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ABSTRACT
Metagenomics is a valuable tool for the study of microbial communities but has been
limited by the difficulty of “binning” the resulting sequences into groups correspond-
ing to the individual species and strains that constitute the community. Moreover,
there are presently no methods to track the flow of mobile DNA elements such
as plasmids through communities or to determine which of these are co-localized
within the same cell. We address these limitations by applying Hi-C, a technology
originally designed for the study of three-dimensional genome structure in eukary-
otes, to measure the cellular co-localization of DNA sequences. We leveraged Hi-C
data generated from a simple synthetic metagenome sample to accurately cluster
metagenome assembly contigs into groups that contain nearly complete genomes of
each species. The Hi-C data also reliably associated plasmids with the chromosomes
of their host and with each other. We further demonstrated that Hi-C data provides
a long-range signal of strain-specific genotypes, indicating such data may be useful
for high-resolution genotyping of microbial populations. Our work demonstrates
that Hi-C sequencing data provide valuable information for metagenome analyses
that are not currently obtainable by other methods. This metagenomic Hi-C method
could facilitate future studies of the fine-scale population structure of microbes,
as well as studies of how antibiotic resistance plasmids (or other genetic elements)
mobilize in microbial communities. The method is not limited to microbiology; the
genetic architecture of other heterogeneous populations of cells could also be studied
with this technique.
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INTRODUCTION
Microbial ecology is the study of microbial communities in terms of their composition,

functional diversity, interactions, stability, and emergent properties (Handelsman, 2004;

Konopka, 2009). Knowledge of the roles microbes play in ecosystems is essential for

understanding how these ecosystems function (Konopka, 2009). Readily-cultivated

organisms are estimated to constitute less than 1% of all microbial species, leading to

the development of culture-independent methods for studying microbial communities

(Gilbert & Dupont, 2011; Hugenholtz, 2002; Staley, 1985). These culture-independent

methods allow communities to be characterized directly.

Current sequencing-based metagenomic methods do not capture some of the most

informative genetic information in microbial communities, in particular the long-range

sequence contiguity and associations of genetic material in individual cells. In nearly all

metagenomic methods, cells from the microbial community are lysed en masse to obtain

a bulk DNA sample. This results in DNA from many different cells being mixed together,

so that the genotype and species identity of individual cells are lost. Chromosomal DNA

is then fragmented into pieces (∼500 bp–40 kbp, depending on the sequencing strategy),

further reducing contiguity.

Improved sample-processing workflows might preserve this information and thereby

yield greater insight into the genetic structure of microbial communities. High throughput

single-cell genomics (e.g., applied to thousands of cells) offers a promising alternative to

shotgun metagenomics that preserves information about cellular compartmentalization

of genetic material. These approaches are exquisitely sensitive to contamination by

foreign DNA (from the sample itself, the laboratory environment, and from “ultra-pure”

commercial reagents), necessitating the use of specialized equipment and reagents

(Blainey, 2013; Woyke et al., 2011). Long-read technologies, such as Pacific Biosciences

(Eid et al., 2009) and nanopore (Maitra, Kim & Dunbar, 2012) sequencing, may help

address this challenge but are still constrained by the difficulty of preparing adequate

amounts of very long DNA fragments.

Computational methods have been developed to infer genomic contiguity from

metagenomic data by binning metagenome assembly contigs by species. These binning

procedures pose a significant analytical challenge. Several methods have been developed

that can be divided into comparative, compositional, and assembly approaches. Compar-

ative approaches use alignments to reference sequences to assign contigs to species within

existing taxonomies (Droge & McHardy, 2012). Comparative approaches are limited by

their reliance on existing taxonomies. Compositional approaches form clusters of contigs

that share similar oligomer (usually 4 bp–8 bp) composition (Droge & McHardy, 2012).

Compositional approaches tend to be limited as well due to their underlying assumption

that contigs with similar sequence composition belong together. Horizontal gene transfer

complicates both of these analysis methods because it can introduce gene content from a

taxonomically distant relative with unusual nucleotide composition. Thirdly, metagenome

assembly can be viewed as a metagenome binning approach since sequences placed on

the same scaffold are necessarily present in the same bin for any downstream binning
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procedure. As with all genome assembly approaches, metagenome assembly seeks to infer

sequence adjacencies from paired- and long-read technologies. This approach is limited by

the availability of such data that span large repetitive regions (Treangen & Salzberg, 2012;

Howe et al., 2014; Treangen et al., 2013).

Binning seeks to address the challenge of determining which sequences were present

within cells of the same species prior to DNA extraction. We reasoned that such

co-localizations could be inferred from Hi-C data, a method originally developed

for the study of three-dimensional genome structure in eukaryotes (Lieberman-Aiden

et al., 2009). This method relies on cross-linking molecules in close physical proximity

and consequently identifies both intra- and inter-chromosomal associations, reflecting

the spatial arrangement of DNA at the time of cross-linking within intact nuclei or

non-nucleated cells (Umbarger et al., 2011). We predicted that sequences of DNA not

present in the same cell at the time of cross-linking would not be cross-linked together and

should not be associated by Hi-C reads (Fig. S1). Herein we demonstrate the utility of Hi-C

as a tool for addressing metagenomic binning and related problems in microbial ecology.

To do so we first constructed a synthetic microbial community by culturing and mixing five

organisms with available reference genomes. We then performed a metagenome assembly

on sequences that were simulated in silico from the genomes of these organisms. Our first

objective was to group these metagenome assembly contigs according to species using

Hi-C reads that were generated from the synthetic microbial community. We then sought

to differentiate two closely related E. coli strains included within this mixture. To do so

we constructed contig and variant graphs and analyzed those graphs to characterize the

extent to which Hi-C data might resolve the genotypes of species and strains present in our

synthetic community.

MATERIALS AND METHODS
Construction of a synthetic microbial community
Pediococcus pentosaceus and Lactobacillus brevis were provided by the UC Davis Enology

Culture Collection (http://wineserver.ucdavis.edu). Single colonies were used to start

cultures in 5 ml liquid MRS broth. Escherichia coli BL21 (ATCC# PTA-5073), E. coli K12

DH10B (ATCC# 207214), and Burkholderia thailandensis (ATCC# 700388) were obtained

as freeze-dried stocks from the American Type Culture Collection (ATCC). The E. coli

strains were re-suspended in 5 ml of LB liquid medium (10 g/L Tryptone, 10 g/L NaCl,

5 g/L Yeast Extract) and the B. thailandensis was re-suspended in 5 ml of Nutrient Broth

(Peptone 15.0 g/L, yeast extract 3 g/L, sodium chloride 6 g/L, D(+)glucose 1 g/L). All were

incubated, with shaking, overnight at 37 ◦C to produce starter cultures.

A separate 50 ml culture for each organism was created by inoculation with 10 µl of the

appropriate starter culture and grown, with shaking, at 37 ◦C, for 24 h. The cell density

of each culture was estimated by measuring the OD600. The cultures were then mixed in

quantities proportional to their optical density, seeking to have equal representation of

each organism in the synthetic community. Glycerol was added to a final concentration of

7% and the final mixture was divided into 2 ml tubes and frozen at −80 ◦C.
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Simulated metagenome assemblies
We simulated Illumina paired-end sequencing of the synthetic microbial community

to obtain metagenomic assemblies that we could subsequently attempt to bin using

experimentally derived Hi-C reads. Reads were simulated using Grinder (Angly et al., 2012)

v0.4.5, a tool for simulating metagenomic shotgun sequence reads. Replicons were sampled

assuming uniform abundance of species. A total of 61,063,000 reads were simulated to

cover the genomes at 500x. From this set, paired-end read datasets of varying levels of

coverage (100, 50, and 5x) were formed. Read length was simulated to 165 bp and fragment

size was simulated with a normal distribution around 550 bp with a standard deviation of

50 bp (“grinder -am uniform -cf $cov-rd 165 -id 550 normal 50 -rf $ref -fq 1 -ql 30 10 -bn

grinder.dp$cov.$tag”).

Assembly from each of the simulated metagenomic read sets was performed using

SOAPdenovo (Luo et al., 2012) with a k-mer length of 23, yielding assemblies of varying

quality (Table S1). Reads were aligned to the resulting assembly contigs using BWA MEM

(Li, 2013). The rate of misassembly was determined by mapping contigs back to the refer-

ence assemblies (BWA-MEM with default parameters and a quality filter of MapQ > 20)

and counting the number of contigs that joined sequences from different species. These as-

semblies are available on Figshare: http://dx.doi.org/10.6084/m9.figshare.1004473, http://

dx.doi.org/10.6084/m9.figshare.1004472, http://dx.doi.org/10.6084/m9.figshare.1004471.

Application of Hi-C to the synthetic microbial community
We performed Hi-C on the synthetic microbial community for the purpose of obtaining

information that could be used to group (by species) the simulation-derived contigs

described above, as well as to differentiate closely related strains present in our synthetic

community. Hi-C was carried out by combining the cross-linking and cell wall digestion

procedures described by Umbarger et al. (2011) for bacterial 3-C experiments and the

Hi-C protocol developed for mammalian cells (Lieberman-Aiden et al., 2009) with minor

modifications. For additional details, see Supplemental Information: Hi-C of Mixed

Bacterial Cultures. Cells were transferred into a 50 ml centrifuge tube and washed three

times in 25 ml of TE buffer (pH = 8.0) by centrifugation for 5 min at 4000 rpm at 4 ◦C.

Cells were re-suspended at an OD600 of 0.2 in TE and 37% formaldehyde was added

to a final concentration of 1% to cross-link proteins in the cell. Cells were incubated at

room temperature for 30 min and subsequently for another 30 min on ice (Umbarger et

al., 2011). The formaldehyde was quenched by adding glycine to a final concentration of

0.125 M and incubated on ice for 10 min. After centrifugation, cells were re-suspended

in TE and lysozyme digestion was carried out as described to release the protein-DNA

complexes (Umbarger et al., 2011). The samples were centrifuged and re-suspended

in Hi-C lysis buffer and incubated on ice for 15 min (Lieberman-Aiden et al., 2009).

From this step on the original Hi-C protocol employing HindIII (Lieberman-Aiden et

al., 2009) was applied with some modifications. To summarize the Lieberman-Aiden et

al. (2009) protocol, DNA in the cross-linked protein complexes is digested with HindIII

endonuclease following cell lysis and free DNA ends are tagged with biotin. Blunt-ended
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DNA fragments are ligated under highly dilute conditions, resulting in preferential

ligation of fragments that are within the same cross-linked DNA/protein complex. Next,

crosslinks are removed, DNA is purified, biotin is eliminated from un-ligated ends, DNA

is size-selected, and ligation products are selected for through a biotin pull-down. One

modification we made to the published procedure was to reduce the concentration

of biotin-14-dCTP (Life Technologies) by half. Also, ligation to Illumina-compatible

sequencing adapters (Bioo Scientific) was carried out in solution before capture with

streptavidin beads. The DNA sample was size selected after end-repair and before adapter

ligation by gel extraction for fragment sizes ranging from 280 to 420 bp. The bead-captured

Hi-C library was amplified by 10 cycles of PCR before a final cleanup with Ampure XP

beads (Agencourt). The library was sequenced in a single run on an Illumina Miseq

machine using 160 bp paired-end reads.

Sequence alignment and quality filtering
Reference assembly sequences were obtained from the NCBI RefSeq database (Pruitt et al.,

2012) with the following accession numbers for each of P. pentosaceus (NC 008525), L. bre-

vis (NC 008497, NC 008498, NC 008499), E. coli BL21 (NC 012892), E. coli K12 DH10B

(NC 010473), and B. thailandensis (NC 007651, NC 007650). These sequences were

pooled into a single reference database for sequence alignment. No quality filtering was

performed on raw reads, leaving this to be performed later using alignment quality scores.

Split-read sequence alignment was performed (independently for each read in a pair) using

BWA MEM (Li, 2013; default parameters) against the pooled reference assemblies as well

as (separately) against the metagenome assembly described above. Heat map visualizations

and insert distribution plots were generated from unfiltered alignments using custom R

(The R Core Development Team, 2010) scripts (see http://github.com/cb01/proxmine).

We investigated the effect of various alignment filtering parameters on the subsequent

variant graph analysis (illustration of the concept of a variant graph can be found in

Fig. S7). To this end, alignments of Hi-C reads to the reference genomes were filtered

according to 24 parameter combinations, with three minimum mapping quality (0, 20,

60), two CIGAR filtering (none, CIGAR = 160 M), and four minimum insert filtering

(0, 1 kb, 10 kb, 40 kb) conditions. In the latter, Hi-C read pairs were excluded when their

alignments within the reference assembly had an insert size below the specified minimum,

including cases of alignments spanning the linearization points of these assemblies

(e.g., for E. coli, near coordinates 0 and 4686137). An open-source graph visualization tool,

Gephi (0.8.2-beta), was used to visualize the Hi-C contig association network (Bastian,

Heymann & Jacomy, 2009).

Contig clustering
We inferred grouping of metagenome assembly contigs by applying the Markov Clustering

Algorithm (MCL) to a matrix of contig association data (van Dongen, 2000). MCL is

an unsupervised clustering algorithm which simulates flow and accumulation of edge

weights within a given weighted graph structure. It has a computational complexity of

O(Nk2) given an implementation designed for sparse matrices. The matrix of edge weights
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provided to this algorithm was computed from contig association counts by normalizing

edge weights according to the following formula, which corrects for the expected inflation

of association between large contigs. Specified formally, let L be a set of contig lengths

with member li denoting the length of contig i. Given a contig pair {i,j}, let cij denote the

number of Hi-C read pairs with one end aligning in contig i and the other end in contig j.

This count was normalized by the ratio of the square of the maximum contig length and

the lengths li and lj of contigs i and j, respectively.

c′

ij =
max(L)2ci,j

lilj
.

Prior to normalization, we filtered the contig association data for (1) contig associations

greater than some minimum k, and (2) associations between contigs of size greater than L.

We explored the (k,L) parameter space by performing normalization and MCL clustering

for 205 parameter combinations, with 41 contig size minimums chosen evenly across [0,

40000] and five contact minimums, {0, 3, 5, 7, 9}. For each of the 205 filtering parameter

combinations, clustering was performed using 100 different MCL inflation values chosen

to span the interval [1, 2] in increments of 0.01.

Assessment of clustering quality
Each metagenome assembly contig was aligned to the reference assemblies to determine

its species or strain of origin, allowing us to determine which strains were present in each

cluster of contigs. This was done by extracting every 70 bp substring of the available contig

sequences and aligning each of those back to the reference assemblies with BWA-MEM

(default parameters, MapQ > 20). A contig was designated as originating from the species

to which the greatest number of these substrings aligned. A measure of clustering quality

was computed by sampling random pairs of contigs (N = 100,000 pairs) and comparing

their cluster assignments to their species of origin. This random sampling was weighted

according to the size of each contig such that the probability of sampling any contig from

the set was equal to the size of that contig divided by the sum total of all contig sizes.

Any contig not present in the clustering solution (but which was present as input for the

clustering run that generated that solution) was added to the solution in a singleton cluster.

For each sampled contig pair, if those contigs belonged to the same species and had been

placed in the same cluster, they were counted as a true positive (“TP”). If they originated

from the same species but had been placed in different clusters, they were counted as a false

negative (“FN”). Likewise, contigs originating from different species that were placed in the

same or different clusters were counted as false positives (“FP”) and true negatives (“TN”),

respectively. The true positive rate (a.k.a. sensitivity, recall), false positive rate, positive

predictive value (a.k.a. precision), and negative predictive value were calculated from these

counts according to standard formulae. All clustering quality measures were computed

in two ways, one treating the two E. coli strains as independent classes (strain-level) and

another treating them as the same (species-level).
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Analysis of SNP graph connectivity
A SNP graph is an undirected graph wherein SNP sites are nodes and edges link pairs of

SNP sites that were observed together in a sequence read pair. We expected SNP graphs that

were constructed using Hi-C data to be more densely connected than SNP graphs that were

constructed using mate-pair data because Hi-C read pairs can span entire chromosomes

while reads from mate-pair libraries span no more than 40 kb +/− 5 kb. In this way, Hi-C

provides global information while that provided by mate pairs is locally constrained. To

quantify this, SNP graphs were constructed for the Hi-C data and simulated mate-pair

data and the shortest path between randomly chosen SNP pairs was plotted relative to

the distance between the those variants within the reference assembly. These graphs were

constructed from alignments of reads to the E. coli K12 reference assembly after it had been

masked at variant positions identified through pairwise sequence alignment of E. coli K12

and BL21 using progressiveMauve (Darling, Mau & Perna, 2010). In this way, the masked

K12 reference assembly was used as a scaffold for our analysis of Hi-C and mate-pair

variant graphs.

Hi-C read datasets typically contain a mixture of reads derived from ligation and

non-ligation products, the latter having short inserts. In our analysis of SNP graph

connectivity we sought to understand the contribution of these non-ligation products

on the connectivity gains seen with Hi-C reads over mate-pairs. For comparison to our

Hi-C reads, mate-pair read sets were computationally simulated for a range of sizes (5 kb,

10 kb, 20 kb, 40 kb). These were compared to three Hi-C read sets: the entire Hi-C dataset,

Hi-C reads with inserts below 1 kb, and Hi-C reads with inserts above 1 kb.

SNP graph connectivity was analyzed using the simulated mate-pair read sets described

above combined with Hi-C reads aligned and filtered for alignment qualities above or

equal to 60 and for CIGAR encodings of 160 M Read pairs with both ends aligning to

SNP positions were identified and for each corresponding SNP pair an edge was formed.

Shortest path lengths between sampled SNP positions were computed using a custom

breadth-first search program, relying on the Boost Graph Library (http://boost.org).

The program constructs a graph from a user-specified SNP edge list and performs a

breadth-first search to identify the shortest path length between a user-specified number of

randomly selected SNP pairs. We calculated path lengths between 10,000 randomly chosen

SNP pairs. To aid in visualization, the full range of variant separation distances was divided

into 20 kb segments and the average path length was computed for each segment. These

data were smoothed using locally-weighted scatterplot smoothing (LOWESS).

RESULTS
The synthetic microbial community for metagenomic Hi-C
Five microorganisms were chosen to test the metagenomic Hi-C approach: Lactobacillus

brevis, Pediococcus pentosaceus, Burkholderia thailandensis, Escherichia coli K12 DH10B

and E. coli BL21 (DE3). These were selected because high quality reference genomes are

available. In addition, the multiple replicons of B. thailandensis and plasmids present in

L. brevis allowed us to explore whether Hi-C might link separate replicons present in the
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same cell. We selected two strains of E. coli (K12 and BL21) to evaluate whether Hi-C

sequence data could be used to resolve inter-strain differences. Genome alignment of

these two E. coli shows that 87.9% of their genomes can be aligned and that the average

nucleotide identity across aligned regions is 99.5%. Finally, because differences in cell

membrane structure and GC content could potentially lead to bias in DNA extraction

and/or cross-linking efficiency, we selected two lactic acid bacteria (P. pentosaceus and

L. brevis), which are low-GC, Gram-positive organisms for which only 39.5% of their

genomes can be aligned with 84.3% average nucleotide identity across aligned regions.

Metagenome assembly
We generated a metagenome assembly of the synthetic microbial community that we could

use as input for our analysis of the utility of Hi-C for species clustering. Hi-C sequencing

data is biased by the distribution of restriction sites for the restriction enzyme used to

construct the library as well as by other factors including GC content, restriction fragment

length, and “mappability” (Yaffe & Tanay, 2011). Hi-C data contain numerous chimeric

sequences and thus are not suitable for de novo contig assembly. Therefore, we simulated

and assembled Illumina metagenomic sequence data at varying coverage levels to yield

the assemblies summarized in (Table S1). The size (bp) of each of these assemblies was

approximately 77% of the sum of the synthetic community reference genome sizes and

this fraction did not change when increasing the quantity of input reads from 5x to 100x.

Alignment of assembled contigs to the collection of reference genomes indicates that

similar regions of the two E. coli genomes were co-assembled into single contigs (data not

shown). The assembly on the lowest amount of input sequence (5x coverage) contained

two misassembled contigs and three misassembled scaffolds. Assemblies at 50x and 100x

coverage were free from misassembled contigs and scaffolds and were similar in terms of

their contig counts, N50s, and total amounts of sequence assembled. We used the 100x

coverage assembly (SOAP-3) for all further analysis.

Hi-C library statistics
A total of 20,623,187 read pairs were obtained from a single MiSeq run to yield ∼6.4 Gb

of raw sequence data. Of these, 98.25% could be aligned back to the reference genomes by

BWA MEM. A total of 21,260,753 (51.55% of original and 52.46% of raw aligned reads)

read pairs were retained after filtering for both reads in the pair aligning at high quality

(MapQ >= 60) and in full (CIGAR = 160 M). Due to either self-ligation or imperfect

enrichment for ligation junctions, most of the reads present in the dataset represent local

genomic DNA fragments. Therefore we classify read pairs mapping within 1,000 nt as

fragment reads, while all other reads are considered to be Hi-C reads (3% of reads).

The abundance of each replicon was estimated using filtered alignments and unfiltered

alignments (Table 1), as well as by normalizing each unfiltered alignment count with

the restriction site counts for each replicon (Table S2). These figures can only be used as

approximate measures of abundance because these values are affected by the frequency of

restriction sites in each organism and a multitude of other confounding factors (Morgan,

Darling & Eisen, 2010). Insert distances derived from the alignment of Hi-C reads to the
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Table 1 Species alignment fractions. The number of reads aligning to each replicon present in the
synthetic microbial community are shown before and after filtering, along with the percent of total
constituted by each species. The GC content (“GC”) and restriction site counts (“#R.S.”) of each replicon,
species, and strain are shown. Bur1: B. thailandensis chromosome 1. Bur2: B. thailandensis chromosome
2. Lac0: L. brevis chromosome, Lac1: L. brevis plasmid 1, Lac2: L. brevis plasmid 2, Ped: P. pentosaceus,
K12: E. coli K12 DH10B, BL21: E. coli BL21. An expanded version of this table can be found in Table S2.

Sequence Alignment % of Total Filtered % of aligned Length GC #R.S.

Lac0 10,603,204 26.17% 10,269,562 96.85% 2,291,220 0.462 629

Lac1 145,718 0.36% 145,478 99.84% 13,413 0.386 3

Lac2 691,723 1.71% 665,825 96.26% 35,595 0.385 16

Lac 11,440,645 28.23% 11,080,865 96.86% 2,340,228 0.46 648

Ped 2,084,595 5.14% 2,022,870 97.04% 1,832,387 0.373 863

BL21 12,882,177 31.79% 2,676,458 20.78% 4,558,953 0.508 508

K12 9,693,726 23.92% 1,218,281 12.57% 4,686,137 0.507 568

E. coli 22,575,903 55.71% 3,894,739 17.25% 9,245,090 0.51 1076

Bur1 1,886,054 4.65% 1,797,745 95.32% 2,914,771 0.68 144

Bur2 2,536,569 6.26% 2,464,534 97.16% 3,809,201 0.672 225

Bur 4,422,623 10.91% 4,262,279 96.37% 6,723,972 0.68 369

Figure 1 Hi-C insert distribution. The distribution of genomic distances between Hi-C read pairs is
shown for read pairs mapping to each chromosome. For each read pair the minimum path length on
the circular chromosome was calculated and read pairs separated by less than 1000 bp were discarded.
The 2.5 Mb range was divided into 100 bins of equal size and the number of read pairs in each bin
was recorded for each chromosome. Bin values for each chromosome were normalized to sum to 1 and
plotted.

E. coli K12 genome were distributed in a similar manner as previously reported (Fig. 1;

(Lieberman-Aiden et al., 2009)). We observed a minor depletion of alignments spanning

the linearization point of the E. coli K12 assembly (e.g., near coordinates 0 and 4686137)

due to edge effects induced by BWA treating the sequence as a linear chromosome rather

than circular.
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Table 2 Markov clustering of metagenome assembly contigs using Hi-C data. A range of inflation
parameters were applied, and the precision and recall for the resulting clusters was calculated as described
in the text. An inflation parameter of 1.1 produced a near perfect clustering of contigs by species.

Inflation Precision Recall # clusters

2.0 1 0.19 33

1.3 1 0.33 25

1.125 1 0.98 5

1.1 0.96 0.98 4

Clustering contigs by species with Hi-C
The experimentally derived Hi-C read pairs have a long tail in their insert distribution

(Fig. 1; Figs. S3–S6) indicating that they provide information that can be used to link

metagenome assembly contigs originating from distant parts of the same chromosome.

We evaluated whether Hi-C reads could be used to group the simulated assembly contigs

described above into clusters that correspond with each species’ genome. We tested this

process on the SOAP-3 assembly, using only contigs with a length of at least 5 kbp. This

threshold was applied to exclude short contigs that may not have a HindIII restriction site.

As HindIII recognizes a 6 bp motif, it cuts on average every 4,096 bp. We note that >25%

of a 4 Mbp genome is expected to have inter-site distances >10 Kbp in simulations that

treat 6-cutter restriction sites as uniformly distributed (data not shown) suggesting that

many of the contigs <10 Kbp may cluster poorly due to lack of restriction sites. The dataset

was further reduced to exclude links among contig pairs which are associated by 5 or fewer

read pairs.

We tested Markov clustering (van Dongen, 2000) on these data over a range of inflation

(affecting cluster solution granularity) parameters (Table 2). In the best case, Markov

clustering produced four clusters, each of which correspond to the nearly complete

genome of a species in our synthetic community. In this clustering, the two strains of

E. coli appear in the same group. When using the default inflation parameter of 2.0 we find

that the data is under-clustered, but there are no false positive associations among contigs

for this choice of input.

To further understand the sensitivity of MCL to choices of filtering and inflation param-

eters, we performed clustering across the 204 filtering and 100 inflation (total of 20,400)

conditions (see Methods: Contig Clustering) using MCL. A representative subset of all

parameter combinations tested is shown in Fig. S2. These data suggest that once sufficient

contact and contig size minimums have been applied, cluster solutions vary primarily in

terms of their granularity (as the inflation parameter varies), not their PPV (remaining

close to 1) or FPR (remaining close to 0). Low inflation values, close to 1, give clustering

solutions with the highest TPR’s, but this does not hold true without sufficient filtering.

Association of species with metagenomic Hi-C data
We next sought to quantify the cellular co-localization signal underlying the above-

described species clustering. For this analysis we studied Hi-C reads aligned directly to the
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Figure 2 Metagenomic Hi-C associations. The log-scaled, normalized number of Hi-C read pairs
associating each genomic replicon in the synthetic community is shown as a heat map (see color scale,
blue to yellow: low to high normalized, log scaled association rates). Bur1: B. thailandensis chromosome
1. Bur2: B. thailandensis chromosome 2. Lac0: L. brevis chromosome, Lac1: L. brevis plasmid 1, Lac2:
L. brevis plasmid 2, Ped: P. pentosaceus, K12: E. coli K12 DH10B, BL21: E. coli BL21.

reference assemblies of the members of our synthetic microbial community with the same

alignment parameters as were used in the top ranked clustering (described above). We first

counted the number of Hi-C reads associating each reference assembly replicon (Fig. 2;

Table S3), observing that Hi-C data associated replicons within the same species (cell)

orders of magnitude more frequently than it associated replicons from different species.

The rate of within-species association was 98.8% when ignoring read pairs mapping less

than 1,000 bp apart. Including read pairs <1,000 bp inflated this figure to 99.97%. Fig. 3

illustrates this by visualizing the graph of contigs and their associations. Similarly, for

the two E. coli strains (K12, BL21) we observed the rate of within-strain association to

be 96.36%. When evaluated on genes unique to each strain (where read mapping to each

strain would be unambiguous), the self-association rate was observed to be >99%.

We observed that the rate of association of L. brevis plasmids 1 and 2 with each other and

with the L. brevis chromosome was at least 100-fold higher than with the other constituents

of the synthetic community (Fig. 2). Chromosome and plasmid Hi-C contact maps show

that the plasmids associate with sequences throughout the L. brevis chromosome (Fig. 4;

Figs. S3–S5) and exhibit the expected enrichment near restriction sites. This demonstrates

that metagenomic Hi-C can be used to associate plasmids to specific strains in microbial

communities as well as to determine cell co-localization of plasmids with one another.

Variant graph connectedness
Algorithms that reconstruct single-molecule genotypes from samples containing two or

more closely-related strains or chromosomal haplotypes depend on reads or read pairs

that indicate whether pairs of variants coexist in the same DNA molecule. Such algorithms
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Figure 3 Contigs associated by Hi-C reads. A graph is drawn with nodes depicting contigs and edges
depicting associations between contigs as indicated by aligned Hi-C read pairs, with the count thereof
depicted by the weight of edges. Nodes are colored to reflect the species to which they belong (see legend)
with node size reflecting contig size. Contigs below 5 kb and edges with weights less than 5 were excluded.
Contig associations were normalized for variation in contig size.

typically represent the reads and variant sites as a variant graph wherein variant sites are

represented as nodes, and sequence reads define edges between variant sites observed in

the same read (or read pair). We reasoned that variant graphs constructed from Hi-C

data would have much greater connectivity (where connectivity is defined as the mean

path length between randomly sampled variant positions) than graphs constructed from

mate-pair sequencing data, simply because Hi-C inserts span megabase distances. Such

connectivity should, in theory, enable more accurate reconstruction of single-molecule

genotypes from smaller amounts of data. Furthermore, by linking distant sites with fewer

intermediate nodes in the graph, estimates of linkage disequilibrium at distant sites (from a

mixed population) are likely to have greater precision.

To evaluate whether Hi-C produces more connected variant graphs we compared the

connectivity of variant graphs constructed from Hi-C data to those constructed from

simulated mate-pair data (with average inserts of 5 kb, 10 kb, 20 kb, and 40 kb). To exclude

paired-end products from the analysis, Hi-C reads with inserts under 1 kb were excluded

from the analysis. For each variant graph constructed from these inputs, 10,000 variant

position pairs were sampled at random, with 94.75% and 100% of these pairs belonging to

the same connected graph component of the Hi-C and 40 kb variant graphs, respectively.
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Figure 4 Hi-C contact maps for replicons of Lactobacillus brevis. Contact maps show the number of
Hi-C read pairs associating each region of the L. brevis genome. The L. brevis chromosome (Lac0, (A),
Spearman rank correlation) and plasmids (Lac1, (B); Lac2, (C)) show enrichment for local associations
(bright diagonal band). Interactions between Lac1 and Lac0 (D) and Lac2 and Lac0 (E) are shown.
All except Lac0 are log-scaled. Circularity of Lac0 became apparent after transforming data with the
Spearman rank correlation (computed for each matrix element between the row and column sharing
that element) in place of log transformation (A) indicated by the high number of contacts between the
ends of the sequence. In all plots, pixels are sized to represent interactions between blocks sized at 1% of
the interacting genomes. The number of HindIII restriction sites in each region of sequence is shown as
a histogram on the left and top of each panel.

These rates fell to 6.21%, 16.6%, and 32.38% for the 5 kb, 10 kb, and 20 kb mate-pair

variant graphs, respectively (Table 3).

Across conditions, variant graphs differed in terms of their connectivity, with Hi-C

graphs showing the greatest connectivity. Despite having simulated an equal number of

reads for each mate-pair distance, the numbers of variant positions linked by such reads

was different across conditions. We observed that the variant graph derived from Hi-C

data (>1 kb inserts, no alignment filtering), despite having the lowest number of variant

links, had the lowest mean and maximum path length (5.47, 11; Table 3). Path length

was not correlated with distance within Hi-C variant graphs, in contrast to the mate-pair

conditions (Fig. 5). The lengths of paths between variant pairs in the mate-pair graphs

did increase with distance, reaching maximums of 71, 96, 94, and 111 in the 5 kb, 10 kb,

20 kb, and 40 kb cases, respectively. We further examined the effect of alignment quality

and completeness filtering and observed that in the latter case such filtering vastly reduced

the rate at which variant positions occur within the same connected graph component.

DISCUSSION
This study demonstrates that Hi-C sequencing data provide valuable information for

metagenome analyses that are not currently obtainable by other methods. By applying

Hi-C to a synthetic microbial community we showed that genomic DNA was associated
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Table 3 Variant graph statistics. Connectivity statistics are shown for variant graphs constructed from
various simulated mate-pair (# kb, MP) and Hi-C read datasets. Graph constructed from all Hi-C data
are compared to those constructed using only Hi-C read pairs with inserts over 1 kb. The Hi-C variant
graphs are highly connected in contrast to the mate-pair graphs that have both lower connectedness and
lower rates of variants occurring in the same connected components.

Num. reads Max Avg. % Same c.c

5 kb, MP 10,287,315 71 14.81 6.21

10 kb, MP 7,681,515 96 24.45 16.6

20 kb, MP 4,871,227 94 27.58 32.38

40 kb, MP 4,257,896 111 37.19 100

Hi-C (all) 16,429,505 10 5.11 97.77

Hi-C (>1 kb) 111,525 11 5.47 94.75

Figure 5 Relationship of distance to degree of separation in Hi-C and mate-pair variant graphs. The
length of paths between random pairs of SNP sites in a SNP graph constructed from both Hi-C and
mate-pair libraries of varying sizes (left; 5 kb, 10 kb, 20 kb, 40 kb), smoothed using locally-weighted
regression.

by Hi-C read pairs within strains orders of magnitude more frequently than between

strains. Hi-C reads associated genomic regions at distances not achievable with mate-pair

or long-read sequencing technologies. The long-range contiguity information provided by

Hi-C reads enabled us to perform species-level clustering of metagenome assembly contigs

with perfect precision and recall scores when the input had been filtered sufficiently. We

performed an exploration of the clustering parameter space to understand the factors

affecting clustering quality and identified a number of key filtering parameters. Optimal

filtering involved retention of only contigs that are large enough to contain (or occur near)

a HindIII restriction site and furthermore to remove low-frequency contig associations

that constitute a form of “noise”. Additional work is needed to develop methods to

identify and remove “noise” from Hi-C datasets. Lastly, we compared the connectivity
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of variant graphs constructed from mate-pair and Hi-C read datasets, observing much

greater connectivity in the latter case, illustrating the global nature of the Hi-C signal.

We also observed orders of magnitude greater rates of association between plasmids

and chromosomes of their hosts than between plasmids and the genomes of other species.

Based on this observation, we believe Hi-C has the potential to be used to study horizontal

gene transfer. Given a metagenome assembly, Hi-C provides a means to link plasmid

sequences to chromosomes of the host strain, and may provide the means to detect cases

where plasmids have been transferred among co-existing species of bacteria. We have thus

far demonstrated that Hi-C provides a signal of cell co-localization for the two plasmids

present within the L. brevis genome. Alternative methods do not allow identification of

which cells in a microbial community harbor such mobile DNA elements. Hi-C data

has the potential to help quantify the dynamics of horizontal gene transfer and help

characterize the spread of antibiotic resistance and virulence factors. It remains to be

determined whether this signal will be sufficient to localize small, low-copy, or highly

variable mobile elements within the species that contain them.

The resolving power of Hi-C and related methods such as ChIA-PET (Fullwood et al.,

2009) when applied to complex natural microbial communities is as of yet undetermined.

In principle, as the number of species and genotypes in a community grows the amount

of sequence data required to resolve species and strains also grows. This challenge is

common to all metagenomic approaches and is not specific to the Hi-C method described.

Improvements on metagenomic analysis of complex communities may require integration

of Hi-C data with other information sources such as sequence composition, phylogeny,

and measurements of abundance.

The problems of differentiating contigs originating from different species is similar

to that of differentiating contigs originating from different chromosomes of the same

species. Recently a study reported the use of Hi-C to perform genome scaffolding of several

individual eukaryotic genomes, first by inferring chromosomal groupings of contigs and

then ordering sequences along the chromosome (Burton et al., 2013). Markov Clustering of

Hi-C association data may be used to cluster contigs into chromosomal groups without

specifying the number of chromosomes a priori. This may be important for samples

where the number of chromosomes (e.g., tumor samples), species, or species abundances

(e.g., environmentally-isolated microbial communities) are not known.

Hi-C analysis can be applied to communities other than environmentally-isolated

microbial communities, such as pools of BAC clones. Heterogeneous tumor populations

are analogous in some ways to microbial communities and Hi-C may be applied to identify

sub-populations therein. The problem of resolving the membership of variants in closely

related strains (between different cells) shares some common features with the problem of

differentiating closely related haplotypes within polyploid eukaryotic genomes (within the

same cells). Recent work has demonstrated that Hi-C data can be used to phase haplotypes

in a diploid organism (Selvaraj et al., 2013). Our analysis indicates that the average degree

of separation between variants within a Hi-C variant graph is dramatically lower than

that in mate-pair variant graphs. This is significant because as the degree of separation
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between distant graph regions grows, error is compounded and the reliability of inferences

regarding the phase of these regions declines. Our analysis thus indicates that Hi-C data

provide an informative signal for the analysis of haplotype and strain mixtures.
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