anMCG to
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an MLH, weighted by the number of samples shared in the connection. This was then

converted to a bipartite graph where top nodes represented MLHs and bottom nodes

represented MCGs. To identify clusters of MLHs and MCGs within the network, we

used the cluster walktrap community detection algorithm as implemented in the

cluster_walktrap() function in igraph version 1.1.2 (Csardi & Nepusz, 2006;

Pons & Latapy, 2006). This algorithm attempts to define clusters of nodes by starting at a

random node and performing short, random “walks” along the edges between nodes,

assuming that these walks would stay within clusters. For this analysis, we set the number

of steps within a walk to four and allowed the algorithm to use the edge weights in

determining the path. All of the resulting communities that had fewer than 10 members

were then consolidated into one. Community definitions were used to assess the average

genetic distance (as defined by Bruvo’s distance) within members of the community

(Bruvo et al., 2004).

Genetic diversity
Population differentiation
We used analysis of molecular variance (AMOVA) with Bruvo’s genetic distance in

poppr to test for differentiation between populations in wmn and producer fields

from the same region and collected in the same year (Excoffier, Smouse & Quattro, 1992;

Bruvo et al., 2004; Kamvar, Tabima & Grünwald, 2014). To identify Regions with greater

differentiation, we used discriminant analysis of principal components (DAPC) as

implemented in adegenet version 2.1.0, assessing the per-sample posterior group

assignment probability (Jombart, 2008). This method decomposes the genetic data

into principal components, and then uses a subset of these as the inputs for discriminant

analysis, which attempts to minimize within-group variation and maximize

among-group variation (Jombart, Devillard & Balloux, 2010). To avoid over-fitting data,

the optimal number of principal components was selected by using the adegenet

function xvalDapc(). This function implements a cross-validation procedure to iterate

over an increasing number of principal components on a subset (90%) of the data,

trying to find the minimum number of principal components that maximizes the rate of

successful group reassignment. To assess if cultivar had an influence on genetic diversity

between wmn, we first subset the clone-corrected data to contain only samples from

wmn and from the cultivars Beryl, Bunsi, and G122 and tested differentiation using

AMOVA and DAPC as described above. We additionally assessed population stability

over time by calculating DAPC over the combined groups of Region and Year as

described above.

Analysis of shared MLH
We wanted to evaluate patterns of connectivity between shared MLH across geographic

regions. We first tabulated the MLH shared between at least two populations (defined as

states or countries) with the poppr function mlg.crosspop() (Kamvar, Tabima &

Grünwald, 2014). From these data, we constructed a graph with populations as nodes and

shared haplotypes as edges (connections) between nodes using the R packages igraph
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(Csardi & Nepusz, 2006), dplyr version 0.7.4 (Wickham et al., 2017), and purrr version 0.2.4

(Henry & Wickham, 2017). Each node was weighted by the fraction of shared MLHs.

Each edge represented a single MLH, but because a single MLH could be present in more

than one population, that MLH would have a number of edges equivalent to the total

number of possible connections, calculated as (n�(n - 1))/2 edges where n represents the

number of populations crossed. Edges were weighted by 1 - Psex, where Psex is the

probability of encountering the same haplotype via two independent meiotic events

(Parks & Werth, 1993; Arnaud-Hanod et al., 2007). This weighting scheme would thus

strengthen the connection of edges that represented genotypes with a low probability of

being produced via sexual reproduction. We then identified communities (among the

Regions) in the graph using the cluster_optimal() function from igraph (Csardi &

Nepusz, 2006). The graph was plotted using the R packages ggplot2 version 2.2.1

(Wickham, 2009) and ggraph 1.0.0 (Pedersen, 2017). To ensure that we captured the same

community signal, we additionally performed this analysis including the five polymorphic

markers described above.

RESULTS
A total of 366 isolates were collected from 2003 to 2012 (except 2006 and 2011) from

diseased dry bean plants in 11 states in the United States as well as Australia, France, and

Mexico (Table S1). With the 11 loci used in the analyses (Table 1), we observed a total

of 165 MLHs (215 with 16 loci). These 11 loci are located on seven chromosomes in the

S. sclerotiorum genome with a minimum distance of 55 Kbp between two loci on the same

chromosome. Over 50% of the isolates came from four states, MI (62), ND (60), WA (59),

NE (47). Four regions had fewer than 10 isolates, Australia (6), WI (2), NY (1), ID (1). We

observed 87 MCGs, the most abundant of which (“MCG 5”) was represented by 73

isolates over 37 MLHs (Figs. 1A and 1C).

The number of observed alleles per locus ranged from 2 to 10 with an average of 6.27

(Table 1). Locus 20-3, which contained only two alleles, showed low values of both

h (0.0533) and E5 (0.42), indicating that there was one dominant allele present. Analysis

of the haplotype accumulation curve showed no clear plateau for 11 or 16 loci (see

section on “Loading Data and Setting Strata” in the MLG-distribution.md file in the

supplemental files, https://github.com/everhartlab/sclerotinia-366/blob/master/results/

MLG-distribution.md#loadingdata-and-setting-strata; Kamvar et al., 2017), indicating

that we would likely obtain more MLH if we were to genotype more loci.

After clone-correction on the hierarchy of Region/Source/Host/Year, a total of

48 isolates were removed from the data set, resulting in 318 isolates representing 165

MLHs that were used in subsequent analyses (Table 2). The results showed that, in

terms of genotypic diversity (H, G, and �), WA was the most diverse population with

both G (54.3) and eH (55.3) being close to the observed number of MLHs (56).

This indicated that there are few duplicated genotypes in WA (Table 2). A more useful

metric to compare populations, however, is E5, which scales from 0 to 1, where 1

indicates all unique genotypes (Grünwald et al., 2003). Evaluating by E5 shows that

both MI and NE exhibit lower than average values, indicating that there are
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over-represented genotypes in the populations (Table 2). When we look at Mexico,

we observed that it had relatively high values of E5 and genotypic diversity, but low

richness, as measured by eMLG. Moreover, Mexico had the lowest value for h, which is a

measure of allelic diversity. Nearly all populations showed evidence of linkage (Table 2),

which serves as evidence for clonal reproduction or other forms of non-random mating.

The only exceptions were CA (P = 0.043) and Australia (P = 0.052). Both of

these populations showed only moderate significance with �rd values of 0.03 and 0.12,

respectively.

Variable assessment
Variable contributions
The forward–backward selection process of the dbRDA models on clone-corrected

data revealed Year, Region, Host, and MCG to be the optimal variables for the reduced

model, accounting for 45% of the total variation. ANOVA showed that the reduced model

was significant with an adjusted R2 of 0.0675 (P = 0.001). Assessment of the marginal

effects showed that all variables significantly explained genetic variation (P � 0.007).

We found that there was multicollinearity when MCG was combined with any other

variable, so repeated the analysis, dropping MCG from the list of potential predictors.

From these results, Year, Region, Host, and Aggressiveness were found to be optimal,

accounting for 17.6% of the total variation. ANOVA revealed significant effects with an

adjusted R2 of 0.0325 (P = 0.001). While the marginal effect assessment revealed that Year,

Region, and Host significantly explained variation at P = 0.001, and Aggressiveness

significantly explained variation at P = 0.039. Much of the variation appeared to be driven

by isolates from Mexico and 2005 (Fig. 2). Variance partitioning of the independent

variables without MCG indicated aggressiveness to be the least influential factor with

0.1% contributing to explaining the variation of molecular data, whereas the combination

of variables accounted for 3.3%.

Table 1 Allelic diversity on full data set at loci used in this study.

Locus Range Repeat motif Number of

alleles

h E5

5-2 318–324 (GT) 4 0.45 0.62

6-2 483–495 (TTTTTC)(TTTTTG)

(TTTTTC)

3 0.64 0.95

7-2 158–174 (GA) 7 0.73 0.76

8-3 244–270 (CA) 7 0.74 0.79

9-2 360–382 (CA)(CT) 9 0.35 0.41

12-2 214–222 (CA) 5 0.58 0.78

17-3 342–363 (TTA) 7 0.55 0.53

20-3 280–282 (GT)GG(GT) 2 0.05 0.42

55-4 153–216 (TACA) 10 0.72 0.66

110-4 370–386 (TATG) 5 0.76 0.91

114-4 339–416 (TAGA) 10 0.83 0.80

Note:
h = Nei’s 1978 gene diversity, E5 = Evenness. Average h = 0.583, average E5 = 0.693, average no. alleles = 6.27.
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Figure 1 Associations between mycelial compatibility groups (MCGs) and multilocus haplotypes

(MLH). (A) Barplot of MCG abundance in descending order. Singletons (46) were truncated, leaving

41 MCGs. White bars represent sample counts and grey bars represent counts of unique MLH. The

transparency of the bars represent the evenness of the distribution of the MLHs within a given MCG.

A dashed box surrounds the eight most common MCGs representing >51% of the data. (B) Full

graph-representation of the relationship between MCGs (open circles) and MLHs (filled circles). Details

in Fig. S3. (C) A subset of (B) representing the eight most common MCGs and their associated MLHs

(dashed box in (A). Filled nodes (circles) represent MLHs and open nodes represent MCGs. Node

area scaled to the number of samples represented (1–73). Numbers inside nodes are the MLH/MCG label

(if n > 1). Edges (arrows) point from MLH to MCG where the weight (thickness) of the edge represents

the number of shared isolates (1–19). Edges extending from MLHs displayed to other MCGs are not

shown. Full-size DOI: 10.7717/peerj.4152/fig-1
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Aggressiveness
Aggressiveness of the isolates ranged from 1.4 to 7.9 with a mean of 5.02 and median of

4.85. The group mean averages were 4.88, 5.13, and 5.19 for Region, MCG, and MLH,

Table 2 Genotypic diversity and linkage disequilibrium summary for geographic populations

arranged by abundance after clone-correction by a hierarchy of Region/Source/Host/Year.

Pop N eMLH H G l E5 h �rd

WA 58 (56) 9.95 (0.23) 4.0 54.3 0.98 0.98 0.60 0.07*

MI 58 (43) 9.3 (0.79) 3.6 29.0 0.97 0.78 0.54 0.14*

ND 41 (35) 9.44 (0.73) 3.5 25.9 0.96 0.82 0.54 0.1*

NE 37 (28) 8.93 (0.94) 3.2 17.8 0.94 0.75 0.55 0.25*

CO 34 (28) 9.46 (0.67) 3.3 24.1 0.96 0.92 0.56 0.27*

France 21 (14) 8.5 (0.85) 2.6 12.6 0.92 0.95 0.48 0.11*

CA 18 (15) 9.12 (0.72) 2.7 13.5 0.93 0.94 0.51 0.03

OR 17 (13) 8.52 (0.85) 2.5 10.7 0.91 0.89 0.47 0.1*

Mexico 15 (9) 7.1 (0.85) 2.1 7.3 0.86 0.89 0.28 0.37*

MN 9 (7) 7 (0) 1.9 6.2 0.84 0.93 0.47 0.19*

Australia 6 (6) 6 (0) 1.8 6.0 0.83 1.00 0.48 0.12

WI 2 (2) 2 (0) 0.7 2.0 0.50 1.00 0.27 –

NY 1 (1) 1 (0) 0.0 1.0 0.00 NaN NaN –

ID 1 (1) 1 (0) 0.0 1.0 0.00 NaN NaN –

Note:
Pop, Population; N, number of individuals (number of MLH in parentheses); eMLH, expected number of MLHs based
on rarefaction at 10 individuals (standard error in parentheses); H, Shannon–Weiner Index; G, Stoddardt and Taylor’s
Index; �, Simpson’s Index; h, Nei’s (1978) gene diversity; E5, Evenness; �rd, standardized index of association. An asterisk
indicates a significant value of �rd after 999 permutations, P � 0.001.

Region: CO

Host: Vista

Region: CA

Year: 2005

Region: Mexico
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Figure 2 Biplot showing five most influential explanatory variables (arrows) overlayed on the first

two eigenvectors of distance based redundancy analysis of 318 S. sclerotiorummultilocus haplotypes.

The length of the arrows are directly proportional to the strength of the correlation between explanatory

and molecular variables. Open circles represent the 318 clone-corrected haplotypes in ordination space.

Full-size DOI: 10.7717/peerj.4152/fig-2
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respectively. A strip plot showing the distribution of severity across these three variables

simultaneously can be seen in Fig. S2. Our assessment of aggressiveness in association with

Region showed a significant effect (P < 1.00e-4), with means that ranged from 5.8 (MN) to

4.0 (CA) (Fig. 3; Table S2). MCGs also showed a significant effect (P < 0.001), with means

that ranged from 6.0 (“MCG 44”) to 4.6 (“MCG 49;” Table S3). We additionally found

a significant effect for MLHs (P < 0.001), with means that ranged from 6.0 (“MLH 78”)

to 4.3 (“MLH 140”) (Table S4).

Correlation of MLH and MCGs
In our analysis, we found 165 MLHs with 70 singletons and 87 MCGs with 43 singletons

(Figs. 1A and 1B) where the eight most abundant MCGs represented >51% of the data

over 11 Regions, and all years except for 2012. Our network-based approach to correlating

MLHs with MCGs revealed a large and complex network (Fig. 1; Table 3). Community

analysis showed 51 communities, 15 of which consisted of a single MLH unconnected

with any other community indicating that just 9.09% of the 165 MLHs are unable to

cross with any other MLH in this data set (Fig. S3). The three communities with the most

members contained 8 of the 10 most abundant MCGs. Comparing these communities

with Bruvo’s genetic distance showed an average distance of 0.451 among communities

and an average distance of 0.437 within communities, which were not significantly

different. When we assessed the number of times two different MLHs that are in the same

MCG, considering these as potential heterothallic pairings that could result in sexual

recombination, we found an average of 14.3 potential heterothallic parings per MLH.

Representing just four isolates, “MLH 75” had 57 neighbors that shared the same

MCG (Fig. 1; Fig. S3). Overall, there was no clear pattern to the association between

MLH and MCGs.
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Figure 3 Strip plot of aggressiveness by population arranged in descending order of mean

aggressiveness for all populations with N > 5. White bars represent mean value. Circles represent

individual isolates where filled circles are isolates from white mold screening nurseries (wmn) and open

circles are isolates from producer fields. Full-size DOI: 10.7717/peerj.4152/fig-3

Kamvar et al. (2017), PeerJ, DOI 10.7717/peerj.4152 12/27

http://dx.doi.org/10.7717/peerj.4152/supp-1
http://dx.doi.org/10.7717/peerj.4152/supp-1
http://dx.doi.org/10.7717/peerj.4152/supp-1
http://dx.doi.org/10.7717/peerj.4152/supp-1
http://dx.doi.org/10.7717/peerj.4152/supp-1
http://dx.doi.org/10.7717/peerj.4152/supp-1
http://dx.doi.org/10.7717/peerj.4152/fig-3
http://dx.doi.org/10.7717/peerj.4152
https://peerj.com/


Structure of shared MLH
The most abundant MLH was represented by 27 isolates (Table 3) from five Regions (NE,

MI, WA, CO, and ND). Within Regions, haplotypes were relatively evenly distributed with

moderate to high diversity (Table 2). Of the 165 MLHs, 76 (46%) were found in at least

two Regions, except those found in WI (2), ID (1), and Mexico (18) (Fig. 4).

We had performed an analysis on a network where the connections represented

shared MLHs across populations, weighted by 1 - Psex (Fig. 4; Table 3). Community

analysis of the MLHs shared between populations revealed four communities with a

modularity of 0.17: A coastal community (CA, OR, WA, and NY), a Midwest community

(CO, ND, NE, MI), and an international community (Australia, France, MN). Although

analysis with 16 loci resulted in the removal of the NY node because it no longer

shared a haplotype with OR, the same overall community structure was present with a

modularity of 0.2 (Fig. S4). Relative to the United States, the international community

appears to be driven by MLH 4, which is shared between all three populations and has a

Psex value of 2.87e
-5, in contrast to the abundant MLH 25, which has a Psex value

of 0.0168.

Population differentiation
Analysis of molecular variance
The AMOVA for clone-corrected haplotypes over the hierarchy of Region, Source, and

Year showed significant variation between Regions and Years, but no significant variation

between wmn and producer fields (Table 4). In contrast, when we compared the three

cultivars, Beryl, Bunsi, and G122, we found no significant differentiation (see section on

“Host Differentiation” in the wmn-differentiation.md file in the supplemental files,

https://github.com/everhartlab/sclerotinia-366/blob/master/results/wmn-differentiation.

md#hostdifferentiation; Kamvar et al., 2017).

Table 3 The five most abundant multilocus haplotypes (MLH) with the probability of second

encounter (Psex), mycelial compatibility groups (MCG), and Regions with sample sizes in

parentheses.

MLH Psex MCG Region

25 0.016824 5 ND (15), CO (2), MI (2)

13 ND (3)

60 ND (2), WA (1)

1 NE (1)

4 MI (1)

163 0.049932 45 CO (5), ND (2), NE (1)

5 MI (7)

65 0.000071 44 NE (10)

5 MI (1)

140 0.000155 8 CO (5)

5 MI (3)

20 MI (2)

66 0.000016 9 NE (4), CO (2), MI (2)

Kamvar et al. (2017), PeerJ, DOI 10.7717/peerj.4152 13/27

http://dx.doi.org/10.7717/peerj.4152/supp-1
https://github.com/everhartlab/sclerotinia-366/blob/master/results/wmn-differentiation.md#hostdifferentiation
https://github.com/everhartlab/sclerotinia-366/blob/master/results/wmn-differentiation.md#hostdifferentiation
http://dx.doi.org/10.7717/peerj.4152
https://peerj.com/


Australia(5 6)CA(12 15)

CO(18 28)

France(8 14)

MI(32 43) MN(6 7)

ND(21 35)

NE(25 28)

NY(1 1)

OR(9 13)

WA(32 56)

0
10
20
30
40
50

Number of
MLHs

Probability of
second encounter

9.1e−02
1.7e−02
7.9e−04
7.1e−05
4.0e−08

Populations
per MLH

2
3
4
5

Number of MLHs in Region
Number of private MLHs

Figure 4 Network of populations (nodes/circles) and their shared multilocus haplotypes (MLH)

(edges/lines) genotyped over 11 loci. Each node is labeled with name (number of MLHs shared/

number of MLHs total). The shade and area of the nodes are proportional to the number of unique

MLHs within the node and the inner nodes are proportional to the number of private MLHs to the

region (bottom legend). Each edge represents a single MLH where its thickness represents the number of

populations that share the MLH and the shade represents the value of Psex, or the probability of

encountering that MLH from two independent meiotic events.

Full-size DOI: 10.7717/peerj.4152/fig-4

Table 4 Comparison of populations in the white mold screening nurseries (wmn) and producer

fields using an analysis of molecular variance (AMOVA) on Bruvo’s genetic distance showing no

apparent differentiation between wmn and other sources.

Hierarchy d.f. S.S. % Variation � Statistic P

Between Region 13 10.19 8.45 0.0845 0.031

Between Source within Region 8 2.74 -2.29 -0.0250 0.497

Between Year within Source 22 9.37 16.28 0.173 0.001

Within Year 274 47.30 77.56 0.224 0.001

Note:
The hierarchy was constructed as Source/Region where source is defined as belonging to a wmn or producer field. Bold
� values indicate significant difference (P < 0.05). S.S., Sum of Squares; d.f., degrees of freedom.
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Discriminant analysis of principal components
Discriminant analysis of principal components was performed by grouping Region with

the first 21 principal components, representing 88.1% of the total variance. The first

discriminant axis (representing 63.9% of the discriminatory power) separated the

centroid for the Mexico isolates from the rest of the data, indicating strong differentiation

(Fig. 5B). The second discriminant axis, representing 10.8% of the discriminatory

power, separated the centroid for the CA isolates. The mean population assignment

probabilities for all populations with n > 10 showed that only isolates from Mexico,

CA, and France had >50% probabilities of being reassigned to their source populations

(Fig. 5A).

Discriminant analysis of principal components grouping by cultivar used the first 20

principal components, representing 89% of the total variance. The first two discriminant

axes (representing 100% of the discriminatory power) failed to separate any of the

cultivars where the mean posterior assignment probabilities were 34% (G122), 35.9%

(Beryl), and 30.1% (Bunsi). DAPC grouping by Region and Year used the first 15 principal

components, representing 80.3% of the total variance. The North Central United States

populations (NE, MI, CO, ND) did not appear to have any variation across time in

contrast to WA, which showed a shift in population structure in the last year of sampling,

2008 (Fig. 6). Further analysis of this population revealed that all 12 isolates in WA circa
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Figure 5 Discriminant analysis of principal components (DAPC) on regions showing that Mexico is differentiated from other populations.

(A) Scatter plot of first two components from DAPC. Points represent observed individuals connected to the population centroids with ellipses
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2008 originated in a wmn; nine haplotypes were shared with CA, and three were shared

with France (Fig. 4; Fig. S4).

DISCUSSION
In this study, we characterized the diversity of S. sclerotiorum from dry bean fields across

the United States. Our results suggest that, broadly, populations from wmn reflect the

populations of the surrounding regions, indicating that resistance screening may be

successful within regions. We found significant population differentiation by geographic

region and year, mainly differentiated into three broad North American groups based on

shared haplotypes and posterior groupings, a Coastal Region, Midwestern Region, and

Mexico. To date, with 366 isolates, this is the largest single population genetic study of

S. sclerotiorum assessing population structure within managed and unmanaged

agricultural environments. These findings indicate that the wmn can be effective at

screening for potential resistant lines within growing regions.

We found that the best predictors of genetic structure are Region and Year, supporting

the hypothesis that S. sclerotiorum populations are spatially structured (Carbone & Kohn,

2001). Borrowing a technique often used in the ecological literature, we used dbRDA to

elucidate the effect of all variables (MCG, Region, Source, Year, Host, and Aggressiveness)

(Legendre & Anderson, 1999). From the initial results, it appeared that the most important

factors for predicting genetic structure were MCG, region, and year. When we inspected

the biplot of the initial results, we saw that the most important predictors were “MCG 44,”

“MCG 5,” and “MCG 9.” We believe that this was driven by the fact that these particular

MCGs have uneven MLH distributions, meaning that they are heavily associated with one
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A (NE) B (MI)

Year
aa
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Figure 6 Scatter plot of discriminant analysis of principal components (DAPC) on Regions and

Years showing non-differentiated temporal variation NE and MI and temporal variation in WA

and CA. Points (text labels) represent observed individuals connected to the population centroids

with ellipses representing a 66% confidence interval for a normal distribution. The center of each

component is represented as black grid lines. A more detailed view is shown in Fig. S5.

Full-size DOI: 10.7717/peerj.4152/fig-6
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particular MLH (Fig. 1). We note these results with caution because of the apparent

multicolinearity between MCG and Region, which is a violation of the analysis (Legendre

& Anderson, 1999). While the results indicated that Mexico and the year 2005 were the two

most important variables, it’s worth noting that all Mexico isolates were collected in 2005

(Fig. 2). The results also show that the Vista cultivar explains some of the variance, but this

represents six isolates in MI, and thus we cannot draw broad conclusions from this axis.

Aggressiveness and source field had little to no effect on prediction of genetic diversity.

These results are in agreement with studies that examined differentiation based on Host

(Aldrich-Wolfe, Travers & Nelson, 2015) and Aggressiveness (Atallah et al., 2004;

Attanayake et al., 2012, 2013) reporting little or no correlation of genetic diversity to these

variables. This indicates that (a) breeders should keep in mind regional differences when

assessing resistance and (b) it is possible that we have not yet measured biologically

relevant variables that can predict genetic differentiation, which could include variables

such as soil community composition.

While aggressiveness was not shown to predict genetic structure, it is an important

factor in breeding efforts, and we observed significant differences in aggressiveness based

on Region (Fig. 3; Table S2). These results show a similar pattern to what was found

previously in Otto-Hanson et al. (2011) with the exception of North Dakota, which

increased in mean aggressiveness from 5 to 5.77. This increase was due in part to new data

from producer field isolates collected after the previous study. These straw tests were

performed by a different person for these later isolates, which could suggest a more lenient

or strict scoring system. However, when we examined the within-region differences, we

found no significant effect by individual. Many of the ND isolates fell within the 6–7

range, which denotes a physical boundary (disease symptoms around the second node)

between intermediate and susceptible (Otto-Hanson et al., 2011). Thus, we observed a

shift in aggressiveness without a significant shift in genotypic structure, which may

indicate that aggressiveness may be controlled by environmental factors as opposed

to genetic profile.

The primary interest of this study was to assess if isolates sampled from wmn

represent isolates from producer fields within the region (Steadman, Eskridge & Powers,

2003; Otto-Hanson et al., 2011). According to our AMOVA results, we have evidence

for differentiation at the Region and Year, but little to no differentiation between wmn

isolates and production field isolates (Table 4). This lack of differentiation, however, may

reflect the breeder practice of inoculating screening plots with sclerotia collected from

sources within the region. When we analyze the AMOVA results in light of the DAPC

results (Fig. 5), it becomes clear that the regional patterns of differentiation are largely

driven by isolates from Mexico and CA. Isolates from these Regions had a higher

posterior probability (>0.75) of being reassigned to their own populations than any

other (Fig. 5A). All other populations in comparison (except France) has reassignment

probabilities of <0.5, which is reflected in the failure of the first two discriminant

functions to separate these populations (Fig. 5B).

Despite the evidence that Mexico and CA contributed to much of the population

differentiation, Regions like WA still had a large amount of internal variation. The two
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distinct clusters for the WA Region showed that the 2008 population appeared

differentiated and, under further investigation, we found that all the haplotypes from

this year were shared between CA and France (Figs. 4 and 6; Fig. S5). All of the isolates

from WA in 2003–2005, and 2008 came from the same wmn; within the wmn, those in

2003–2005 came a Northeastern field location cropped with dry bean since 2002, and

those in 2008 from a Southeastern field that was previously cropped with brassica,

sundgrass, peas, beans, and potatoes (P. Miklas, 2017, personal communication). Both of

these fields were inoculated with sclerotia in 2002, the Northeastern field with sclerotia

provided by a commercial bean producer and the Southeastern field with sclerotia

from peas (although this was thought to be unsuccessful). Despite this information, it

is still unclear what has contributed to the differentiation of the 2008 population from

WA or why it shares haplotypes with CA and France. When we assessed aggressiveness

between the two fields across years with an ANOVA model, we found that there was a

slight effect based on field (P = 0.0127). While the evidence may suggest host as being a

factor, previous studies have shown no significant differentiation across host species

(Aldrich-Wolfe, Travers & Nelson, 2015). It was of interest to compare our data with that of

Aldrich-Wolfe, Travers & Nelson (2015), but we found that, due to differences in data

generation, we were unable to confidently perform a comparison (see supplemental file

compare-aldrich-wolfe.md, https://github.com/everhartlab/sclerotinia-366/blob/master/

results/compare-aldrich-wolfe.md; Kamvar et al., 2017).

With the exception of the WA Region, populations that were sampled across several

years appeared to be relatively stable over time with overlapping distributions in the

DAPC (i.e., NE and MI, Fig. 6). DAPC is based on the principal components of allele

counts (Jombart, Devillard & Balloux, 2010). Unlike Bruvo’s distance, this does not take

into account the magnitude of the difference between alleles, which could inflate the

distance measure in the presence of private alleles (Bruvo et al., 2004). While we found no

evidence of private alleles in the Mexico and CA isolates, we did find that the alleles

driving the first axis in Fig. 5A (alleles 174, 256, and 372 in loci 7-2, 8-3, and 9-2,

respectively) were over-represented in Mexico (where >75% of the alleles came from

the region). However, all three of these alleles, (i) conform to the expected stepwise

mutation model (Bruvo et al., 2004) and (ii) are at or near the extremes of the total

range (except for allele 372 at locus 9-2). Moreover, the fact that we find three alleles at

three independent loci segregating the Mexican genotypes suggests that the pattern

separating these populations from the others was not an artifact. We believe that the

differences in populations observed from Mexico may be due to differences in climate

that allow greater diversification via sexual outcrossing.

Many of the isolates in our study were from temperate climates and the only

isolates representing a sub-tropical climate were from Mexico. It has been proposed

within the S. sclerotiorum literature that isolates from sub-tropical and tropical climates

are differentiated or more variable than populations from temperate climates (Carbone &

Kohn, 2001; Attanayake et al., 2013; Lehner & Mizubuti, 2017). This has been attributed to

the notion that the fungus has the chance to undergo more reproductive cycles in the

warmer climate (Carbone & Kohn, 2001; Attanayake et al., 2013). The strongest evidence
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to date supporting this hypothesis is from Attanayake et al. (2013), showing that

populations in sub-tropical regions of China have been found to be more variable,

sexually reproducing, and unrelated to populations in temperate regions of the

United States. This result however, may be driven more by geography and agricultural

practice as opposed to climate.

The results from our shared haplotype analysis showed several populations with at

least one haplotype between them, except for Mexico and two states that had fewer than

three samples each (Fig. 4). Our network-based approach by treating the haplotypes as

edges and weighting each edge with the inverse of Psex treated the edges as springs

connecting the populations with the strength proportional to the probability of

obtaining the same haplotype as a clone. This allowed us to use a graph walking

algorithm to see how close the populations were, simply based off of the proportion of

clones they shared. The most abundant haplotype was shared across four populations,

but its high value of Psex meant that it did not contribute significantly to the overall

structure. The graph walking algorithm was able to divide the network into three groups,

but had a modularity of 0.17, which indicates that the groups are only weakly

differentiated.

The widespread nature of MLH in both wmn and production fields with relatively

small values of Psex may indicate the spread of inoculum between regions. While

seed-borne transmission is thought to be of insignificant epidemiological importance

(Strausbaugh & Forster, 2003), it has since been shown that S. sclerotiorum infections can

be transmitted through seed (Botelho et al., 2013). Thus, we hypothesize that shared

haplotypes between populations may arise due to transmission events of seed or sclerotia.

This could explain the fact that we see shared haplotypes with low Psex values shared

between Australia, France, and the United States. While we speculate that these

transmission events are rare due to the genetic structuring by Region, these results suggest

that seed-borne infections may indeed reflect a source of inoculum. This may, in turn

increase the risk of introducing new sources of genetic variation through potential

outcrossing events.

When we tested for sexual reproduction, we were unable to find evidence for it in any

region except for Australia and CA. While the Australia population had a non-significant

value of �rd—which would suggest that we cannot reject the null hypothesis of random

mating—the sample size was insufficient from which to draw conclusions (Milgroom,

1996; Agapow & Burt, 2001). The low value of �rd in the CA population may represent

sexual reproduction, but we can see in Fig. 6 that there is differentiation by year. Thus,

this could also be an artifact of sampling two different populations, which is known to

reduce the value of �rd (Prugnolle & de Meeus, 2010).

The previous study of the wmn populations used MCGs to assess genotypic diversity

(Otto-Hanson et al., 2011). Historically, MCGs have been used as a proxy for clonal

lineages, and thus, of interest in this study was testing the association between MLHs and

MCGs (Kohn, Carbone & Anderson, 1990; Leslie, 1993; Kohn, 1995; Carbone, Anderson &

Kohn, 1999; Schafer & Kohn, 2006; Otto-Hanson et al., 2011). Our results, however, do not

support this assumption. It can be seen in Fig. 1A that the most abundant MCG contains
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several MLHs, but the diversity of those MLHs are low as indicated by the evenness

(transparency), which indicates that there is one dominant MLH (“MLH 25”). What is

not shown in Fig. 1A is the MLHs that are shared between MCGs. This is illustrated

in both Table 3 and Figs. 1B and 1C. It could be argued, however that “MLH 25,” with

its high value of Psex represents different true MLHs across the five MCGs it occupies, but

this does not account for the overall structure of Fig. S3 where, for example, “MLH 75”

(Psex = 1.81e-4) is compatible with 57 other haplotypes through three MCG when the

population structure of S. sclerotiorum is known to be clonal.

Over the past few years, researchers have noticed inconsistencies among the

relationship between MCGs and MLHs (Carbone, Anderson & Kohn, 1999; Attanayake

et al., 2012; Aldrich-Wolfe, Travers & Nelson, 2015; Lehner et al., 2015). Either several

MCGs belong to one MLH, which could be explained by insufficient sampling of loci;

several MLHs belong to one MCG, which could be explained by clonal expansion; or a

mixture of both. Some studies have shown a correlation between MCG and MLH

(Carbone, Anderson & Kohn, 1999; Aldrich-Wolfe, Travers & Nelson, 2015; Lehner et al.,

2015), whereas other studies have shown no apparent correlation, even on small spatial

scales (Atallah et al., 2004; Attanayake et al., 2012, 2013).

One long-held assumption was that MCGs (as determined via barrage reaction)

represent vegetative compatibility groups (VCGs) (Kohn, Carbone & Anderson, 1990;

Schafer & Kohn, 2006; Lehner et al., 2015), which are known to have a genetic

component (Saupe, 2000;Hall et al., 2010; Strom & Bushley, 2016). While our protocol for

assessing MCGs utilized DS Medium (Cubeta, Sermons & Cody, 2001) as compared to

Patterson’s Medium or PDA (Schafer & Kohn, 2006) for the MCG reactions, the

patterns we observe are not dissimilar from what have previously been reported in the

literature. It has been demonstrated in several Ascomycetes—including Neurospora crassa

(Micali & Smith, 2003), S. homoeocarpa (Jo et al., 2008), Verticillium dahliae (Papaioannou

& Typas, 2014), and S. sclerotiorum (Ford et al., 1995)—that barrage reactions are

independent from stable anastomosis. Thus, the inconsistencies in this study and other

studies indicate that researchers studying S. sclerotiorum should not rely on MCG data

derived from barrage reactions as an indicator for genetic diversity.

Limitations
One of the main limitations of this study is the focus on P. vulgaris as a host. It has been

shown that S. sclerotiorum in the Midwestern United States does not have a particular

preference for host (Aldrich-Wolfe, Travers & Nelson, 2015). If the distribution of

S. sclerotiorum is even across agricultural hosts in the United States, then our sample may yet

be representative of the genetic pool present in other crops and weedy species. Additionally,

while we found no significant association between genotype and aggressiveness, it is

important to note that the straw test is only one measure of aggressiveness. Additional

phenotypes for aggressiveness should be evaluated for future studies.

Another limitation was the microsatellite markers used for this particular study

(Sirjusingh & Kohn, 2001). The haplotype accumulation curve showed no indication of a

plateau, indicating that if we had sampled more loci, we would have resolved more MLHs.
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While 16 loci showed us similar results and began to show a plateau for the haplotype

accumulation curve, we were unable to use these results due to our uncertainty in the

allele calls for these five extra loci. With the availability of an optically mapped genome

(Derbyshire et al., 2017), future studies describing the genetic diversity of S. sclerotiorum

should employ techniques such as Genotyping-By-Sequencing (Davey et al., 2011),

Sequence Capture (Grover, Salmon & Wendel, 2012), or Whole Genome Sequencing.

CONCLUSION
This study represents the largest genetic analysis of S. sclerotiorum from the United States to

date, giving us a unique insight to continent-wide population structure and relationships

between phenotypic and genotypic variables. Populations in wmn appear to show no

significant differentiation when compared to their production field counterparts,

suggesting that the wmn populations of S. sclerotiorum may be considered representative

of the surrounding regions. While we found no direct relationship between haplotype and

severity, it is evident that there is a gradient of severity by region, further supporting the

need for screening in multiple locations. Based on our analysis of the relationships

between MCG and MLH, we found no clear evidence that the two are directly related,

suggesting that MCG does not necessarily represent vegetative compatibility groups and

thus should not be used as a proxy for identifying clones.
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