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ABSTRACT
Epigenetics has attracted considerable attention with respect to its potential value
in many areas of agricultural production, particularly under conditions where the
environment can be manipulated or natural variation exists. Here we introduce key
concepts and definitions of epigenetic mechanisms, including DNA methylation,
histone modifications and non-coding RNA, review the current understanding of
epigenetics in both fish and shellfish, and propose key areas of aquaculture where
epigenetics could be applied. The first key area is environmental manipulation,
where the intention is to induce an ‘epigenetic memory’ either within or between
generations to produce a desired phenotype. The second key area is epigenetic selection,
which, alone or combined with genetic selection, may increase the reliability of
producing animals with desired phenotypes. Based on aspects of life history and
husbandry practices in aquaculture species, the application of epigenetic knowledge
could significantly affect the productivity and sustainability of aquaculture practices.
Conversely, clarifying the role of epigenetic mechanisms in aquaculture species may
upend traditional assumptions about selection practices. Ultimately, there are stillmany
unanswered questions regarding how epigenetic mechanisms might be leveraged in
aquaculture.

Subjects Aquaculture, Fisheries and Fish Science, Molecular Biology
Keywords Aquaculture, Epigenetics, Shellfish, DNA methylation, Histone modifications,
Non-coding RNA, Finfish, Seafood

INTRODUCTION
Maintaining and improving aquaculture production requires an understanding of genetic
and physiological mechanisms that control desired traits. Elucidation of these mechanisms
has led to the development of pioneering biotechnological methods that have important
applications. For example, molecular markers are used in broodstock selection and
transcriptomic studies have been used to improve environmental conditions to decrease
physiological stress in animals. Recently, interest in epigenetics within the agricultural
community has surged as it has become more clear that epigenetic mechanisms can
provide a measurable link between environment and phenotype.

Epigenetics refers to processes that result in heritable alterations in gene activity
without manipulating the underlying DNA sequence (Jablonka & Lamb, 2002). Epigenetic
mechanisms (or ‘marks’), including DNA methylation, histone modifications and non-
coding RNA activity, influence gene expression primarily through the local modification of
chromatin. Unlike DNA, epigenetic marks can be directly influenced by the environment,
and therefore have been shown to be important mediators of phenotypic responses
to environmental signals. For example, in mammals nutrition (Weaver et al., 2004),
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exposure to toxins (Dolinoy et al., 2006), and photoperiod (Azzi et al., 2014) have all
been associated with changes in DNAmethylation and concomitant changes in phenotype.
DNA methylation patterns in fish show a similar sensitivity to the environment (Wang
et al., 2009; Strömqvist, Tooke & Brunström, 2010; Campos et al., 2013; Artemov et al.,
2017). While many environmentally-induced epigenetic changes are transient, some
may persist over the course of an organism’s lifetime (Weaver et al., 2004; Dolinoy et al.,
2006; Heijmans et al., 2008). Evidence of transgenerationally-inherited epigenetic changes
has been reported in vertebrates (Guerrero-Bosagna et al., 2010; Manikkam et al., 2012;
Rodgers et al., 2015; Knecht et al., 2017), invertebrates (Rechavi et al., 2014; Klosin et al.,
2017) and plants (Hauser et al., 2011). Thus, it is important to understand the nature and
function of these mechanisms and their influence on phenotype in fish and shellfish.

Interest in epigenetics has been gaining ground in agricultural science for crops
(Ong-Abdullah et al., 2015; Álvarez Venegas & De-la Peña, 2016) and, more recently,
livestock (Goddard & Whitelaw, 2014; González-Recio, Toro & Bach, 2015), but less is
known about epigenetic mechanisms in economically valuable aquaculture species. Since
most aquaculture operations exist in open or natural conditions that are subject to changes
in the environment, it is important to consider the potential role of epigenetics, particularly
now that tools are available to study these important phenomena. Recent studies in species
ranging from salmonids to oysters and mussels have provided the first evidence that
epigenetic mechanisms are associated with commercially important traits in aquaculture
species. In sea bass and half-smooth tongue sole, temperature-induced sex-determination
has been associated with changes in DNA methylation (Navarro-Martín et al., 2011; Shao
et al., 2014). In salmonids, there is some evidence that changes in DNA methylation
are associated with variation in life-history phenotypes including early male maturation
(Morán & Pérez-Figueroa, 2011), smoltification (Morán et al., 2013), anadromy (Baerwald
et al., 2016) and growth potential (Burgerhout et al., 2017). Recent studies in European sea
bass and rainbow trout examined the role of epigenetics in mediating phenotypic responses
to various aspects of diet (Marandel et al., 2016; Terova et al., 2016; Panserat et al., 2017).
In Pacific oysters, the role of epigenetics in mediating the effects of temperature on oyster
physiology has been investigated (Fellous, Favrel & Riviere, 2015). Recent efforts have also
aimed at understanding the role epigenetics may play in other important phenomena in
aquaculture, including sex control via ploidy manipulation (Covelo-Soto et al., 2015; Jiang
et al., 2016; Zhou et al., 2016), the effects of inbreeding (Venney, Johansson & Heath, 2016)
and adaptation to captivity (Le Luyer et al., 2017).

This reviewwill introduce key concepts and definitions of epigeneticmechanisms, briefly
review the literature as it pertains to the nascent field of epigenetics in aquatic species and
highlight key aspects of aquaculture that could benefit from a deeper understanding of the
role of epigenetics. Several excellent reviews of epigenetics, primarily DNAmethylation, and
various aspects of finfish aquaculture (e.g., Li & Leatherland, 2013; Moghadam, Mørkøre
& Robinson, 2015; Labbé, Robles & Herraez, 2017) have recently been published, and these
will be highlighted where appropriate.

Gavery and Roberts (2017), PeerJ, DOI 10.7717/peerj.4147 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.4147


Survey methodology
The authors have been actively involved in epigenetic research over the past decade,
primarily in shellfish, and more recently in finfish (Gavery). As part of this research, we
have performed extensive literature searches and literature reviews in numerous venues
including, but not limited to, university library catalogs, Web of Science, Google Scholar,
Scopus, and general web searches. In addition, we routinely attend local and international
workshops and conferences focused on epigenetics in shellfish and fish, where we interact
with colleagues who are actively engaged in similar research. Platforms such as Twitter
have also been useful for the discovery of new research and associated manuscripts.

What is epigenetics?
The following section will briefly describe specific epigenetic marks and review where
we stand in terms of understanding (or not understanding) the relationship between
epigenetics, the environment and phenotype in aquaculture species.

DNA methylation
DNA methylation refers to the enzymatic addition of a methyl group to a cytosine residue
in DNA, which occurs almost exclusively at CpG dinucleotides (i.e., a cytosine located 5′ of
a guanine) in animals. The enzymatic machinery supporting DNA methylation includes a
family of DNAmethyltransferases (DNMTs), including the maintenance methyltransferase
DNMT1 (responsible for copying pre-existing DNAmethylation patterns to the new strand
during mitosis) and the de novo methyltransferases DNMT3A/3B. DNA methylation is
known to be repressive when located in promoters of genes through associations with
other DNA-binding proteins or through the physical blocking of transcription factors (Bell
& Felsenfeld, 2000). However, DNAmethylation in gene bodies is associated with high levels
of expression (Jones, 1999). Therefore, although DNA methylation is typically associated
with silencing, its regulatory role is specific to the genomic context. In mammals, DNA
methylation plays important roles in providing genomic stability through the repression
of transposable elements (TEs) (Maloisel & Rossignol, 1998), genomic imprinting (Bell &
Felsenfeld, 2000), and dosage compensation (Csankovszki, Nagy & Jaenisch, 2001). DNA
methylation is also important for cell-type differentiation and embryonic development (Li,
Bestor & Jaenisch, 1992). DNAmethylation is the most well-studied epigenetic mechanism,
and most studies have been done in plants and mammals, in which DNA methylation has
been shown to be sensitive to external factors including nutrition (Weaver et al., 2004),
exposure to toxins (Dolinoy et al., 2006), and photoperiod (Azzi et al., 2014). Importantly,
the meiotic transmission of DNA methylation patterns, and thus the opportunity for
transgenerational epigenetic inheritance through DNA methylation, is rare in mammals,
which undergo extensive DNA methylation reprogramming in the early embryo stage
(Daxinger & Whitelaw, 2012). Transgenerational epigenetic inheritance is more common
in plants, which do not exhibit extensive resetting of DNAmethylation between generations
(reviewed byHauser et al., 2011). As discussed below, it is still unclear if and to what extent
DNA methylation resetting occurs in fish and shellfish.
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Histone variants and post-translational modifications
Chromatin is a dynamic structure that supports both packaging of the genome into
the nucleus and the regulation of genes and other genomic regions via changes in
DNA accessibility (Cheung, Allis & Sassone-Corsi, 2000). The basic repeating structure
of chromatin is the nucleosome, which consists of DNA wrapped around an octamer of
four core histone proteins (H2A, H2B, H3 and H4). Higher-order chromatin structure
is established via the incorporation of linker histones (H1) between nucleosomes.
Chromatin structure can be modified to either enhance or repress transcription through
the incorporation of histone variants and the post-translational modification of histones
(Berger, 2007). These modified chromatin states can be inherited both mitotically and
meiotically, and thus may convey epigenetic information (Henikoff & Smith, 2015).
Histone variants have specialized functions and can be incorporated into nucleosomes
in a replication-independent manner (Henikoff & Smith, 2015). Although histone variants
have been less-studied than post-translational modifications, they can play an important
role in mediating both short- and long-term responses to environmental cues (Talbert &
Henikoff, 2014). Both canonical and variant histones can be post-translationally modified,
primarily at their N-terminal tails, which alters the degree of chromatin compaction
resulting in either euchromatin (referring to open chromatin that is accessible to
transcription factors, RNA polymerase II (Pol II) and other DNA-binding proteins that
support gene expression) or heterochromatin (referring to tightly packed DNA associated
with transcriptional silencing). These states are dependent on the type (e.g., acetylation,
methylation, phosphorylation, ubiquitylation) and location (e.g., various lysine or arginine
residues) of the modification (see review by Lawrence, Daujat & Schneider, 2016 for a
complete list of modifications). These modifications are enabled by various families of
enzymes, including histone acetylases (HATs), histone deacetylases (HDACs), histone
methyltransferases (e.g., HMT) and histone demethylases (e.g., Jumonji and Lys-specific
demethylase). Post-translational modifications are important for the regulation of gene
activity, but also play roles in DNA repair, replication, and cell fate/determination
(see reviews by Eberharter & Becker, 2002; Martin & Zhang, 2005; Lawrence, Daujat &
Schneider, 2016). The enzymatic machinery responsible for these modifications is highly
regulated during embryonic development (Lin & Dent, 2006), and, like DNA methylation,
can be altered by various environmental conditions (Chinnusamy & Zhu, 2009). Less is
known about the mechanisms that underlie the mitotic and meiotic persistence of histone
modifications. Interestingly, it has been shown in both mammals and zebrafish that certain
modified histones are non-randomly retained during spermatogenesis when most of
these proteins are replaced by protamines, suggesting that these marks may play a role in
transferring epigenetic information to the embryo (Brykczynska et al., 2010; Wu, Zhang &
Cairns, 2011).

Non-coding RNA
Although a large majority of the genome is transcribed, only a small portion of these
transcripts actually code for proteins. The remaining non-coding transcripts, originally
regarded as ‘junk’, are now recognized to play a role in modulating gene expression, and are
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categorized broadly as non-coding RNA (ncRNA). There are two major classes of ncRNA:
long ncRNA (>200 nt) and small ncRNA (<200 nt), the latter of which includes micro
RNA (miRNA), short interfering RNA (siRNA), and PIWI-interacting RNA (piRNA).
Small ncRNAs are highly conserved and their major mechanism of action is to inhibit
protein synthesis by blocking or degrading primary transcripts (see review by Castel
& Martienssen, 2013). In contrast, long ncRNAs (lncRNA) are less conserved and have
complex mechanisms of action that may work either in cis or trans (see review byWang &
Chang, 2011). Non-coding RNAs have important functions in gene expression and have
been demonstrated to be important regulators of genome stability, environmental plasticity
and embryonic development (Mercer, Dinger & Mattick, 2009; Bizuayehu & Babiak, 2014).
Generally, ncRNA molecules are considered to be ‘epigenetic’ in the traditional sense
because they interact with other epigenetic mechanisms such as DNA methylation and
histone modifications to silence or activate various parts of the genome (Peschansky &
Wahlestedt, 2014). There is also evidence that ncRNA, particularlymiRNA, plays a role in the
transmission of environmental information from the male parent (via sperm) to offspring
in mammals (Gapp et al., 2014; Rodgers et al., 2015). Evidence of transgenerational
inheritance through miRNA has also been observed in the invertebrate model C. elegans
in response to starvation (Rechavi et al., 2014) and temperature (Klosin et al., 2017) cues.

Taxa specific patterns
Epigenetic mechanisms, and particularly DNA methylation, have recently been the focus
of numerous studies in both fish and shellfish. However, most of what we know about
epigenetics in animals comes from studies done in mammals and care should be taken
when generalizing results in mammals to fish and shellfish. Although there are certainly
similarities (e.g., DNA methylation patterns are very similar across all vertebrates), there
are also important differences (e.g., invertebrate DNA methylation patterns are very
different from those in vertebrates). This section will focus on foundational information
about epigenetic marks in fish and shellfish, and highlight both significant gaps in our
understanding and differences from well-studied mammalian systems.

DNA methylation in fish and shellfish
DNA methylation is the most well-studied epigenetic mark among fish and shellfish. Both
fish and shellfish have genes that encode the basic methylation machinery (e.g., DNMTs
andMBDs) andDNAmethylation is present in all species examined to date. However, there
are striking differences in DNAmethylation patterns between vertebrates and invertebrates,
as well as significant unknowns in terms of the resetting of DNA methylation in both fish
and shellfish, which will be described below.

Considerable work has been done on understanding patterns and functions of DNA
methylation in model fish species such as zebrafish and medaka, and there is also a growing
body of information on DNA methylation in non-model species (e.g., Metzger & Schulte,
2016 reviewed the current state of knowledge of DNA methylation patterns and functions
in marine fish). Generally, DNA methylation patterns are similar across all vertebrates
which exhibit a ‘global’ DNA methylation pattern, which means that most CpGs are
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methylated with the exception of regions of DNA with a high CpG content (referred to
as CpG islands). However, global DNA methylation levels in fish are higher than those
in mammals, though the significance of this difference remains unclear (Jabbari et al.,
1997; Zhang, Hoshida & Sadler, 2016). The function of DNA methylation also appears
to be similar across vertebrates, with the exception that its role in parental imprinting
is likely unique to mammals (Barlow & Bartolomei, 2014). One outstanding question
concerns the extent of DNA methylation resetting in fish. While mammals undergo
extensive DNA methylation reprogramming in the early embryo (Daxinger & Whitelaw,
2012), the extent of DNA methylation reprogramming in fish is unclear (Jiang et al.,
2013; Potok et al., 2013). A recent study, which is discussed in more detail in the following
section, showed clear evidence of transgenerational inheritance of environmentally-induced
DNA methylation patterns in a fish, suggesting that at least some of the genome escapes
putative resetting between generations (Shao et al., 2014). There is a need for more detailed
studies on the extent of DNA methylation resetting in fish, particularly in species used in
aquaculture. In addition, more studies should examine the potential meiotic inheritance
of environmentally-induced epigenetic changes.

Invertebrate DNAmethylation patterns are strikingly different from those in vertebrates.
Whereas vertebrates exhibit a global pattern of DNA methylation, invertebrates show a
‘mosaic’ pattern, with stretches of methylated DNA punctuating regions of unmethylated
DNA(Tweedie et al., 1997; Simmen et al., 1999).Wepreviously examinedDNAmethylation
throughout the entire genome in the Pacific oyster; 15% of CpGs in somatic tissue were
methylated, whereas 60–70% of CpGs are methylated in mammals (Gavery & Roberts,
2013). In oysters, as in other invertebrates, the methylated fraction tends to consist of
gene bodies, while other genomic regions exhibit less methylation. Unlike vertebrate
species, transposable elements in oysters and other invertebrate species show surprisingly
little methylation (Simmen et al., 1999; Feng et al., 2010; Zemach et al., 2010). Despite these
differences, DNAmethylation does appear to be associated with gene regulation in shellfish.
In the Pacific oyster, high levels of methylation in gene bodies are associated with high
levels of expression (Gavery & Roberts, 2013; Olson & Roberts, 2014). Interestingly, genes
in oysters with limited methylation show variable exon-specific expression across tissue
types, indicating that hypomethylation allows increased plasticity (Gavery & Roberts,
2013). DNA methylation patterns in the Pacific oyster are dynamic across developmental
stages, and correlations between DNA methylation and gene expression patterns suggest
that DNA methylation plays a role in gene regulation during development (Riviere et al.,
2017). While more studies are needed to quantify the functional relationship between
DNA methylation and gene expression, there are significant implications for improving
resilience in shellfish—particularly if DNA methylation patterns are heritable. While
few studies have examined the heritability of DNA methylation patterns in shellfish, a
small study that focused on methylation states in parents and larvae found a significant
clustering of methylation patterns within families, indicating that methylation patterns
differ significantly depending on the male parent (Olson & Roberts, 2015). More recently,
Rondon et al. (2017) showed that parental exposure to an herbicide influences progeny
DNA methylation patterns in oysters.
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Histone variants and post-translational modifications in fish and shellfish
Histone variants and post-translational modifications have generally been studied in model
fish species, such as zebrafish. Some histone variants show a conserved function between
lower vertebrates and mammals. For example, histone variant macroH2A has been shown
to play an important role in development in the zebrafish (Buschbeck et al., 2009). However,
while some histone variants are ‘universal’ and can be found in most eukaryotes (Talbert
& Henikoff, 2010), other histone variants appear to be unique to fish (Wu et al., 2009).

Post-translationalmodifications of histones and their dynamics have also been studied in
zebrafish, and the evidence indicates that modifications are conserved among vertebrates.
The functional analysis of histone acetylation in zebrafish confirms that it plays a role
in embryogenesis (Vastenhouw & Schier, 2012) and in tissue regeneration (Stewart, Tsun
& Izpisu Belmonte, 2009). While studies of histone modifications in non-model fish are
rare, recent studies in rainbow trout and European sea bass indicate that diet influences
bulk histone modification levels and can regulate the expression of associated enzymes
(Marandel et al., 2016; Terova et al., 2016; Panserat et al., 2017). With regard to meiotic
inheritance, zebrafish show multivalent modified histone retention in sperm, similar to
mammals (Wu, Zhang & Cairns, 2011).

Histone variants have been characterized in various bivalve species (e.g., González-
Romero et al., 2009; González-Romero et al., 2012) and a recent study on the responses of
Eastern oysters to harmful algal blooms reported that the histone variant H2A.X is post-
translationally modified in response to algal toxins (Gonzalez-Romero et al., 2017). While
post-translational modifications of histones are not well-studied in shellfish, Fellous et al.
(2014) identified homologs of Jumonji histone demethylase genes (Jmj) in Pacific oysters
that, as in vertebrates, were regulated during embryonic development. A subsequent
study showed that both bulk histone methylation levels and the expression of histone
demethylases responded to temperature during development, suggesting that histone
modifications play a role in mediating the physiological responses of oysters to temperature
(Fellous, Favrel & Riviere, 2015).

Histones are not replaced by protamines in bivalve sperm as they are in mammals (Eirín-
López & Ausió, 2009). Rather, depending on the species, canonical histones are replaced
by various sperm nuclear basic proteins that can be classified as either protamine-like-
type, histone-type or protamine-type (Ausio, 1986; Eirín-López & Ausió, 2009). Further
studies will be needed to determine the extent to which canonical histones and variants
are retained in bivalve sperm, and this avenue of research could greatly contribute to
a greater understanding of the potential transmission of epigenetic information from
parent to offspring in bivalves. Recent work on the details of experimental approaches and
workflows for the study of chromatin-associated proteins in bivalves (Rivera-Casas et al.,
2017) should facilitate this research.

Non-coding RNA in fish and shellfish
Most studies on non-coding RNAs in fish and shellfish, including important aquaculture
species (e.g., Atlantic salmon (Andreassen, Worren & Høyheim, 2013; Bekaert et al., 2013)
and rainbow trout (Juanchich et al., 2016)), have focused on miRNAs. There are several
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examples of examining miRNAs in a physiological context including: immune function
(e.g., Andreassen et al., 2017) and embryonic development (e.g.,Ma et al., 2012; Bizuayehu
et al., 2015). There is less information available about other types of small ncRNA, except in
zebrafish where, for example, piRNAs have been shown to silence transposable elements in
gametes, and thus functions similarly to that in mammals (Houwing et al., 2007). Recently,
there have been several descriptions of long non-coding RNAs in salmonids, including
associations between lncRNA expression and disease in both Atlantic salmon and rainbow
trout (Boltaña et al., 2016; Paneru et al., 2016; Valenzuela-Miranda & Gallardo-Escárate,
2016).

While there have been few studies on non-coding RNAs in shellfish, generally, miRNAs
and their biogenesis are highly conserved over evolutionary scales (Wheeler et al., 2009).
Indeed, genes for miRNA biogenesis have been detected in available bivalve genomes
(Rosani, Pallavicini & Venier, 2016). With respect to long non-coding RNAs, researchers
have reported an association between lncRNAs and larval development in the Pacific oyster
(Yu, Zhao & Li, 2016).

Potential aquaculture applications
Environmental manipulation
Given what we know about environmental influences on epigenetic mechanisms in
fish and shellfish and the relationships between these mechanisms and phenotype, a
potentially fruitful application of epigenetics to aquaculture could involve environmental
manipulation. The possibility of generating environmentally-driven phenotypes mediated
through epigenetic mechanisms should be considered for two stages in the aquaculture
life-cycle in which the animals are particularly sensitive: during larval development and
during broodstock holding/conditioning (Fig. 1).

The notion of developmental programming suggests that environmental conditions
experienced in early life influence the phenotype later in life, and has gained momentum
in human research (e.g., Gluckman et al., 2008). Thus, developmental programming offers
a memory of the environment that could be beneficial in controlled aquaculture settings.
However, in some cases, embryos and juveniles are not raised in the same environmental
conditions as the adults. For example, hatchery-reared salmon or bivalves experience
very different conditions during their larval and adult stages. The identification of sensitive
periods for inducing an environmental memory could offer a ‘‘programming window’’ that
could be leveraged in husbandry practices. Several lines of evidence support the presence of
developmental programming in fish (for an excellent review see Jonsson & Jonsson, 2014).
Traits that have been associated with early environmental conditions include metabolism,
growth, sex determination, fecundity, and behavior (Jonsson & Jonsson, 2014). Within-
generation environmental memory has also been described in shellfish. For example, early
exposure of Olympia oyster larvae to ocean acidification has been shown to influence
juvenile traits (Hettinger et al., 2012).

Two examples of developmental programming in aquaculture, where the epigenetic
mechanisms were described, involve sex determination in fish. In European sea bass
(Dicentrarchus labrax), exposure to high temperature in early development was associated
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Figure 1 Schematic diagram of the aquaculture life-cycle highlighting key areas where epigenetics
could be applied to improve productivity and efficiency. Epigenetic selection (red text) could be used,
alone or in combination with genetic selection, to identify individuals with desired traits. Environmental
manipulation (blue text) refers to generating environmentally-driven phenotypes mediated through epi-
genetic mechanisms. Two life stages which may be particularly sensitive to generating within- or between-
generation ‘epigenetic memories’ are larvae and broodstock, respectively.

Full-size DOI: 10.7717/peerj.4147/fig-1

with a higher proportion of phenotypic males (Navarro-Martín et al., 2009). Navarro-
Martín et al. (2011) found that this early exposure to high temperature was associated
with increased DNA methylation in the promoter of the aromatase gene (cyp19a1a) in
adults. Furthermore, they showed that in vitromethylation of the aromatase promoter was
sufficient to suppress transcription of the gene. More recently, the commercially important
half-smooth tongue sole (Cynoglossus semilaevis) was used as a model to investigate the
role of epigenetic regulation in environmental sex determination (Shao et al., 2014). Using
genome-wideDNAmethylation profiling, the authors showed that pseudomales (generated
by exposing genetic females to high temperature during a sensitive developmental window)
exhibit methylation patterns in testes consistent with genetic males, both of which differ
from the ovarian methylome of normal females. Excitingly, it was reported that both the
pseudomale phenotype and the testes-specific methylation patterns are inherited by F1
pseudomale offspring generated by crosses between pseudomales and normal females,
suggesting the transgenerational epigenetic inheritance of environmentally-induced sex
reversal in this species (Shao et al., 2014). The ability to control sex in fish broodstock
is certainly a priority for aquaculture and these studies shed light on the epigenetic
mechanisms that could be leveraged in future work. More studies will be needed to
determine the extent to which the relevant mechanisms are conserved across species that
exhibit environmental sex determination.

Nutrition and feeding are important aspects of aquaculture production; and
understanding how early-life nutritional conditions influence key phenotypic traits later
in life is important to consider. In mammals, the nutritional status of the mother can
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predispose offspring to adult-onset metabolic disease and mounting evidence suggests
that epigenetic mechanisms are involved (reviewed by Vickers, 2014). In fish, rainbow
trout fry fed a plant-based diet for 3 weeks starting when they were swim-up fry showed
higher growth rates, feed intakes, and feed efficiencies when challenged again with a
plant-based diet after 7 months of grow-out on a fishmeal/fish oil diet (Geurden et al.,
2013). Interestingly, in a follow-up study, transcriptomic analyses suggested that epigenetic
mechanisms may be involved in this response (Balasubramanian et al., 2016). In addition,
a study on vitamin supplementation at first feeding in rainbow trout identified changes
in global methylation and histone modification 7 months after the supplementation was
discontinued, despite an apparent lack of phenotypic responses (Panserat et al., 2017).
These studies provide the first link between early-environmental exposure and epigenetic
mechanisms in aquaculture species.

In addition to developmental programming, broodstock holding/conditioning is also
an important area to consider for the potential transmission of environmentally-induced
epigenetic information between parents and their offspring. This type of non-genetic
transmission is frequently referred to as ‘transgenerational plasticity’ (Salinas et al., 2013)
and can refer both to maternal provisioning (e.g., bivalve embryos can be influenced
by the type of diet fed to broodstock during conditioning (Utting & Millican, 1997))
and epigenetic inheritance. Importantly, epigenetic transmission has the potential to be
transmitted not only from the maternal side, but also from the paternal side, which may
be more important than previously thought (Rodgers et al., 2015; reviewed by Soubry
et al., 2014). There has been growing interest in the transgenerational plasticity of fish,
particularly as it relates to predicting responses to climate change (reviewed by Munday,
2014). Similar research questions are also being addressed in shellfish. Adult Manila clams
exposed to low pH during gonadal maturation have faster-growing offspring compared
to controls (Zhao et al., 2017). In the Sydney rock oyster, larvae produced by parents
incubated under low-pH conditions are larger and develop faster in low-pH conditions
and also have higher fitness as adults (Parker et al., 2012; Parker et al., 2015). In addition to
water chemistry, disease is a significant concern in shellfish aquaculture. There is increasing
evidence that prior exposure to an immune challenge can increase the immune response
later in life and that this environmental memory can be transmitted to offspring. Green
et al. (2016) demonstrated that offspring of Pacific oyster parents treated with poly(I:C)
possess enhanced protection against Ostreid herpesvirus type I infection.

Themechanism(s) responsible for providing thismemory of the environment in cultured
species are not fully understood. While such an understanding is, arguably, not required
to improve aquaculture production, we would suggest that elucidation of the epigenetic
mechanisms involved could increase the degree and breadth of ongoing improvements.

Epigenetic selection
It is possible that epigenetic markers could be integrated into broodstock selection
(Fig. 1). The concept of epigenetic selection has gone from theory to practice in one
important agriculture commodity, oil palms, where it has been shown that it is possible to
epigenetically select for a critical trait: oil content (Ong-Abdullah et al., 2015). While there
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is much more we need to learn with regard to desired phenotypes and epialleles, work such
as this demonstrates that it can be useful to consider epigenetics in association studies.
Furthermore, Patel et al. (2013) showed in a clinical study that the use of both genetic
(SNP) and epigenetic (DNA methylation) markers in genome-wide association studies
improved associations with a phenotype (i.e., diabetes). The influence of epigenetics,
specifically DNA methylation, on the ability to estimate breeding values for quantitative
traits has recently been considered for finfish aquaculture (see the review by Moghadam,
Mørkøre & Robinson, 2015).

Epigenetics could also make genetic selection more challenging. Many organisms have
the potential to generate new genetic variation in response to stressful conditions through
the modulation of epigenetic marks associated with transposable elements (TEs) (Dowen et
al., 2012; Yu et al., 2013; reviewed by Rey et al., 2016). Transposable elements, or ‘‘jumping
genes’’, are regions of repetitive DNA that can move and amplify their copy number
in the host genome. In the model plant Arabidopsis, the genomic response to bacterial
challenge is a global reduction of DNA methylation and the reactivation of previously
silent TEs associated with defense genes (Yu et al., 2013). It is interesting to consider that
in invertebrates, and specifically in Pacific oysters, TEs are not preferentially methylated,
though this does not preclude silencing via other epigeneticmechanisms (Gavery & Roberts,
2013;Olson & Roberts, 2015). It has been hypothesized that the lack of TE silencing by DNA
methylation may indicate pressure to generate and maintain genetic diversity in a species
that inhabits heterogeneous environments (Gavery & Roberts, 2014). This means that, in
theory, if the culture conditions become stressful, shellfish could respond by modulating
transposable element expression to create new genetic variation (Rey et al., 2016), thereby
having the unintended consequence of ‘‘erasing’’ phenotypic gains made through selective
breeding.

CONCLUSIONS
Epigenetics has the potential to change the way we think about how a phenotype is
generated and maintained. Through a greater understanding of DNA methylation,
histone modifications and ncRNAs, we can functionally annotate genomes, better predict
phenotypic outcomes of early environmental exposures, and possibly select based on
epigenetic markers. With careful experimental design and special considerations for
epigenetic differences between taxa (see Lea et al., 2017), the aquaculture community is
primed to begin to integrate epigenetics into husbandry practices. The concepts and ideas of
epigenetics provide an attractive lens through which to consider the manipulation of traits
through environmental memory or the selection of beneficial traits based on epigenetic
markers. It is also important to consider that epigenetics may also function to disrupt
predictable, robust phenotypes through the creation of new, unexpected variation.
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