Cell wall composition and lignin biosynthetic gene expression along a developmental gradient in an Australian sugarcane cultivar (#19252)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes

Editor and deadline

Pankaj Jaiswal / 19 Aug 2017

Files 2 Figure file(s)

1 Table file(s)

2 Raw data file(s)

3 Other file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

DeclarationsNo notable declarations are present

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

-	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Cell wall composition and lignin biosynthetic gene expression along a developmental gradient in an Australian sugarcane cultivar

William P Bewg 1, Heather D Coleman Corresp. 2

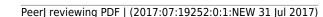
Corresponding Author: Heather D Coleman Email address: hcoleman@syr.edu

Sugarcane bagasse is an abundant source of lignocellulosic material for bioethanol production. Utilisation of bagasse for biofuel production would be environmentally and economically beneficial, but the recalcitrance of lignin continues to provide a challenge. Further understanding of lignin production in specific cultivars will provide a basis for modification of genomes for the production of phenotypes with improved processing characteristics. Here we evaluated the expression profile of lignin biosynthetic genes and the cell wall composition along a developmental gradient in KQ228 sugarcane. The expression levels of nine lignin biosynthesis genes were quantified in five stem sections of increasing maturity and in root tissue. Two distinct expression patterns were seen. The first saw highest gene expression in the youngest tissue, with expression decreasing as tissue matured. The second pattern saw little to no change in transcription levels across the developmental gradient. Cell wall compositional analysis of the stem sections showed total lignin content to be significantly higher in more mature tissue than in the youngest section assessed. There were no changes in structural carbohydrates across developmental sections. These gene expression and cell wall compositional patterns can be used, along with other work in grasses, to inform biotechnological approaches to crop improvement for lignocellulosic biofuel production.

¹ Center for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland, Australia

² Department of Biology, Syracuse University, Syracuse, New York, United States

1	Cell wall composition and lignin biosynthetic gene expression along a
2	developmental gradient in an Australian sugarcane cultivar
3	
4	Short title: Lignin biosynthesis profile in sugarcane
5	
6	William P. Bewg ¹ , Heather D. Coleman ^{2*}
7	
8	¹ Centre for Tropical Crops and Biocommodities, Queensland University of Technology
9	Brisbane, Queensland, Australia
10	² Department of Biology, Syracuse University, Syracuse, New York, United States of America
11	hcoleman@syr.edu
12	
13	* Corresponding author
14	Heather Coleman
15	Email: hcoleman@syr.edu


Abstract

17	Sugarcane bagasse is an abundant source of lignocellulosic material for bioethanol production.
18	Utilisation of bagasse for biofuel production would be environmentally and economically
19	beneficial, but the recalcitrance of lignin continues to provide a challenge. Further understanding
20	of lignin production in specific cultivars will provide a basis for modification of genomes for the
21	production of phenotypes with improved processing characteristics. Here we evaluated the
22	expression profile of lignin biosynthetic genes and the cell wall composition along a
23	developmental gradient in KQ228 sugarcane. The expression levels of nine lignin biosynthesis
24	genes were quantified in five stem sections of increasing maturity and in root tissue. Two distinct
25	expression patterns were seen. The first saw highest gene expression in the youngest tissue, with
26	expression decreasing as tissue matured. The second pattern saw little to no change in
27	transcription levels across the developmental gradient. Cell wall compositional analysis of the
28	stem sections showed total lignin content to be significantly higher in more mature tissue than in
29	the youngest section assessed. There were no changes in structural carbohydrates across
30	developmental sections. These gene expression and cell wall compositional patterns can be used,
31	along with other work in grasses, to inform biotechnological approaches to crop improvement for
32	lignocellulosic biofuel production.

Introduction

- 34 Sugarcane is a C4 perennial grass of high economic importance in many parts of the world
- 35 (Suprasanna et al. 2011). In addition to the production of high levels of sucrose in the stem, it
- 36 produces large amounts of lignocellulosic biomass that has the potential to be used for the
- production of bioethanol (Canilha et al. 2012). Sugarcane is a particularly attractive source of
- biomass for lignocellulosic biofuels production, as it is transported to a central location, thus
- 39 reducing biomass transport costs that could otherwise represent a significant cost in bioethanol
- 40 production. However, as with all potential lignocellulosic feedstocks, the recalcitrance of the
- 41 biomass presents challenges that need to be addressed.
- 42 The deposition of the secondary cell wall is an important step in terrestrial plant development
- 43 (Weng & Chapple 2010), involving the ordered deposition of cellulose and hemicellulose
- 44 followed by the impregnation of lignin polymers into this polysaccharide matrix (Vogel 2008).
- Lignin polymers are comprised of guaiacyl (G), syringyl (S) and p-hydroxyl-phenyl (H) units,
- 46 through oxidative polymerization of coniferyl, sinapyl and p-coumaryl alcohols respectively, that
- are produced through the lignin biosynthesis pathway (Boerjan et al. 2003; Liu 2012).
- 48 Due to the importance of lignin in structural stability and water transportation, the role and
- 49 function of each gene within the lignin biosynthesis pathway is well established (Boerjan et al.
- 50 2003; Bonawitz & Chapple 2010). The relationship between lignin and efficiency of
- 51 lignocellulosic bioethanol production has led to increased focus into lignin biosynthesis and
- 52 manipulation, and advances the possibility of cost-competitive bioethanol being produced from
- 53 lignin-altered sugarcane bagasse. Given the influence lignin has on cell wall digestibility, further
- 54 understanding of control and timing of lignin deposition will be applicable for the genetic
- 55 modification of plants to specifically alter lignin characteristics. This aim of this research is to

77

56	assess the expression profile of lignin biosynthetic genes and cell wall composition of a
57	sugarcane cultivar (KQ228) along a developmental gradient to further understand the
58	relationship between gene expression and cell wall formation and composition, with the goal of
59	providing critical information for the biotechnological development of improved varieties of
60	sugarcane for second generation biofuel production.
61	
62	Materials and methods
63	Gene identification
64	Primers were designed using sequences available from the NCBI database (Table S1). Not all
65	genes had annotated accessions available and consensus sequences were assembled from the
66	sugarcane EST database after BLAST analysis with the equivalent maize gene as a reference
67	sequence. The final consensus sugarcane sequences were created using only sugarcane EST
68	sequences. Amplicons of all lignin biosynthesis genes were run on a high-resolution gel to
69	confirm there was only one product, and then sequenced to determine primer specificity before
70	use in qRT-PCR.
71	Hydroxycinnamoyl transferase (HCT) was not included in qRT-PCR analysis as at the time of
72	this study a specific sequence could not be confidently identified. At that time, only one
73	published accession for sugarcane HCT was found (CA210265) (Casu et al. 2007). When
74	analyzed by BLAST it showed very close alignment with Zea mays anthranilate N-
75	benzoyltransferase (NM_001153992) (Soderlund et al. 2009). Further BLAST searching in the

sugarcane nucleotide and EST databases of NCBI with alternative HCT sequences from maize

(AY109546, DR807341) (Barrière et al. 2007) and from MAIZEWALL (2478084.2.1_REV,

- 78 2619423.2.1) (Guillaumie et al. 2007), *Medicago sativa* L. (AJ507825) (Shadle et al. 2007),
- 79 Nicotiana benthamiana (AJ555865) (Hoffmann et al. 2004), Coffea arabica (AM116757)
- 80 (Salmona et al. 2008) and *Triticum aestivum* L. (CK193498, CK199765) (Bi et al. 2011) did not
- 81 highlight any potential sugarcane HCT sequences, nor any conserved regions of sufficient length
- 82 to design primers (standard or degenerate) for potential use in sugarcane.
- 83 Plant material, growth conditions and tissue collection
- 84 Sugarcane generated from callus (cultivar KQ228, generously provided by BSES Ltd, Meringa
- Queensland) was acclimatized in growth chambers before being transferred to a greenhouse.
- Plants were grown for nine months before being destructively harvested for analysis. Each plant
- 87 was divided into five different sections (A-E) to represent increasing tissue maturity, with
- 88 Section A being the youngest tissue and Section E being the most mature tissue. Within each
- section there were three nodes, and the topmost node was used for qRT-PCR with the remaining
- 90 two nodes used for cell wall composition.
- 91 Harvesting occurred between 10am and 2pm in a single session to minimize light or circadian
- 92 related fluctuations in gene expression levels (Rogers et al. 2005). For all stem analyses only
- 93 internode tissue was used and node tissue was discarded. The root ball was washed to remove
- potting mix and buttress roots (Moore 1987) were collected from each plant for qRT-PCR
- 95 analysis. Roots were included in the development of this profile to begin to gain a general
- understanding of overall lignin biosynthetic gene expression in this tissue.
- 97 RNA extraction and gRT-PCR
- 98 RNA was extracted from all tissue samples using Tri Reagent (Sigma). RNA concentrations
- 9 were quantified with a Nanodrop 2000 spectrophotometer and 1μg of RNA was treated with

100	RQ1 RNase-free DNase (Promega). DNase-treated RNA was used as a template for first strand
101	cDNA synthesis using M-MLV Reverse Transcriptase (Promega). RT negative samples were
102	prepared by replacing reverse transcriptase with water.
103	qRT-PCR was optimized to attain suitable R ² and PCR efficiency values, and primers were
104	validated against the housekeeping primers to ensure comparable rates of product amplification
105	(Livak & Schmittgen 2001). qRT-PCR utilized GoTaq qRT-PCR Master Mix (Promega) in a
106	$20\mu L$ total reaction volume with 20ng of cDNA template using 10mM forward and reverse
107	primers. Samples were prepared by a CAS1200 robot (Corbett) and analyzed using a Rotor-Gene
108	Q (Qiagen) Relative transcript levels were quantified using delta critical threshold values (ΔCt)
109	as previously described (Levy et al. 2004) using β -tubulin as the housekeeping gene (Rodrigues
110	et al. 2009).
111	Cell wall composition
112	Tissue for cell wall compositional analysis was prepared as previously described (Hames et al.
113	2008). Dried samples were milled to pass through a 2mm screen and extracted overnight with
114	water and ethanol respectively (Sluiter et al. 2008c). A sample of this prepared material was
115	dried overnight at 105°C and used to determine the total solids (Sluiter et al. 2008a).
116	Cell wall composition was quantified by a modified acid hydrolysis method (Sluiter et al. 2008b)
117	using 0.125g biomass, 1.5mL 72% sulfuric acid and 42mL of water. Acid soluble lignin was
118	determined by UV-Vis spectrophotometry and acid insoluble lignin was measured
119	gravimetrically. Cell wall carbohydrates were analyzed using High Performance Liquid
120	Chromatography. A Waters e2695 Separations Module and Showa Denko Shodex SP-0810 sugar
121	column (85°C) with micro-guard de-ashing columns equipped with a Waters 2414 Refractive
122	Index Detector were employed.

Results

- 124 *qRT-PCR* expression profiles of lignin biosynthesis genes
- Expression profiles for the nine lignin biosynthesis genes were established after qRT-PCR
- analysis of the five stem sections and the root tissue (Figs 1 and 2, Fig S1). The Δ Ct values were
- normalized against Section A to allow for easier comparison of changes in expression in relation
- to young tissue for each gene. The raw Δ Ct values show that in Section A, PAL is expressed at
- levels greater than the other eight lignin biosynthesis genes analyzed (Table S2). CCoAOMT,
- 130 COMT and CCR also had greater expression levels in Section A than CAD, 4CL, C4H, F5H and
- 131 C3H. These trends are seen across the developmental gradient (Table S2).
- The genes analyzed in stem tissue fell into two general categories, tho with highest expression
- in Section A that decreased as stem tissue matured (PAL, CCR, 4CL, COMT and CAD) (Fig 1),
- and those where expression showed little change across developmental stages (C3H, F5H, C4H
- and CCoAOMT) (Fig 2). The genes did not fall in a specific pattern based on their position
- 136 within the lignin biosynthetic pathway (Fig S1).
- 137 the genes with highest expression in Section A (Fig 1), the trend is strongest in PAL and
- 138 CCR, with expression in Section B decreased by 70% 80% and by more than 90% in Section E.
- 4CL and COMT are less pronounced with expression dropping approximately 65% from Section
- 140 A to Section B. Expression of 4CL and COMT decrease 65% 75% in Sections C, D and E
- when compared to expression in Section A (Fig 1). CAD, the final gene in this group, is the least
- 142 pronounced, with a 40% decrease in expression between Section A and Section B followed by
- 143 expression levelling out between 25% and 40% of Section A in Sections C, D and E (Fig 1).
- Only PAL and COMT show a significant reduction in expression in Section B when compared to

145	Section A, but all five genes have significantly lower expression in Sections C, D and E relative
146	to Section A.
147	The second group shows similar expression across all five sections of stem tissue analyzed (Fig
148	2). C4H, CCoAOMT and F5H all show no significant differences in expression levels across the
149	five stem sections. C3H shows a significant increase in expression levels between Section A and
150	Section B before stabilizing in Sections C, D and E.
151	In root tissue, C3H, CCoAOMT, F5H and CAD expression was not significantly different to any
152	stem Section (A-E) (Figs 1 and 2, Fig S1). Expression levels of PAL and 4CL were not
153	significantly different to Section A, but were significantly higher than Sections B-E (Fig 1). CCR
154	and COMT showed a similar pattern being not significantly different to Sections A or B but
155	significantly higher than expression in Sections C-E (Fig 1). Expression of C4H in root tissue
156	was approximately 9-fold higher than in any stem section (Fig 2).
157	Cell wall compositional analysis
158	Secondary cell wall composition was quantified in the five stem sections (Table 1). Section A
159	had significantly lower lignin levels than the more mature stem internodes, though levels appear
160	to stabilize after Section B. This was due to lower acid insoluble lignin in Section A as there are
161	no significant differences in acid soluble lignin levels across the five stem sections. Glucose,
162	xylose and galactose did not vary across the developmental gradient, but arabinose levels were
163	higher in Section A than in more mature tissue.

Discussion

Sugarcane bagasse has great potential as a lignocellulosic biofuels source, in part due to its
already being moved to a centralized location for sugar production. In order to effectively
produce fermentable sugars from bagasse, the challenge of cell wall recalcitrance needs to be
overcome. Improved understanding of lignin biosynthesis and deposition in sugarcane will be of
great value when deciding the most appropriate approaches to facilitate the development of
commercial lines with increased saccharification potential. The work herein uses an
economically important smut-resistant Australian sugarcane cultivar, KQ228, and assesses lignin
biosynthetic gene expression and cell wall composition along a developmental gradient in an
attempt to further characterize the timing and location of lignin deposition to guide attempts to
improve bagasse for lignocellulosic biofuels production.
Whereas in our study we look only at one specific homologue for each lignin biosynthetic gene,
we have provided a comparison to previous work (Bottcher et al. 2013) wherein multiple
homologues are assessed (Table S1). Our work was based on available genome data at the time
of the study, and despite being somewhat limited relative to Bottcher et al. (2013), provides
confirmation and comparison with another economically important cultivar. In addition to this,
we also examined lignin gene expression in buttress roots as this can be a key storage sink for
carbon.
The trends in the stem expression data dichotomize the lignin biosynthesis genes. The two
'expression pattern groups' are genes for which expression decreases with tissue age (PAL,
CCR, 4CL, COMT and CAD) or genes for which expression remains constant during maturation
(C3H, F5H, C4H and CCoAOMT). As PAL catalyzes the entry of metabolites into the lignin
biosynthesis pathway (Liu 2012; Weng & Chapple 2010), its high level of expression in younger

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

tissue found in this study may represent an initial metabolic flux to provide a burst of metabolites for the various phenylpropanoid pathways including lignin biosynthesis. CCR functions in the final stages of lignin biosynthesis and is considered a committed step, key in the production of the individual lignin monomers (Vogt 2010; Weng & Chapple 2010). Given the position of CCR in the lignin biosynthesis pathway, it may act as a regulating control point for directing the metabolic flux into lignin monomer production (Lacombe et al. 1997). As high expression of PAL in young tissue may act to stimulate metabolic flux into phenylpropanoid production, high expression of CCR in young tissue may ensure a high level of metabolite commitment into lignin biosynthesis, which is fundamentally important for healthy plant development (Weng & Chapple 2010). The expression profiles of 4CL and COMT are similar to that of PAL and CCR, but they retain slightly higher expression levels in more mature tissue. 4CL represents an important branch where metabolites are directed either into lignin biosynthesis or to alternative phenylpropanoid biosynthesis pathways (Vogt 2010; Weng & Chapple 2010). Its position also allows for direct metabolite contribution into H monomer biosynthesis or redirection of metabolites for G or S monomer biosynthesis. The high level of 4CL expression in young tissue may reflect its response to the metabolic flux into the phenylpropanoid pathway initiated by PAL. COMT is the last of two enzymes entirely responsible for the production of the S lignin monomer within the lignin biosynthesis pathway (Bonawitz & Chapple 2010). The increased expression of COMT in young tissue in this research may be to ensure S monomer production during the availability of the initial metabolic flux. The final gene showing a reduction in expression as stem tissue matures was CAD, though the trend was not as strong as the previously discussed genes. CAD represents the final enzyme in

the lignin biosynthesis pathway catalyzing the production of precursor monolignols and 210 committing them to lignin monomer synthesis (Ferrer et al. 2008). The initial high expression of 211 212 CAD in young tissue may relate to the increased metabolic flux through the lignin biosynthesis pathway. Whereas overall trends between our work and previous research are the same for these 213 genes with decreasing expression for increasing maturity, there are differences, particularly with 214 215 CAD and COMT. The discrepancies between the current and published research may be a result of various experimental differences between the current research and published findings, but it is 216 more likely that the differences arise from the differences in cultivars. 217 Three genes were identified with relatively consistent expression across the maturity gradient: 218 219 C4H, F5H, and CCoAOMT. Results for C4H were consistent with other results (Papini-Terzi et al. 2009). For F5H, expression in the Brazilian low and high lignin cultivars was highest in 220 intermediate aged internodes with the exception of the high lignin pith samples wherein it was 221 highest in the mature tissue (Bottcher et al. 2013). In the 30 cultivars with varying Brix levels, 222 223 F5H expression levels were higher in maturing stem tissue than in young tissue (Papini-Terzi et 224 al. 2009). Our results for CCoAOMT closely mirrored the results of Bottcher et al. (Bottcher et al. 2013). 225 226 The final gene assessed in our study, C3H, had the highest expression level in Section B, immediately below the most juvenile Section A. C3H catalyzes the second aromatic 227 hydroxylation reaction in the lignin biosynthesis pathway and is an important hub in controlling 228 metabolic flux into G and S lignin monomer synthesis (Barriere et al. 2004; Weng & Chapple 229 2010). CCoAOMT, along with C3H, are hypothesized to be important control points for cell wall 230 lignification by acting as part of the ferulate production pathway (Barriere et al. 2004). Caffeoyl 231 CoA 3-O-methyltransferase is responsible for the 3' methylation of caffeoyl-CoA to produce 232

233	feruloyl-CoA, a key step in the production of G and S lignin monomers (Hisano et al. 2009; Raes
234	et al. 2003). The feruloyl residues aid in cross-linking within the cell wall and may increase the
235	resistance of the cell wall to hydrolysis by adding to its structural stability (Barriere et al. 2004;
236	Bonawitz & Chapple 2010; Grabber 2005). The relatively steady expression of CCoAOMT and
237	C3H within the maturing sugarcane stem may reflect their continued requirement for feruloyl
238	residue production for ongoing cell wall lignification and not just their role in lignin monomer
239	biosynthesis.
240	To our knowledge, this is the first paper that has looked at lignin biosynthetic gene expression in
241	sugarcane buttress roots. There were no significant differences in expression levels between root
242	tissue and the five stem sections (A-E) for C3H, CCoAOMT, F5H and CAD. Of these, C3H,
243	CCoAOMT and F5H are all in the group with plateaued gene expression during development
244	and may highlight the promoters of these three genes as potential biotechnological tools to drive
245	continuous and even expression of transgenes in sugarcane stem and root tissue. The only gene
246	with an unexpected level of expression was C4H that had approximately 9-fold higher
247	expression in roots than in any stem section. This suggests that the C4H promoter may be useful
248	for preferential expression of transgenes in sugarcane root tissue, however further analysis,
249	including the functionality of this promoter in additional tissue types, such as leaves, would need
250	to be assessed.
251	In addition to the assessment of lignin biosynthetic gene expression, we also examined the cell
252	wall composition along the same developmental gradient. It is well known that the composition
253	of the cell wall material changes as a plant matures due to secondary cell wall deposition.
254	Following cell elongation, the secondary cell wall is formed through the deposition of cellulose
255	and hemicellulose, followed by lignification (Vogel 2008; Weng & Chapple 2010). Within

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

sugarcane, rapid elongation of young internode cells precedes cell wall thickening, including lignification (Casu et al. 2007). No significant differences were seen in levels of structural carbohydrates including glucose, xylose or galactose indicating that the deposition of structural polysaccharides into the secondary cell wall had also occurred before harvesting of samples (in more juvenile tissue). This is in contrast to published findings in sugarcane (Lingle & Thomson 2012) and maize (Jung & Casler 2006). In sugarcane, cellulose peaked and then declined below internode 5, whereas hemicellulose was highest in young tissue before reducing to a steady state (Lingle & Thomson 2012). In maize, glucose content increased as tissue matured before plateauing, and hemicellulose (xylose and arabinose) decreased as tissue matured before also reaching a steady state (Jung & Casler 2006). The decrease in xylose and arabinose coincided with an increase in ferulates, and the authors suggest ferulates may be replacing the xylose and arabinose within the cell wall, hence their decrease during tissue maturation (Jung & Casler 2006). Results suggest the lignin deposition was complete by Section B as lignin content plateaued and no differences were detected between Sections B, C, D and E. Other studies have also found that overall lignin content increased with tissue maturity in wheat and maize (Jung & Casler 2006; Ma 2007). In maize stem, lignin content decreased initially before increasing to a plateau (Jung & Casler 2006). In sugarcane, marked internodes harvested over a period of twelve weeks had increased lignin content over time (Lingle & Thomson 2012). In a second experiment, odd numbered internodes harvested at a single time point, showed lignin content increased with maturity, with the exception of a significant decrease in internode 3 (Lingle & Thomson 2012). The results of the second experiment are similar to the maize results of Jung and Casler (2006), who suggest that young maize tissue is comprised of a higher percentage of lignified protoxylem

279	vessels than more mature tissue, that initially results in a high lignin content in very young tissue
280	(Jung & Casler 2006). It is likely that the Section A tissue (from internodes 2 and 3) was in what
281	is the second zone identified in the studies by Jung and Casler (Jung & Casler 2006) and Lingle
282	and Thomson (Lingle & Thomson 2012). This is supported by the results of Bottcher et al.
283	(2013) who showed lower lignin levels in internode 2-4 of two sugarcane cultivars before
284	reaching a relatively steady state lignin level for internodes 5 to 18.
285	The work presented herein provides a profile of lignin biosynthetic gene expression and cell wall
286	composition for an economically important Australian sugarcane cultivar. The results support
287	findings of previous groups and add additional information on gene expression in sugarcane
288	buttress roots. As a key potential biofuels crop, detailed information from multiple cultivars will
289	help to improve the understanding of lignin and cell wall formation in this species and to inform

References

292	Barriere Y, Ralph J, Mechin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, and Lapierre
293	C. 2004. Genetic and molecular basis of grass cell wall biosynthesis and degradability. II
294	Lessons from brown-midrib mutants. <i>C R Biol</i> 327:847-860. 10.1016/j.crvi.2004.05.010
295	Barrière Y, Riboulet C, Méchin V, Maltese S, Pichon M, Cardinal A, Lapierre C, Lübberstedt T,
296	and Martinant J-P. 2007. Genetics and genomics of lignification in grass cell walls based
297	on maize as model species. Genes, Genomes and Genomics 1:133-156.
298	Bi CL, Chen F, Jackson L, Gill BS, and Li WL. 2011. Expression of lignin biosynthetic genes in
299	wheat during development and upon infection by fungal pathogens. Plant Molecular
300	Biology Reporter 29:149-161. 10.1007/s11105-010-0219-8
301	Boerjan W, Ralph J, and Baucher M. 2003. Lignin biosynthesis. <i>Annu Rev Plant Biol</i> 54:519-
302	546. 10.1146/annurev.arplant.54.031902.134938
303	Bonawitz ND, and Chapple C. 2010. The genetics of lignin biosynthesis: connecting genotype to
304	phenotype. Annu Rev Genet 44:337-363. 10.1146/annurev-genet-102209-163508
305	Bottcher A, Cesarino I, Santos AB, Vicentini R, Mayer JL, Vanholme R, Morreel K, Goeminne
306	G, Moura JC, Nobile PM, Carmello-Guerreiro SM, Anjos IA, Creste S, Boerjan W,
307	Landell MG, and Mazzafera P. 2013. Lignification in sugarcane: biochemical
308	characterization, gene discovery, and expression analysis in two genotypes contrasting
309	for lignin content. Plant Physiol 163:1539-1557. 10.1104/pp.113.225250
310	Canilha L, Kumar Chandel A, dos Santos Milessi TS, Fernandes Antunes FA, da Costa Freitas
311	WL, das Gracas Almeida Felipe M, and da Silva SS. 2012. Bioconversion of sugarcane
312	biomass into ethanol: an overview about composition, pretreatment methods,

313	detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J
314	Biomed Biotechnol 2012:989572. 10.1155/2012/989572
315	Casu RE, Jarmey JM, Bonnett GD, and Manners JM. 2007. Identification of transcripts
316	associated with cell wall metabolism and development in the stem of sugarcane by
317	Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr
318	Genomics 7:153-167. 10.1007/s10142-006-0038-z
319	Ferrer JL, Austin MB, Stewart C, Jr., and Noel JP. 2008. Structure and function of enzymes
320	involved in the biosynthesis of phenylpropanoids. <i>Plant Physiol Biochem</i> 46:356-370.
321	10.1016/j.plaphy.2007.12.009
322	Grabber JH. 2005. How do lignin composition, structure, and cross-linking affect degradability?
323	A review of cell wall model studies. Crop Science 45:820. 10.2135/cropsci2004.0191
324	Guillaumie S, San-Clemente H, Deswarte C, Martinez Y, Lapierre C, Murigneux A, Barriere Y,
325	Pichon M, and Goffner D. 2007. MAIZEWALL. Database and developmental gene
326	expression profiling of cell wall biosynthesis and assembly in maize. Plant Physiol
327	143:339-363. 10.1104/pp.106.086405
328	Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, and Templeton D. 2008. Preparation of
329	samples for compositional analysis: Laboratory analytical procedure (LAP). National
330	Renewable Energy Laboratory Technical report: NREL/TP-510-42620.
331	Hisano H, Nandakumar R, and Wang Z-Y. 2009. Genetic modification of lignin biosynthesis for
332	improved biofuel production. In Vitro Cellular & Developmental Biology - Plant 45:306-
333	313. 10.1007/s11627-009-9219-5

334	Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, and Legrand
335	M. 2004. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate
336	hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446-
337	1465. 10.1105/tpc.020297
338	Jung HG, and Casler MD. 2006. Maize stem tissues: Cell wall concentration and composition
339	during development. Crop Science 46:1793-1800.
340	Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet
341	AM, and Grima-Pettenati J. 1997. Cinnamoyl CoA reductase, the first committed enzyme
342	of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic
343	relationships. <i>Plant J</i> 11:429-441.
344	Levy M, Edelbaum O, and Sela I. 2004. Tobacco mosaic virus regulates the expression of its
345	own resistance gene N. Plant Physiol 135:2392-2397. 10.1104/pp.104.044859
346	Lingle SE, and Thomson JL. 2012. Sugarcane internode composition during crop development.
347	BioEnergy Research 5:168-178. 10.1007/s12155-011-9153-3
348	Liu CJ. 2012. Deciphering the enigma of lignification: precursor transport, oxidation, and the
349	topochemistry of lignin assembly. Mol Plant 5:304-317. 10.1093/mp/ssr121
350	Livak KJ, and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time
351	quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
352	10.1006/meth.2001.1262
353	Ma QH. 2007. Characterization of a cinnamoyl-CoA reductase that is associated with stem
354	development in wheat. J Exp Bot 58:2011-2021. 10.1093/jxb/erm064

355	Moore PH. 1987. Anatomy and morphology. In: Heinz DJ, ed. Developments in crop science:
356	Sugarcane improvement through breeding. Amsterdam: Elsevier, 85-142.
357	Papini-Terzi FS, Rocha FR, Vencio RZ, Felix JM, Branco DS, Waclawovsky AJ, Del Bem LE,
358	Lembke CG, Costa MD, Nishiyama MY, Jr., Vicentini R, Vincentz MG, Ulian EC,
359	Menossi M, and Souza GM. 2009. Sugarcane genes associated with sucrose content.
360	BMC Genomics 10:120. 10.1186/1471-2164-10-120
361	Raes J, Rohde A, Christensen JH, Van de Peer Y, and Boerjan W. 2003. Genome-wide
362	characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051-
363	1071. 10.1104/pp.103.026484
364	Rodrigues FA, de Laia ML, and Zingaretti SM. 2009. Analysis of gene expression profiles under
365	water stress in tolerant and sensitive sugarcane plants. Plant Science 176:286-302.
366	10.1016/j.plantsci.2008.11.007
367	Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, and Campbell
368	MM. 2005. Light, the circadian clock, and sugar perception in the control of lignin
369	biosynthesis. <i>J Exp Bot</i> 56:1651-1663. 10.1093/jxb/eri162
370	Salmona J, Dussert S, Descroix F, de Kochko A, Bertrand B, and Joet T. 2008. Deciphering
371	transcriptional networks that govern Coffea arabica seed development using combined
372	cDNA array and real-time RT-PCR approaches. Plant Mol Biol 66:105-124.
373	10.1007/s11103-007-9256-6
374	Shadle G, Chen F, Srinivasa Reddy MS, Jackson L, Nakashima J, and Dixon RA. 2007. Down-
375	regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in

3/6	transgenic alfalfa affects lignification, development and forage quality. <i>Phytochemistry</i>
377	68:1521-1529. 10.1016/j.phytochem.2007.03.022
378	Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, and Wolfe
379	J. 2008a. Determination of total solids in biomass and total dissolved solids in liquid
380	process samples: Laboratory analytical procedure (LAP). National Renewable Energy
381	Laboratory Technical report: NREL/TP-510-42621.
382	Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, and Crocker D. 2008b.
383	Determination of structural carbohydrates and lignin in biomass: Laboratory analytical
384	procedure (LAP). National Renewable Energy Laboratory Technical report: NREL/TP-
385	510-42618.
386	Sluiter A, Ruiz R, Scarlata C, Sluiter J, and Templeton D. 2008c. Determination of extractives in
387	biomass: Laboratory analytical procedure (LAP). National Renewable Energy
388	Laboratory Technical report: NREL/TP-510-42619.
389	Soderlund C, Descour A, Kudrna D, Bomhoff M, Boyd L, Currie J, Angelova A, Collura K,
390	Wissotski M, Ashley E, Morrow D, Fernandes J, Walbot V, and Yu Y. 2009. Sequencing
391	mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5:e1000740.
392	10.1371/journal.pgen.1000740
393	Suprasanna P, Patade VY, Desai NS, Devarumath RM, Kawar PG, Pagariya MC, Ganapathi A,
394	Manickavasagam M, and Babu KH. 2011. Biotechnological developments in sugarcane
395	improvement : An overview. Sugar Tech 13:322-335. 10.1007/s12355-011-0103-3
396	Vogel J. 2008. Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301-307.
397	10.1016/j.pbi.2008.03.002

Vogt T. 2010. Phenylpropanoid biosynthesis. *Mol Plant* 3:2-20. 10.1093/mp/ssp106

Weng JK, and Chapple C. 2010. The origin and evolution of lignin biosynthesis. *New Phytol*

400 187:273-285. 10.1111/j.1469-8137.2010.03327.x

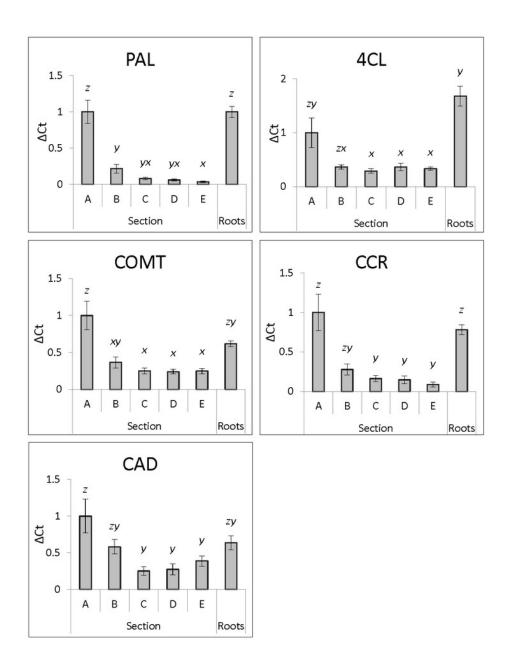
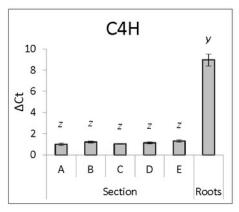
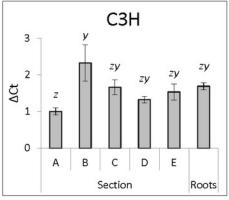


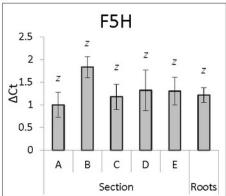
Figure 1

Genes with decreasing expression along developmental gradient

Genes showing highest expression in section A (young stem tissue) with decreased expression in more mature stem regions. Δ Ct expression levels of lignin biosynthesis genes from the five stem sections and roots (n = 5 individual plants per tissue section) normalized against section A for each individual gene is shown with standard error of the mean. Statistical differences are noted by different letters above bars (x, y and z) after ANOVA analysis with Tukey post-hoc analysis (p = 0.05)




Figure 2


Genes showing consistent expression along developmental gradient

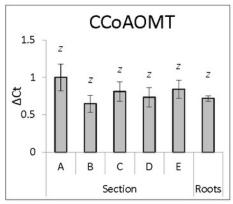

 Δ Ct expression levels of lignin biosynthesis genes from the five stem sections and roots (n = 5 individual plants per tissue section) normalized against section A for each individual gene is shown with standard error of the mean. Statistical differences are noted by different letters above bars (x, y and z) after ANOVA analysis with Tukey post-hoc analysis (p = 0.05)

Table 1(on next page)

Accumulation of individual cell wall components in stem regions of increasing maturity

The percentage of each component of the total composition is shown with the standard error of the mean. Values in bold type are significantly different (ANOVA analysis with Tukey posthoc analysis, p = 0.05) to section A for each component. No significant differences were observed between sections B, C, D or E for any component. n = 5.

Section	Total lignin		Total lignin		Acid insoluble lignin		Acid soluble lignin		Glucose		Xylose		Galactose		Arabinose	
	%	+/-	%	+/-	%	+/-	%	+/-	%	+/-	%	+/-	%	+/-		
A	20.76	0.52	15.57	0.48	5.19	0.11	49.26	0.53	20.58	0.35	0.32	0.19	2.28	0.09		
В	22.35	0.27	17.14	0.32	5.21	0.06	47.93	0.50	20.01	0.29	0.00	0.00	1.63	0.05		
C	23.39	0.13	18.29	0.10	5.10	0.08	48.09	0.49	20.36	0.35	0.00	0.00	1.58	0.04		
D	23.24	0.29	18.08	0.33	5.16	0.06	48.00	0.54	20.90	0.27	0.00	0.00	1.58	0.06		
E	22.49	0.24	17.40	0.30	5.09	0.06	47.34	0.18	21.58	0.46	0.10	0.09	1.81	0.12		