Unraveling the structure and composition of Varadero 1

Reef, an improbable and imperiled coral reef in the 2

Colombian Caribbean 3

5

Valeria Pizarro¹, Sara C. Rodríguez², Mateo López-Victoria², Fernando A. Zapata³, Sven

Zea⁴, Claudia T. Galindo-Martínez⁵, Roberto Iglesias-Prieto⁵, Joseph Pollock⁵, Mónica 6

Medina⁵ 7

4

8

- ¹ Ecomares NGO, Cali, Valle, Colombia
- ² Department of Natural Sciences and Mathematics, Pontificia Universidad 9
- Javeriana, Cali, Valle, Colombia 10
- ³ Department of Biology, Universidad del Valle, Cali, Valle, Colombia 11
- ⁴ Centro de Estudios en Ciencias del Mar CECIMAR, Universidad Nacional de Colombia, 12 Santa Marta, Magdalena, Colombia, sezeas@unal.edu.co 13
- 14 ⁵ Department of Biology, Pennsylvania State University, State College, Pennsylvania, United States
- 15

Corresponding Author:

Valeria Pizarro¹ 17

18

16

Calle 5B # 4-139, Santa Marta, Magdalena, Colombia 19

20

21 Email address: valeria.pizarro@ecomares.org

Abstract

22

- 23 Coral reefs are commonly associated with oligotrophic, well illuminated waters. In 2013, a
- 24 healthy coral reef was discovered in one of the least expected places within the Colombian
- 25 Caribbean: at the entrance of Cartagena Bay, a highly-polluted system that receives industrial
- and sewage waste, as well as high sediment and freshwater loads from an outlet of the
- 27 Magdalena River (the longest and most populated river basin in Colombia). Here we provide
- 28 the first characterization of Varadero Reef's geomorphology and biological diversity. We
- 29 also compare these characteristics with those of a nearby reference reef, Barú Reef, located in
- an area much less influenced by the described polluted system. Below the murky waters, we
- found high coral cover of 45.1% (± 3.9 ; up to 80% in some sectors), high species diversity,
- 32 including 42 species of scleractian coral, 38 sponge, three lobster, and eight sea urchin
- species, a fish community composed of 61 species from 24 families, and the typical zonation
- 34 of a Caribbean fringing reef. All attributes found correspond to a reef that, according to
- 35 current standards should be considered in "good condition". Current plans to dredge part of
- 36 Varadero threaten the survival of this reef. and could hinder efforts to uncover the
- 37 underpinnings of this reef's remarkable resilience. There is, therefore, an urgent need to
- describe the location and characteristics of Varadero as a first step towards gaining
- 39 acknowledgement of its existence and garnering inherent legal and environmental
- 40 protections.

41

Introduction

- 42 Coral reefs provide important ecosystem services (Moberg & Folke, 1999), but many
- 43 currently face unprecedented pressure from multiple natural and anthropogenic stressors
- 44 (Wilkinson, 2008). Caribbean reefs have been particularly impacted, with coral cover
- decreasing from an average of 50% to 10% in just four decades (Jackson et al., 2014). Coral
- 46 cover loss has resulted in a phase shift from coral to macroalgal domination with a concurrent
- 47 increase in sponge abundance (e.g., Rose and Risk, 1985; Szmant, 2002; Ward-Paige et al.,
- 48 2005; Chaves-Fonnegra et al., 2007; Maliao et al., 2008; Jackson et al., 2014).
- 49 Coral reef ecosystems, built mainly by scleractinian corals, typically thrive within a narrow
- 50 range of environmental conditions characterized by low sedimentation rates, low nutrient
- availability (i.e., oligotrophic waters), high light penetration, warm waters (e.g., around 28
- 52 °C) and salinity between 33 and 36 psu (Kleypas, McManus & Meñez, 1999; Díaz et al.,
- 53 2000; Sheppard, Davy & Pilling, 2009). Although reefs can be found outside these ranges in

Opmerking [n1]: scleractinian

Opmerking [n2]: belonging to

Opmerking [n3]: without survival there is no resilience

- 54 "extreme" environmental conditions, such reefs are typically dominated by a low number of
- 55 resistant specialist species. Some examples include reefs under higher water temperatures in
- the Persian Gulf and Hawaii (Oliver & Palumbi, 2009; Riegl & Purkis, 2012), reefs under
- low pH waters in Japan and Papua New Guinea (Fabricius et al., 2011; Inoue et al., 2013),
- and reefs under high salinity such as those at the Arabian Sea where salinity can exceed 45
- 59 psu and temperatures regularly top 34 °C (Rezai et al., 2004).
- 60 In 2013, a reef was discovered under unexpected conditions below a thick layer of highly
- 61 turbid water at the mouth of Cartagena Bay, Colombia (López-Victoria et al., 2015). This
- 62 reef, known as Varadero, is located south of Tierra Bomba Island, at the mouth of the highly
- 63 polluted Bay. The man-made "Canal del Dique" dumps industrial and sewage waste as well
- 64 as discharges of sediment from the Magdalena River into the vicinity of Varadero. With a
- drainage basin covering 24% of Colombia's surface area (27.3 million hectares), the
- Magdalena River feeds approximately 144 x 10⁶ tons of suspended solids into Cartagena Bay
- each year. This enormous sediment load has contributed to the demise of the Bay's once
- 68 vibrant coral reefs (Restrepo et al., 2006). Paradoxically, Varadero Reef has not only
- 69 survived, but thrived with up to 80% coral cover dominated by large *Orbicella* spp. colonies,
- 70 the major reef-building corals in the Caribbean (López-Victoria et al. 2015).
- 71 Despite its close proximity to the city of Cartagena, Colombia (> 1 million inhabitants),
- 72 Varadero Reef remained concealed due to the perception that local environmental conditions
- 73 were incompatible with reef growth. High levels of sedimentation and turbidity have
- 74 previously been shown to drive coral bleaching and disease that can ultimately lead to coral
- death (Bruno et al., 2003; Harvell et al., 2007; Pollock et al., 2014). Here we provide a
- 76 preliminary characterization of Varadero Reef, including its geomorphology (i.e., size, shape
- and location) and biological diversity (i.e., coral, fish and sponge community composition).
- We also compare these characteristics with those of a nearby reference reef, Barú Reef,
- 79 located 4.5 km south of Varadero, in a location much less influenced by runoff from the
- 80 Canal del Dique and the city of Cartagena.
- 81 Current plans to dredge part of Varadero threaten the survival of this reef and could hinder
- 82 researchers' ability to gain insights into the factors that have allowed corals to thrive under
- 83 such unusual conditions. There is, therefore, an urgent need to describe the location and
- 84 characteristics of Varadero as a first step towards gaining acknowledgement of its existence
- and garnering inherent legal and environmental protections.

86 **Materials & Methods** 87 In order to supplement the brief, general description of Varadero Reef reported by López-88 Victoria et al. (2015), detailed geomorphological and biological surveys were performed 89 between 2014 (March) and 2015 (March and October). During the March 2015 field trip, the 90 reef's geographic extent was assessed by two researchers diving along the reef edge with a 91 GPS, recording in tracking mode, attached to an accompanying buoy. Data from the GPS was 92 downloaded and analyzed using the GIS software Garmin BaseCamp, from which a detailed 93 map of the reef was subsequently produced. The reef's coral diversity was characterized by 94 two coral experts performing three replicate profiles starting in the deepest zone (in direction 95 to open sea) towards Cartagena Bay (shallowest zone). These annotations, including coral 96 community composition at multiple depths, were analyzed as in Geister (1977). All profiles 97 were compared and compiled to obtain a detailed profile of the reef's coral community 98 structure and diversity. 99 The vertical attenuation coefficients (K_d) were determined at both sites using the cosine 100 corrected sensor of a diving pulse modulated fluorometer (PAM) (Waltz, Germany). The 101 PAM sensor was calibrated against a traceable reference sensor LiCor (USA). A diver 102 operating the PAM maintained the instrument in a horizontal position and triggering the data 103 collection system of the fluorometer at different depths. The maximum excitation pressure 104 over photosystem II (Q_m) was calculated in both sites using the effective quantum yield of 105 photosystem II at apparent noon ($\Delta F/Fm$) and the maximum quantum yield of charge 106 separation at dusk (Fv/Fm) (Iglesias-Prieto et al., 2004). 107 A detailed benthic community assessment was also conducted to evaluate sessile and mobile 108 species composition, fish diversity and abundance, and sponge richness. To allow 109 comparison of Varadero with a nearby reef that reflected typical Caribbean reef 110 environmental conditions, a reef on the Barú Peninsular (from now on Barú Reef) was also surveyed. At each reef, five stations were established and two 30-m transects were deployed 111 112 in the same landscape unit (i.e., reef type and depth). Quadrats (50 by 50 cm) were placed 113 every three meters on each side of the transect and photographed for a total of 20 photo 114 quadrats per transect. Each photograph was analyzed using Coral Point Count 4.1 software 115 (Kohler & Gill, 2006), which randomly places 50 points within the quadrat for a randomly 116 stratified methodology (Kohler & Gill, 2006; Dumas et al., 2009; Andersen et al., 2012). The

benthic component below each point was identified and categorized as coral (identified to

118 species level), sponge (identified to species level), algal overgrown dead coral, sand/rubble or 119 other invertebrates (e.g., tunicates, gorgonians or zoantharians). Mobile reef invertebrates 120 were also assessed using the same benthic transects. A visual census was preformed of all sea 121 urchins, conchs, and lobsters within a 1-m wide band of the transect. Macroalgal 122 communities were characterized by randomly selecting five photo quadrats per transect, 123 randomly placing 10 points within each quadrat (using Coral Point Count 4.1), and 124 categorizing any observed macroalgae as fleshy, coralline or turf. Fleshy algae were 125 identified to genus level. To compare Varadero and Barú Reefs, species richness, abundance 126 and composition were tested for normal distributions (Shapiro-Wilk's test) then compared 127 using a two sample Student's t-test in the software PAST version 3.14 (Hammer, Harper, & 128 Ryan, 2001). 129 During exploratory dives, sponges were visually identified while swimming over the reef. 130 Photographs and small samples were also taken for downstream spicule examination in cases 131 when sponges could not be readily distinguished in the field. Species lists were made for both 132 Varadero and Barú Reefs, separately for the upper terrace (down to 10 − 13 m) and slope 133 (below 10 – 13 m) zones. Sponge species present within each of the 30x2-m² band transects 134 in the shallow terrace zone of Varadero (n = 7 transects) and Barú (n = 4 transects) were also 135 recorded. This sampling scheme permitted calculation of gross abundances as percent 136 frequency of occurrence (number of transects in which a sponge was present/total transects) 137 and species richness per transect. Data on total coral and sponge cover obtained in 10 photo transects (covering 5 m² each, see above) in the upper terrace of each locality were also 138 139 analyzed for trends in cover of sponges vs. corals vs. available substratum using simple 140 correlation analysis. For sponge identification in the laboratory, small fragments of each 141 collected sponge were digested in commercial bleach to obtain free spicules, which were 142 observed under a light microscope. Species were identified using specialized literature and 143 extensive local knowledge/experience (see Zea, 1987; Zea et al., 2014). 144 Overall fish diversity and community composition were visually assessed. In order to 145 compile fish species lists for each reef, a team of three divers recorded all fishes observed 146 while exploring the general reef areas of Varadero and Barú during a total of 8 dives on each 147 reef (approximately 1-hour per dive), in 2014 and 2015. In 2015, 22 visual censuses were 148 performed along $30x2-m^2$ belt_-transects (n = 15 at Varadero and n = 7 at Barú) to 149 characterize fish community composition. All individuals observed within each belt transect

were counted and these counts were used to estimate mean species richness, diversity

150

Opmerking [FJP4]: I would not use a hyphen here, but might be a question of personal style.

Bert: there is a difference in meaning: 1 transect at 1 m depth

179

a 1-m wide transect

Opmerking [n5]: add: wide

Opmerking [n6]: belt transects

151	(Shannon's H'), dominance (Simpson's D) and evenness (Pielou's J'). These community	
152	variables were compared between Varadero and Barú using a two sample Student's t-test,	
153	after establishing that the data met assumptions of normality and homoscedasticity with	
154	Shapiro-Wilk's and F tests, respectively. All tests were performed using PAST 3.14	
155	(Hamme <mark>r, Harper & Ryanet al., 2</mark> 001).	Opmerking [n7]: et al
156	To assess species abundance differences between sites, a regression analysis of mean species	
157	abundance was performed along with paired Student's t-tests. Given the different sampling	
158	efforts between the two localities, a sample-based rarefaction procedure was carried out to	
159	compare fish species richness between Varadero and Barú. Finally, a non-Metric	
160	Multidimensional Scaling (nMDS) analysis was carried out using Jaccard's similarity index	
161	(based on species occurrence) and the Bray-Curtis similarity index [based on the $\log (x + 1)$	
162	transformed abundance data] to examine differences in assemblage structure between the two	
163	localities based on species composition and abundance, respectively. The nMDS analysis was	
164	complemented with analyses of similarity (ANOSIM) based on either Jaccard or Bray-Curtis	
165	similarity. All statistical analyses and calculation of community indices were performed	
166	using the software PAST 3.11 (Hammer, Harper & Ryanet al., 2001).	Opmerking [n8]: et al.
I		
167	Results	
167 168	Results Geomorphology and optical properties	
168	Geomorphology and optical properties	
168 169	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has	
168 169 170	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has an area of approximately $1.12~{\rm km}^2$ (Figure 1). The <u>r</u> Reef has two contrasting zones, the first	
168 169 170 171	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has an area of approximately 1.12 km² (Figure 1). The reef has two contrasting zones, the first (0.44 km²) is a well-developed reef where scleractinian coral colonies dominate the	
168 169 170 171 172	Geomorphology and optical properties $ \label{eq:controller} $	
168 169 170 171 172 173	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has an area of approximately 1.12 km² (Figure 1). The release has two contrasting zones, the first (0.44 km²) is a well-developed reef where scleractinian coral colonies dominate the substratum. The second (0.68 km²) is a carbonated terrace with scattered corals, octocorals, a few other benthic species and sand patches with seagrasses (Figure 1c, Figure 2). The largest	
168 169 170 171 172 173 174	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has an area of approximately 1.12 km² (Figure 1). The recef has two contrasting zones, the first (0.44 km²) is a well-developed reef where scleractinian coral colonies dominate the substratum. The second (0.68 km²) is a carbonated terrace with scattered corals, octoorals, a few other benthic species and sand patches with seagrasses (Figure 1c, Figure 2). The largest seagrass beds were observed near the islands of Draga and Abanico (Figure 1c). Analyses of	
168 169 170 171 172 173 174 175	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has an area of approximately 1.12 km² (Figure 1). The reflect has two contrasting zones, the first (0.44 km²) is a well-developed reef where scleractinian coral colonies dominate the substratum. The second (0.68 km²) is a carbonated terrace with scattered corals, octocorals, a few other benthic species and sand patches with seagrasses (Figure 1c, Figure 2). The largest seagrass beds were observed near the islands of Draga and Abanico (Figure 1c). Analyses of the vertical attenuation coefficients of the water in both sites indicate significant vertical	
168 169 170 171 172 173 174 175 176	Geomorphology and optical properties Located between the Bocachica navigation channel and the island of Barú, Varadero Reef has an area of approximately 1.12 km² (Figure 1). The recef has two contrasting zones, the first (0.44 km²) is a well-developed reef where scleractinian coral colonies dominate the substratum. The second (0.68 km²) is a carbonated terrace with scattered corals, octoorals, a few other benthic species and sand patches with seagrasses (Figure 1c, Figure 2). The largest seagrass beds were observed near the islands of Draga and Abanico (Figure 1c). Analyses of the vertical attenuation coefficients of the water in both sites indicate significant vertical stratification. We identify an upper layer with high attenuation values located between the	

 m^{-1} , n = 11). In some cases, we identify a second layer with K_d values ranging between 0.193

and $0.051~\text{m}^{\text{-1}}$ at depths above the limit of the first layer between three to five meters. (Figure

180

182 3). Depending on the depth profile of the reef, some corals were completely contained within 183 the first optical layer (Figures 2-3). We recorded the maximum excitation pressure of 184 photosystem II for Orbicella faveolata colonies growing in the shallow parts of both reefs. In 185 both cases corals were exposed to irradiances high enough to induce significant levels of 186 photoprotection at noon with Qm values of 0.208 ± 0.109 , average \pm SE, n=25 at 4.5 m depth 187 and 0.249 ± 0.052 , n=25 at 6.0 m depth for Varadero and Barú Reefs respectively. 188 Coral and benthic community 189 In total, 42 scleractinian coral and four hydrocoral species (Families Milleporidae and 190 Stylasteridae) were identified at Varadero (Supplemental Table 1). These species include 191 several threatened species such as the acroporids (Acropora cervicornis and A. palmata). 192 Depth profiles indicate that Varadero Reef's calcareous matrix starts at around 27 to 35 m 193 depth (Figure 2). At greater depths, moving towards open sea, the sand bottom has small 194 patches of sponges and black corals (Anthipatharia). Coral cover from 27 to 35 m until 195 approximately 10 to 12 m is relatively low (1 to 5%) and the reef slope is around 45°. Coral 196 communities at this depth range are dominated by Agaricia spp. (A. lamarcki, A. grahamae), 197 Madracis spp. and Helioseris cucullata. At 25 m depth and shallower, small plate-like 198 growth forms of Siderastrea siderea, Montastraea cavernosa and Mycetophyllia aliciae were 199 observed. Besides corals, tube and branching sponges, encrusting algae and cyanobacteria are 200 present. At 18 m and shallower, small patches of Agaricia tenuifolia start to appear, 201 becoming more abundant until they dominate the landscape between 12 and 10 m. Between 202 12 and 10 m, live coral cover is 40-45%, the slope decreases to $25-30^{\circ}$ and other 203 scleractinian species are present, including Colpophyllia natans, H. cucullata, Madracis 204 auretenra, O. faveolata, Porites astreoides, and Scolymia cubensis become more common. 205 At 10 – 12 m depth, growth morphologies of typically massive species are plate-like and 206 small (~ 10 - 40 cm maximum diameter). Madracis auretenra also forms scattered 207 monospecific patches in this area. At approximately 8 m depth, the slope decreases to $10-15^{\circ}$, corals are more abundant and 208 209 larger (up to 2-3 m diameter), but the main coral matrix is still dominated by Agaricia 210 tenuifolia and in some areas is mixed with Porites divaricata. The morphology of typically 211 massive coral species is a mix of massive and plate. The most common species are 212 Montastraea cavernosa, Mycetophyllia ferox, Meandrina meandrites, Orbicella faveolata, O.

annularis, Pseudodiploria strigosa, and Siderastrea siderea. At this depth, it is possible to

213

Opmerking [n9]: Are you sure that these are plate-like? In my experience, they have massive growth forms

Opmerking [n10]: Please indicate if the order has a meaning. If not, an alphabetical order is preferred.

```
214
       find A. cervicornis. At 6 m, coral cover increases to 50-60\%, massive corals become
215
       dominant (especially Orbicella spp.), and patches of Agaricia tenuifolia and Porites
216
       divaricata can be found in sand patches. Between 5 and 3 m, massive corals dominate the
217
       reefscape, Orbicella faveolata and O. annularis colonies with diameters exceeding 5 m are
218
       common and the slope decreases to almost 0°. Other common coral species include Agaricia.
219
       agaricites, A. tenuifolia, Colpophyllia natans, Millepora alcicornis, M. complanata, M.
220
       striata, Mycetophyllia aliciae, Pseudodiploria strigosa, Porites astreoides, P. divaricata,
221
       Scolymia cubensis and Siderastrea siderea. Live coral cover is higher than 50% and colonies
222
       of Acropora cervicornis, A. palmata and A. prolifera are found scattered throughout the reef.
223
       This area of high coral cover which is dominated by large colonies of Orbicella spp.
224
       continues until around 3 m. At this depth, coral colony size and abundance decreases.
225
       Common coral species, between 3 and 2 m depth include Agaricia fragilis, A. tenuifolia,
226
       Favia fragum, Orbicella faveolata, Pseudodiploria clivosa, P. strigosa, Porites astreoides, P.
227
       divaricata, Montastraea cavernosa, Siderastrea siderea, as well as the milleporids Millepora
228
       complanata and M. striata. Most of the massive coral species' growth morphologies change
229
       to crustose, and the reef slope is less than 10°. Calcareous terraces appear at 2 m. In this area,
230
       dispersed corals (Pseudodiploria clivosa, Siderastrea radians and S. siderea), octocorals, and
231
       sand patches are common. Towards the Bay, close to the islands of Abanico and Draga,
232
       seagrasses (i.e., Thalassia testudinum and Halodule wrightii) are common.
       Varadero Reef's benthos between 3 and 15 m is dominated by live coral (45.1 \pm 3.9%) and
233
234
       algae-overgrown dead coral (47.5 \pm 4.0%; average \pm SE). Sand and rubble (4.6 \pm 0.6%),
235
       sponges (0.7 \pm 0.1\%) and other invertebrates (gorgonians, zoanthids, etc.) (1.8 \pm 0.9\%) were
236
       also observed. In total, 38 coral species (scleractinian and fire corals) were identified at this
237
       depth. The most abundant species are Orbicella faveolata (38.1%), Agarcia agaricites
238
       (28.8%), O. annularis (14.4%) and A. tenuifolia (12.2%) (Supplemental Table 1). Similar to
239
       Varadero, the most common benthic components at Barú Reef are algae-overgrown dead
240
       coral (56.9 \pm 2.7%) and live coral (38.1 \pm 3.2%). The other benthic categories assessed show
241
       low percentage cover of sand and rubble (3.4 \pm 1.6%), sponges (0.8 \pm 0.2%) and other
242
       invertebrates (0.9 \pm 0.3\%). In total, 35 coral species were identified, and, similar to Varadero,
```

the most common were Orbicella faveolata (25.6%), Agaricia agaricites (11.3%), O.

annularis (10.4%) and A. tenuifolia (4.5%) (Supplemental Table 1).

245 Sponge community

243

246 In total, at Varadero and Barú fifty sponge species were observed with 38 and 31 species at 247 each reef, respectively. Survey transects at upper shallow terraces (between 3 and 10 m 248 depth) at Varadero Reef showed higher sponge species richness (36 in total) than that of 249 upper shallow terraces in Baru Reef (25 in total) although the number of species per transect 250 were not significantly different (t-Student test, p = 0.86), 10.0 ± 1.23 species per transect 251 (mean \pm 1 standard error, n = 7 transects) for Varadero, and 10.5 \pm 2.36 for Barú (n = 4 252 transects) (Supplemental Table 2). Eight species, arranged by abundance, were observed in 253 greater than 50% of terrace transects on both reefs, Mycale laevis, Niphates erecta, Ircinia 254 felix, Monanchora arbuscula, Lissodendoryx colombiensis, Haliclona wallentinae, Cliona 255 laticavicola and Scopalina ruetzleri. None of these common species were exclusive to either 256 reef, and when reef-specific species were observed, they were typically comprised of single 257 occurrences. Visually, sponge abundance was similarly low in both Varadero and Barú Reef 258 terraces though there were sponge patches growing on dead coral. Mean coral cover 259 estimated from phototransects was slightly but not significantly higher in Varadero than in 260 Barú ($45.1 \pm 14.3\%$ vs. $38.1 \pm 12.0\%$ respectively, t-Student test, p = 0.18, n= 10 transects 261 per site, Figure 4). Sponge cover was equally low and similar between the two localities (0.66 262 \pm 0.21% and 0.80 \pm 0.25% respectively, t-Student test, p = 0.52). Moreover, correlations 263 between per-transect total coral and sponge cover, although negative as expected, were not 264 significant (Varadero, r = -0.42, p = 0.22; Barú, r = -0.06, p = 0.86). Mean sponge cover was 265 also not significantly correlated with the availability of dead coral substratum (covered with 266 turf and macroalgae, Varadero, r = 0.42, p = 0.23; Barú, r = 0.36, p = 0.30), which was higher in Barú (56.9 \pm 18.0%) than in Varadero (51.4 \pm 16.3%). 267 268 Fish community 269 A total of 61 fish species from 24 families was observed at Varadero Reef compared to 44 270 species from 22 families observed at Barú. While a total of 67 species were observed at both 271 sites combined, 38 species were common to both. Twenty four species were observed at

Varadero only, while six species were observed exclusively at Barú. Overall, Jaccard's

(Supplemental Table 3). The number of species per family was similar between Varadero and

Barú (r = 0.90, p << 0.001, n = 26 families) and at both sites damselfishes (Pomacentridae)

were the most species rich (8 and 7 species at Varadero and Barú, respectively), followed by

wrasses (Labridae; 5 species at each site), groupers (Serranidae; 5 and 4 species, respectively)

coefficient of similarity considering the full fish species list of each site was 0.57

and parrotfishes (Scaridae; 4 species at each site; Supplemental Table 3).

272

273

274

275

276

277

278

Opmerking [FJP11]: We have stylistic inconsistency, which we need to address. At some points in the manuscript this is written with a hyphen (e.g., 10-m) and at some points, like here, without a hyphen. I prefer without hyphen, but happy for you to use whichever you prefer. The most important thing is that you are stylistically consistent throughout the manuscript.

BWH: There is a difference in meaning: e.g. 10 transects, 10-m transects, and 10 10-m transects at 10 m depth.

279	Considering only data from visual censuses, a total of 834 individuals belonging to 36 species
280	were observed at Varadero, while only 519 individuals of 32 species were observed at Barú.
281	Correcting for differences in sampling effort, sample-based rarefaction indicated that, for the
282	same number of samples, species richness was slightly greater at Barú than at Varadero
283	(Supplemental Figure 1). Nonetheless, mean species richness within transects at Varadero did
284	not differ significantly from mean species richness at Barú (Table 1). Except for the total
285	number of individuals per transect, which was on average significantly greater at Barú than at
286	Varadero, none of the other community parameters (Simpson's Dominance D, Shannon's
287	Diversity H', and Pielou's Evenness J') differ significantly between Varadero and Barú (p $>$
288	0.05) (Table 1). Even though there was a highly significant positive correlation between the
289	abundance of species common to both sites (considering only species observed in transects at
290	both sites; $r = 0.95$, $p \ll 0.001$, $n = 26$ species), a paired Student's t-test indicated that mean
291	abundance was significantly greater at Barú than at Varadero (mean difference = 0.78 , t = -
292	2.51, p = 0.019).
293	Results of the nMDS analysis showed that there was a great deal of overlap in fish
294	assemblage structure between Varadero and Barú considering either species composition
295	alone (based on Jaccard's similarity; Figure 5a) or species abundance and composition (based
296	on Bray Curtis's similarity; Figure 5b). ANOSIMs based on these two similarity measures
297	indicated that the fish assemblage at Varadero did not differ significantly from that at Barú
298	$(Jaccard-based\ ANOSIM,\ R=0.03,\ p=0.37;\ Bray-Curtis-based\ ANOSIM,\ R=-0.06,\ p=0.38)$
299	0.69).
300	Discussion
301	Caribbean coral reefs are declining rapidly due to anthropogenic activities (e.g., overfishing,

302 pollution, etc.), climate change and the synergies between these factors. Caribbean reefs have 303 experienced declines in coral cover (and increases in macroalgae, cyanobacterial mats and 304 sponge cover), and reduction in the abundances of sea turtles, sharks and fish populations since the 1970s (de Bakker et al., 2017; Jackson et al., 2014). Reef deterioration has not been 305 306 equal throughout the Caribbean with few regions still holding coral cover higher than 30% 307 (Gardner et al., 2003). Most areas with relatively high coral cover are under some 308 conservation/management program and have experienced little anthropogenic influence from 309 land-based pollution and fisheries (Jackson et al., 2014). Moreover, regional and global risk 310 assessments correlate reefs' vulnerability to their proximity to man-made stressors (Burke et

Opmerking [n12]: Bakker

311 al., 2011). The discovery of an apparently healthy reef in Varadero adjacent to the major population center of Cartagena, Colombia, apparently runs counter to the prevailing dogma. 312 313 In addition, this reef is under the influence of the Magdalena River Delta (Canal del Dique), considered as the biogeographical barrier for shallow and mesophotic coral reefs (<200 m 314 depth), limiting the dispersion of coral larvae (Santodomingo et al., 2013). 315 316 The development of coral reefs under "sub-optimal" conditions (e.g., high sedimentation, 317 nutrients) does not appear to be a widespread phenomenon, though a few disparate cases have 318 been recently reported. These anomalous reef ecosystems can be found in warm waters 319 (Liddell & Ohlhorst, 1987; Spalding & Brown, 2015), upwelling-influenced areas 320 (Bayraktarov et al., 2013), high latitudes (Harriot & Banks, 2002) and naturally turbid waters 321 (Anthony, 2006; Smithers & Larcombe, 2003). Under extreme conditions, corals have 322 adapted and/or acclimatized to the high temperature variance, and heterotrophic feeding is 323 their dominant feeding mode (Teece, et al., 2011; Hughes & Grottoli, 2013). Most of the 324 reefs subjected to ongoing or temporal sedimentation have growth constrains due to the 325 limitation on light penetration. Perry and Larcombe (2003) predicted that reef framework 326 development in turbid environments might be restricted or absent, limiting coral distribution 327 to shallow waters. Correspondingly, the portions of Varadero Reef with highest coral cover 328 are currently constrained to the shallower portions of the reef, were they appear to be 329 autotrophic as indicated by their relatively high Q_m values. Environmental conditions at 330 Varadero Reef have changed drastically since the Spaniards arrived several centuries ago. As described by Restrepo et al. (2017), before the opening of the Canal del Dique during the 16th 331 century in the colonial period, and subsequent modifications in the 19th Century, Cartagena 332 333 Bay had no river inputs and coral reefs and seagrass beds flourished inside the Bay (Martínez 334 et al., 2010). The massive arrival of waters from the Magdalena River via the Canal del 335 Dique, after the three major modifications to the channel in 1925, 1951 and 1984 (Mogollon, 336 2013), drastically changed conditions within the Bay from clear, warm-waters to a tidal 337 estuarine environment (Restrepo et al., 2017). The dispersion patterns of the turbid plume of 338 the Canal del Dique in the Cartagena Bay are highly variable depending on the hydrodynamic 339 and meteorological conditions (Lonin et al., 2004). In this context, the optical properties of 340 the water at Varadero Reef could experiment dramatic short-term changes depending on the 341 prevailing hydro-meteorological conditions. The description of the variability in the optical 342 properties of the water column is key to understand the energy and calcification balance of 343 the coral community.

Opmerking [n13]: and mesophotic

344	Varadero Reef is highly influenced by local stressors including eutrophication, agro-chemical
345	runoff, port and industry development, and tourism activities. The main stressor being land-
346	based pollution that flows into the Bay through the Canal del Dique (Mogollón, 2013). In
347	addition to the influx of large volumes of fresh water, sediment loads arriving into the Bay
348	can top 150 million tons per year (Restrepo et al., 2006). Varadero Reef appears to be a relic
349	of the reef formations that dominated Cartagena Bay and adjacent coastal regions during the
350	pre-Columbian period. Despite these challenging environmental conditions, our results on
351	reef structure and species composition demonstrate that Varadero Reef is a functional
352	ecosystem, fully developed and similar to those found on nearby reefs (e.g., Barú and Rosario
353	Archipelago) and Caribbean reefs more broadly (Zea, 2001; Claro & Cantelar-Ramos, 2003;
354	Pattengill-Semmens & Semmens, 2003; Valderrama & Zea, 2003; Alvarado-Chacon, Pizarro,
355	& Sarmiento-Segura, 2011; Kramer, Marks, & Turnbull, 2014).
356	The existence of Varadero, a "paradoxical reef" (López-Victoria et al., 2015), is a call for
357	scientists and managers to start looking in unexpected places for similar coral reefs or
358	carbonate reef systems as the one found at the Amazon River mouth (Moura et al., 2016).
359	More importantly, Varadero may hold information on reef coral resistance, and adaptations to
360	high sedimentation and turbidity. In this context, Varadero could serve as a natural laboratory
361	and potentially provide source material for reseeding future reef environments. Current reef
362	degradation challenges the initial goal of restoration ecology, meaning that returning to a pre-
363	disturbance state might not be possible and/or practical under present climate change (van
364	Oppen et al., 2017). Tolerance to warmer and acidified waters, greater fluctuations in salinity
365	and exposure to nutrients, herbicides and other pollutants are critical coral resilience traits.
366	Our observations and preliminary results of ongoing research indicate that some of these
367	traits can be found at Varadero, but further research is needed.
368	If the dredging for a new shipping channel is authorized by government authorities (Agencia
369	Nacional de Licencias Ambientales - ANLA), we estimate that 25% of the reef will be
370	directly affected and around 50% will be indirectly affected. The environmental impacts of
371	this dredging include sediment stress (suspended and deposited), release of toxic
372	contaminants, noise contamination, and complete destruction of benthic organisms within the
373	dredge path (Rogers, 1990; Erftemeijer et al., 2012; Roberts, 2012). Depending on the
374	intensity, duration and frequency of increased turbidity and sedimentation, the impacts on
375	corals may include: smothering and burial, shading, bleaching, disease (Pollock et al. 2014),
376	and decreased survival and recruitment success of coral larvae (Erftemeijer et al., 2012).

- Additionally, a recent review on the effect of dredging on fish suggests the potential for
- 378 elevated fish mortality, especially in early life stages (eggs and larvae) (Wegner et al, 2017).
- 379 The destruction of Varadero Reef would be a loss for the scientific community, for local
- 380 stakeholders and for Colombia as a nation.

Acknowledgements

381

387

396

397

398

399

400

403

404

405

406

407

408

- 382 We would like to thank the community of Bocachica, specially the Eight Brothers with whom
- 383 we did all our fieldwork in Varadero and Barú. This community has welcomed and teach us
- 384 about their uses of Varadero Reef and other nearby areas. Additionally, to all the people
- 385 including the crew of Oregon State University from Terra, that have spread the word about
- 386 Varadero Reef.

References

- Alvarado-Chacon EM, Pizarro V, Sarmiento-Segura A. 2011. Formaciones arrecifales. In
 Zarza-Gonzalez E. ed. El entorno ambiental del Parque Nacional Natural Corales del
 Rosario y de San Bernardo. Cartagena de Indias: Parques Nacionales Naturales de
 Colombia, 109-123.
- Andersen PK, Borgan O, Gill RD, Keiding N. 2012. Statistical models based on counting
 processes. New York: Springer Science & Business Media.
- Anthony KRN, 2006. Enhanced energy status of corals on coastal high-turbidity reefs.

 Marine Ecology Progress Series 319:111-116.
 - Bayraktarov E, Pizarro V, Eidens C, Wilke T, Wild C. 2013. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling. *PLoS ONE* 8: e80536 DOI:10.1371/journal.pone.0080536.
 - Bruno JF, Petes LE, Drew Harvell C, Hettinger A. 2003. Nutrient enrichment can increase the severity of coral diseases. *Ecology letters* 6:1056-1061.
- Burke L, Reytar K, Spalding M, Perry A. 2011. Reefs at risk revisited. Washington D.C.:
 World Resources Institute.
 - Chavez-Fonnegra A, Zea S, Gomez M. 2007. Abundance of the excavating sponge *Cliona* delitrix in relation to sewage discharge at San Andrés Island, SW Caribbean, Colombia. Boletín de Investigaciones Marinas y Costeras 36:63-78.
 - Claro R, Cantelar-Ramos K. 2003. Rapid assessment of coral communities of María la Gorda Southeast Ensenada de Corrientes, Cupa (part 2: fishes). *Atoll Research Bulletin* 496:278-293.
- de Bakker DM, van Duyl FC, Bak RPM, Nugues MM, Nieuwland G, Meesters EH. 2017. 40
 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the
 rise of slimy cyanobacterial mats. *Coral Reefs* 36:355-367.
- Díaz JM, Barrios LM, Cendales MH, Garzon-Ferreira J, Geister J, Lopez-Victoria M, Ospina
 GH, Parra-Velandia F, Pinzón J, Vargas-Angel B, Zapata FA, Zea, S. 2000. Áreas
 coralinas de Colombia. Santa Marta: Serie Publicaciones Especiales No. 5.
- Dumas P, Bertaud A, Peignon C, Leopold M, Pelletier D. 2009. A "quick and clean"
 photographic method for the description of coral reef habitats. *Journal of Experimental Marine Biology and Ecology* 368:161-168.

Opmerking [n14]: Many author names lack middle name initials.

Opmerking [n15]: Author name lacks middle name initials.

Opmerking [n16]: Author name lacks middle name initials.

Opmerking [n17]: Bakker

- Erftemeijer P<u>LA</u>, Riegl B, Hoeksema B<u>W</u>, Todd P<u>A</u>. 2012. Environmental impacts of dredging and other sediment disturbances on corals: A review. *Marine Pollution Bulletin* 64:1737-1765.
- Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De'ath G, Okazaki R,
 Muehllehner N, Glas MS, Lough JM. 2011. Losers and winners in coral reefs
 acclimatized to elevated carbon dioxide concentrations. *Nature Climate Change* 1:165-169.
- declines in Caribbean corals. *Science* 301:958-960. Long-term region-wide

431

432

433

434

435

436

437

438

442

443

444

445

446

447

448

449 450

451

452

453

454

455

456

457

- Geister J. 1977. The influence of wave exposure on the ecological zonation of Caribbean
 coral reefs. *Proceedings of the 3rd International Coral Reef Symposium* 1:23-29.
 Hammer O, Harper D, Ryan P. 2001. PAST: Paleontological Statistics Software Package
 - Hammer O, Harper D, Ryan P. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. *Palaeontolia Electronica* 4:1-9.
 - Harriot V, Banks S. 2002. Latitudinal variation in coral communities in eastern Australia: a qualitative biophysical model of factors regulating coral reefs. *Coral Reefs* 21: 83-94.
 - Harvell D, Jordán-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, Smith G, Weil E, Willis, B. 2007. Coral disease, environmental drivers, and the balance between coral and microbial associates. *Oceanography* 20:172-195.
 - Hughes A, Grottoli A. 2013. Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? *PLoS ONE* 8:e81172.
- Iglesias-Prieto, R., Beltrán V. H., LaJeunesse, T. C., Reyes-Bonilla, H., Thomé, P. E. 2004
 Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. *Proc. R. Soc Lond. B* 271:1757-1763.
 - Inoue S, Kayanne H, Yamamoto S, Kurihara H. 2013. Spatial community shift from hard to soft corals in acidified water. *Nature Climate Change* 3:638-687.
 - Jackson J, Donovan M, Cramer K, Lam W. 2014. *Status and trends of Caribbean coral reefs:* 1970-2012. Gland, Switzerland: Global Coral Reef Monitoring Network, IUCN.
 - Kleypas J, McManus J, Meñez L. 1999. Environmental limits to coral reef development: where do we draw the line? *American Zoologist* 39:146-159.
 - Kohler K. Gill S. 2006. Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. *Computers & Geosciences* 32:1259-1269.
 - Kramer P, Marks K, Turnbull T. 2014. Assessment of Andros Island reef system, Bahamas (part 2: fishes). *Atoll Research Bulletin* 496:100-123.
 - Liddell W, Ohlhorst S. 1987. Patterns of reef community structure, North Jamaica. Bulletin of Marine Science, 40: 311-329.
 - Lirman D, Fong P. 2007. Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract. *Marine Pollution Bulletin* 54:779-791.
- Lonin S, Parra C, Andrade C, Thomas Y.-F. 2004. Patrones de la pluma turbia del Canal del Dique en la Bahía de Cartagena. *Boletín Científico CIOH* 22:77-89
- López-Victoria M, Rodríguez-Moreno M, Zapata FA. 2015. A paradoxical reef from
 Varadero, Cartagena Bay, Colombia. *Coral Reefs* 34:231.
- Malaio R, Turingan R, Lin J. 2008. Phase-shift in coral reef communities in the Florida Keys
 National Marine Sanctuary (FKMNS), USA. *Marine Biology* 154:841-853.
- Manzello D, Enochs I, Kolodziej G, Carlton R. 2015. Recent decade of growth and
 calcification of *Orbicella faveolata* in the Florida Keys: an inshore-offshore comparison.
 Marine Ecology Progress Series 521:81-91.

Opmerking [n18]: Many author names lack middle name initials.

Opmerking [n19]: Most author names lack middle name initials.

Opmerking [n20]: Many more author names should be added.

Opmerking [n21]: Other journal titles are cited in full

- Martínez J, Yokoyama Y, Delgado A, Matsuzaki H, Rendon E. 2010. Late Holocene marine
 terraces of the Cartagena region, southern Caribbean: the product of neotectonism or a
 former high stand in sea-level? *Journal of South American Earth Sciences* 29:214-224.
- Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. *Ecological Economics* 29:215-233.
- Mogollón JV. 2013. El Canal del Dique: historia de un desastre ambiental. Bogotá: El
 Áncora Editores.
- Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM,
 Bastos AC, Almeida MG, Silva JM Jr, Araujo BF, Brito FP, Rangel TP, Oliveira BCV,
 Bahia RG, Paranhos RP, Dias RJS, Siegle E, Figueiredo AG Jr, Pereira RC, Leal CV,
 Hajdu E, Asp NE, Gregoracci GB, Neumann-Leitão S, Yager PL, Francini-Filho RB,
 Fróes A, Campeão M, Silva BS, Moreira APB, Oliveira L, Soares AC, Araujo L,
 Oliveira NL, Teixeira JB, Valle RAB, Thompson CC, Rezende CE, Thompson FL. 2016.
 An extensive reef system at the Amazon River mouth. Science Advances 2:e1501252.
- Pattengill-Semmens C, Semmens B. 2003. Status of coral reefs of Little Cayman and Grand Cayman, British West Indies, in 1999 (part 2: fishes). *Atoll Research Bulletin* 496:226-247.

487

488

489

490

491

492

493

494

498

499 500

501

502

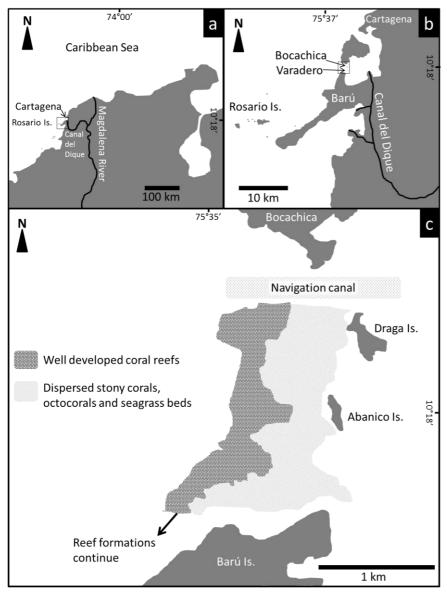
503 504

505

506

- 484 Perry C. Larcombe P. 2003. Marginal and non-reef-building coral environments. *Coral Reefs* 485 22:427-432.
 - Pollock FJ, Lamb JB, Field SN, Heron SF, Schaffelke B, Shedrawi G, Bourne DG, Willis BL. 2014. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. *PLoS ONE* 11: e0165541.
 - Restrepo J, Escobar J, Otero L, Franco D, Pierini J, Correa I. 2017. Factors influencing the distribution and characteristics of surface sediment in the Bay of Cartagena, Colombia. *Journal of Coastal Research* 331:135-148.
 - Restrepo J, Zapata P, Díaz JM, Garzón-Ferreira J, García C. 2006. Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: the Magdalena River, Colombia. *Global and Planetary Change* 50: 33-49.
- Rezai H, Wilson S, Claereboudt M, Reigl-Riegl B. 2004. Coral reef status in ROPME Sea
 area. In Wilkinson C, ed. Status of coral reefs of the world. Townsville, Australia:
 Australiane Institute of Marine Science, 155-170.
 - Riegl BL, Purkis SJ. 2012. Coral reefs of the Gulf: adaptation to climatic extremes in the world's hottest sea. In: Riegl BL & Purkis SJ, eds. *Coral reefs of the Gulf: adaptation to climatic extremes*. USA: Springer Science & Business, 1-4.
 - Roberts D. 2012. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. *Environment International* 40:230-243.
 - Rogers C. 1990. Responses of coral reefs and reef organisms to sedimentation. *Marine Ecology Progress Series* 62:185-202.
 - Rose C, Risk M. 1985. Increase in *Cliona delitrix* infestation of *Montastrea cavernosa* head on an organically polluted portion of the Grand Cayman. *Marine Ecology* 6:345-363.
- Oliver TA, Palumbi SR. 2009. Distributions of stress-resistant coral symbionts match
 environmental patterns at local but not regional scales. *Marine Ecology Progress Series* 378:93-103.
- Santodomingo N, Reyes J, Flórez P, Chacón-Gómez IC, van Ofwegen LP, Hoeksema BW.
 2013. Diversity and distribution of azooxanthellate corals in the Colombian Caribbean.
 Marine Biodiversity 43:7-22.
- 513 Smithers S, Larcombe P. 2003. Late Holocene initiation and growth of nearshore turbid-zone 514 coral reef: Paluma shoals, central Great Barrier Reef, Australia. *Coral Reefs* 22:499-505.
- Sheppard CRC, Davy SK, Pilling GM. 2009. The Biology of Coral Reefs. United
 Kingdom: Oxford, Oxford University Press.

Opmerking [n22]: Riegl


Opmerking [n23]: Australian

- 517 Spalding M, Brown B. 2015. Warm-water coral reefs and climate change. *Science* 350: 769-518 771.
- 519 Szmant A. 2002. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? 520 Estuaries 25:743-766.
- Teece M, Estes B, Gelsleichter E, Lirman D. 2011. Heterotrophic and autotrophic
 assimilation of fatty acids by two scleractinian corals, *Montastraea faveolata* and *Porites astreoides. Limnology and Oceanography* 56:1285-1296.

- Valderrama D, Zea S. 2003. Esquemas de distribución de esponjas arrecifales (Porifera) del noroccidente del Golfo de Úraba, Caribe Sur, Colombia. *Boletín de Investigaciones Marinas y Costeras* 32:37-56.
- van Oppen M, Gates RD, Blackall LL, Cantin N, Chakravarti LJ, Chan WY, Cormick C, Crean A, Damjanovic K, Epstein H, Harrison P, Jones TA, Miller M, Pears RJ, Peplow LM, Raftos DA, Schaffelke B, Stewart K, Torda G, Wanchenfeld D, Weeks A, Putnam HM. 2017. Shifting paradigms in restoration of the world's coral reefs. *Global Change Biology* doi:10.1111/gcb.13647.
 - Ward-Paige C, Risk M, Sherwood O, Jaap W. 2005. Clionid sponge survey on the Florida Reef Tract suggest land-based nutrient inputs. *Marine Pollution Bulletin* 51:570-579.
 - Wegnger AS, Harvey E, Wilson S, Rawson C, Newman SJ, Clarke D, Saunders BJ, Browne N, Travers MJ, Mcilwain JL, Erftemneijer PA, Hobbs J-PA, Mclean D, Depczynski M, Evans RD. 2017. A critical analysis of the direct effects of dredging on fish. *Fish and Fisheries* 1-19. DOI: 10.1111/faf.12218.
 - Wilkinson C. 2008. Status of coral reefs of the world: 2008. Townsville, Australia: Global Coral Reef Monitoring Network and Reef and Rainforest Research Center.
 - Zea S. 1987. Esponjas del Caribe colombiano. Dictyoceratida, Dendroceratida, Verongida, Haplosclerida, Poecilosclerida, Halichondrida, Axinellida, Demosphorida y Homosclerophorida. *Catálogo Científico* 1-286.
 - Zea S. 2001. Patterns of sponge (Porifera, Demospongiae) distribution in remote, oceanic reef complexes of the southwestern Caribbean. *Revista de la Academia Colombiana de Ciencias* 25:597-592.
- Zea S, Henkel TP, Pawlik JR. 2014. The Sponge Guide: a picture guide to Caribbean
 sponges. Available at www.spongeguide.org (accessed March 2016).

 $\begin{array}{ll} \textbf{Opmerking [n24]:} \ \textbf{Check spelling and initials} \\ \textbf{of authors} \end{array}$

549 Figures

Figure 1. Location and distribution of Varadero Reef. The reef continues to the South towards Barú Island.

Undaria tenuifolia

Porites divaricata
Colpophyllia natans
Pseudodiploria strigosa

Orbicella faveolata O. annularis Undaria tenuifolia Porites divaricata Agaricia spp. Agaricia spp. Madracis spp. Helioceris cucullata

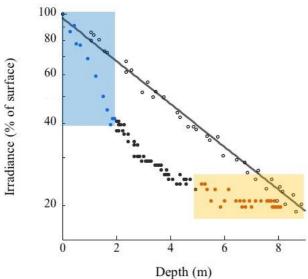
Agaricia spp

27.0 m

Orbicella faveolata O. annularis Undaria agaricites Porites divaricata

Pseudodiploria clivosa Siderastrea siderea S. radians

555 556


557

558

559

Figure 2. Profile of Varadero Reef showing the typical zonation and coral composition (A and B). Top panels (A) correspond to each sector of the reef and the dominant scleractinian coral species/genus taxon.

Opmerking [n25]: taxon

Figure 3. Analyses of the variations in the optical properties of the water column at Varadero Reef (solid circles) indicate the presence of highly stratified water masses. The blue symbols in the blue shaded area highlight the upper layer with K_d values of 0.488 m⁻¹, the black symbols indicate transition region with K_d of 0.19 m⁻¹ whereas the orange symbols in the shaded area indicate the presence of very clear waters with K_d values of 0.041. For comparison, the monotonic vertical attenuation for the Rosario Island is presented (open circles) with K_d values of 0.165 m⁻¹.

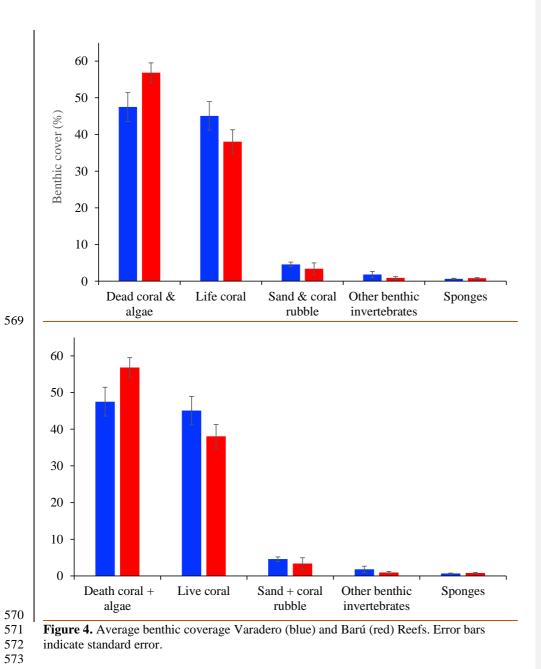
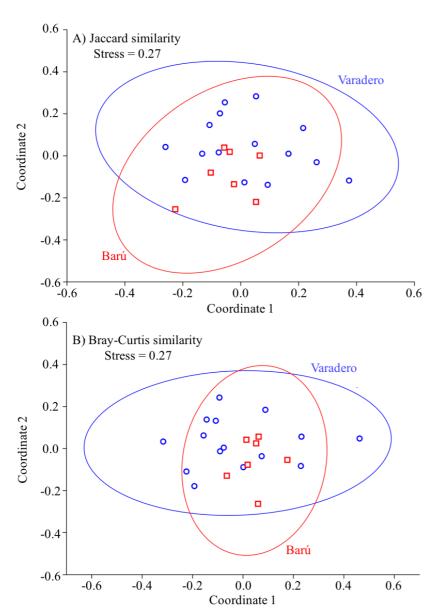
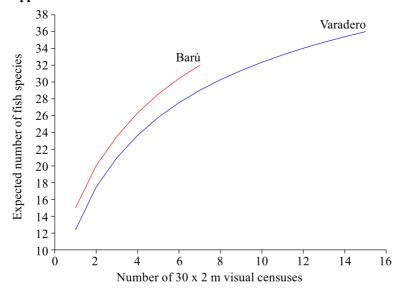



Figure 4. Average benthic coverage Varadero (blue) and Barú (red) Reefs. Error bars indicate standard error.


Figure 5. Non-metric multidimensional scaling analysis biplots based on A) presence-absence data (Jaccard's similarity) and B) abundance data (Bray-Curtis's similarity) for fish visual censuses made at Barú (red) and Varadero (blue) Reefs

Tables

 $\textbf{Table 1}. \ Fish \ assemblage \ attributes \ estimated \ through \ visual \ censuses \ on \ 30x2-m^2 \ belt \ transects \ made \ at \ Varadero \ and \ Bar\'u \ Reefs.$

Community attribute	Varader	o (n = 15)	Barú ((n = 7)	4	
Community attribute	Mean	± SD	Mean	± SD	ι	р
Species richness	12.4	3.0	15.0	2.4	-1.99	0,06
Number of individuals	55.6	15.9	74.1	14.4	-2.62	0,02
Dominance (Simpson's D)	0.18	0.05	0.16	0.04	0.94	0,36
Diversity (Shannon's H')	2.0	0.3	2.2	0.2	-1.36	0,19
Evenness (Pielou's J')	0.81	0.07	0.80	0.04	0.27	0,79

Supplemental Information

Supplemental Figure S1. Variation in fish species richness as a function of number of visual censuses (sample-based rarefaction curves) for the fish censuses made at Barú and Varadero Reefs.

Supplemental Table S1. List of scleractinian and fire coral species in Varadero and Northern Barú Reefs. Data are the frequency of occurrence (average,%) or presence/absence (+/--, visual surveys).

Species/Family	Varadero	Baru
Family Acroporidae		
<mark>Acropora palmata</mark>	+	0.09
A. cervicornis	+	1.26
A. prolifera	+	0.07
Family Agariciidae		
Agaricia agaricites	15.86	11.26
A. fragilis	0.75	0.15
<mark>A. humilis</mark>	+	+
<mark>A. undata</mark>	+	0.17
<mark>A. lamarcki</mark>	+	+
<mark>A. tenuifolia</mark>	12.15	4.46
<i>Agaricia∕Undaria s</i> pp.	28.76	16.04
Helioseris cucullata	0.11	0.13
Family Poritidae		
Porites astreoides	2.58	4.41
P. divaricata	1.01	2.74
P. furcata	0.73	0.33
P. porites	0.53	0.96
Porites spp.	2.26	4.02
Family Siderastreidae		
Siderastrea siderea	0.64	1.78
S. radians	0.23	1.04
Family Astrocoeniidae		
Stephanocoenia intercepta	+	+
Family Meandrinidae		
Dichocoenia stokesi	0.09	+
Eusmilia fastigiata	+	+
Meandrina meandrites	0.62	0.2
Family Merulinidae		
Orbicella faveolata	38.06	25.57
O. annularis	14.42	10.39

O. franksi	4.2	2.02
Family Montastraeidae		
Montastraea cavernosa	0.91	1.76
Family Mussidae, subfamily Mussinae		
Isophyllia sinuosa	+	0.13
I. rigida	+	
Mycetophyllia aliciae	+	+
M. ferox	+	+
M. lamarckiana	+	0.04
Scolymia cubensis	+	+
S. lacera	+	0.04
Family Mussidae, Subfamiliy Faviinae		
Colpophyllia natans	1.78	3.07
Diploria labytinthiformis	+	0.85
Favia fragum	0.02	0.02
Pseudodiploria strigosa	1.49	2.5
P. clivosa	0.73	0.17
Manicina areolata	+	0.07
Family Oculinidae		
Solenastrea bournoni	0.02	
S. hyades		0.09
Oculina diffusa	+	
Family Pocilloporidae		
Madracis mirabilis<mark>auretenra</mark>	1.39	1.98
M. formosa	+	+
M. decactis	+	+
Family Milleporidae		
Millepora alcicornis	0.85	0.28
M. complanata	0.83	1.89
M. striata	+	1.09
11. St tutu	T	
Family Stylasteridae		
Stylaster roseus	+	+

Opmerking [n26]: Madracis auretenra

http://www.marinespecies.org/aphia.php?p =taxdetails&id=287110

 $\textbf{Supplemental Table S2.} \ List of sponge \ species \ comparing \ two \ reef \ zones \ in \ Varadero \ and$

Northern Barú Reefs. Data are frequency of occurrence (%, 30-x-2 m² transects, n = 7 and 4

at Varadero and Barú, respectively), or presence (+, visual surveys).

595596

Opmerking [n27]: Add 2 in superscript

	Var	adero	Ba	rú	
Family/Species	Terrace	Slope	Terrace	Slope	
	(3-10 m)	(10-24 m)	(4-13 m)	(13-21 m)	
Family Acarnidae					
Acarnus sp.	+				
Family Agelasidae					
<mark>Agelas sventres</mark>	14		+		
<mark>Agelas wiedenmayeri</mark>	14	+			
Agelas sceptrum	+	+			
Agelas dispar		+			Opmerking [n28]: Alphabetical order?
Family Aplysinidae					
<mark>Aplysina fulva</mark>	29		25		
Aplysina cauliformis	14	+			
Aiolochroia crassa			25		Opmerking [n29]: Alphabetical order?
Family Callyspongiidae					
Callyspongia vaginalis	14	+	25		
Family Chalinidae					
<mark>Haliclona wallentinae</mark>	71	+	25		
Haliclona vansoesti	14				Opmerking [n30]: Alphabetical order?
Family Chondrillidae					
Chondrilla caribensis fo. caribensis			25		
Family Clionaidae					
Cliona laticavicola	57		75		
Cliona tenuis	29		50		
<mark>Pione sp.</mark>	14		25		
Cliona aprica			25		Opmerking [n31]: Alphabetical order?
Family Coelosphaeridae					
Lissodendoryx colombiensis	71	+	75	+	

Family Crambeidae					
Monanchora arbuscula	71		100	+	
Family Desmacellidae					
Neofibularia nolitangere			25		
Family Dictyonellidae					
Scopalina ruetzleri	57		75		
Svenzea cristinae	29	+			
Svenzea tubulosa	14				
Family Dysideidae					
Dysidea etheria	14				
Family Halichondriidae					
Topsentia ophiraphidites	+				
Hymeniacidon caerulea	+				
Halichondriidae sp. 3			25		Opmerking [n32]: Alphabetical order?
Family Halisarcidae					
Halisarca caerulea	29				
Family Iotrochotidae					
Iotrochota birotulata	+				
T 1 T 1 11					
Family Irciniidae	71	1	100		
<mark>Ircinia felix</mark> Incinia gampana	71	+	100	+	2 11 5 221 Alababattal and a
<mark>Ircinia campana</mark> Ircinia strobilina	+	+		+	Opmerking [n33]: Alphabetical order?
<i>І</i> І І І І І І І І І І І І І І І І І І				+	
Family Microcionidae					
Clathria ?calla	29		75		
Clathria curacaoensis	+		13		
Artemisina melana	ı		25		
Clathria venosa			+	+	Opmerking [n34]: Alphabetical order?
Citin ia venosa			ı	1	Opiner King [1154], Alphabeteal order.
Family Mycalidae					
Mycale laevis	100	+	100	+	
212/02/22 22/27	-			•	
Family Niphatidae					
Niphates erecta	100	+	100	+	
Amphimedon compressa	14		25		
Niphates ?caycedoi	14		25		Opmerking [n35]: Alphabetical order?

Amophimedon viridis <mark>Niphates digitalis</mark>	14		+	+
Family Petrosiidae				
Neopetrosia carbonaria	29			
Petrosia davilai	+			
Xestospongia muta	+	+		+
Petrosia pellasarca	·	+		·
Neopetrosia rosariensis				+
, reopen esta resultensis				
Family Placospongia				
Placospongia sp.	14			
Family Raspailiidae				
Ectyoplasia ferox				+
Family Suberitidae				
Terpios sp.	14			
To provide				
Family Tedaniidae				
Tedania ignis			+	
Total number of species/% ¹	36/72	14/28	25/50	dic-24
Total number of species/ 76	30/12	14/20	25/50	uic-24
Number of exclusive species/(%) ²	ago-22	feb-14	jul-28	abr-33
N. 1 6	10.0 (6-		10.5 (7-	
Number of species per transect (minmax.)	15)		17)	

Opmerking [n36]: Alphabetical order?

597 Percent of grand total (50 species)

598 ² Percent of total of each site

Supplemental Table S3. List of fish species observed at Varadero and Barú. Abundance values are mean (\pm S.D.) number of individuals per species observed in $30-x-2-m^2$ belt transects (n = 15 and 7 at Varadero and Barú, respectively). Species observed outside transects are indicated by an x.

Family/Species —	Varadero)	Barú		
ranniy/species —	Mean	±S.D.	Mean	±S.D.	
Family Acanthuridae					
Acanthurus chirurgus	0.07	0.26			
Acanthurus coeruleus	0.07	0.26	0.29	0.49	
Acanthurus tractus	0.53	1.06	0.86	1.86	
Family Aulostomidae					
Aulostomus maculatus	X		X		
Family Carangidae					
Carangoides ruber	0.33	1.29	0.14	0.38	
Family.Chaetodontidae					
Chaetodon capistratus	0.47	0.74	0.29	0.49	
Chaetodon ocellatus	X				
Chatodon striatus	0.13	0.52			
Family Cirrhitidae					
Amblycirrhitus pinos			0.14	0.38	
Family Clupeidae					
Opisthonema oglinum	X				
Family Diodontidae					
Diodon holocanthus	0.80	2.31	X		
Diodon hystrix	X				
Family Gobiidae					
Coryphopterus personatus	3.07	6.20	2.57	5.94	
Coryphopterus sp.	0.07	0.26			
Elacatinus cf. illecebrosus	0.13	0.35	0.14	0.38	
Family Grammatidae					
Gramma loreto	X		0.14	0.38	
Family Haemulidae					
Anisotremus virginicus	X		X		

Haemulon carbonarium	X				
Haemulon flavolineatum	1.60	1.68	1.43	1.13	
Haemulon macrostomum	0.13	0.35	X		
Family Holocentridae					
Holocentrus adscensionis	0.07	0.26			
Holocentrus rufus			0.14	0.38 Opmerking	[n38]: italic
Myripristis jacobus	X		X		
Family Labridae	0.22	0.40	0.42	0.70	
Bodianus rufus	0.33	0.49	0.43	0.79	
Clepticus parrae	0.87	2.36	X	0.70	
Halichoeres bivittatus	0.20	0.56	0.57	0.79	
Halichoeres garnoti	0.07	0.26	0.71	1.25	
Thalassoma bifasciatum	7.73	8.34	12.43	10.34	
Family Lutjanidae					
Lutjanus analis			X		
Lutjanus apodus	X		A		
Lutjanus griseus	A		X		
Lutjanus mahogoni	X		A		
Lutjanus synagris	X				
Luiganus syraignis	Λ				
Family Monacanthidae					
Aluterus scriptus	X				
Family Mullidae					
Mulloidichthys martinicus	X		X		
Pseudupeneus maculatus	X				
Family Muraenidae					
Echidna catenata	X				
Gymnothorax funebris			0.14	0.38	
F 11.0					
Family Ostraciidae			0.1.1	20	
Lactophrys triqueter	X		0.14	0.38	
F. Pomacanthidae					
Holacanthus tricolor	0.07	0.26			
Pomacanthus paru	X	0.20			
- 2	Α				
Family Pomacentridae					
Abudefduf saxatilis	0.20	0.56	0.43	0.53	
.					

Chromis multilineata	0.13	0.25		
1.6		0.35	0.43	1.13
Micropasthodon chrysurus	0.33	0.82	0.86	0.69
Stegastes bipartitus	X			
Stegastes diencaeus	8.27	5.26	13.14	5.73
Stegastes partitus	4.53	7.21	6.57	5.35
Stegastes planifrons	10.47	6.44	9.14	6.74
Family Scaridae				
Scarus iseri	8.00	4.50	12.14	4.56
Scarus taeniopterus	0.13	0.52	2.00	1.53
Sparisoma aurofrenatum	2.00	1.20	1.57	1.13
Sparisoma viridae	1.93	1.91	4.00	2.71
F. Sciaenidae				
Equetus punctatus	0.20	0.56		
Odontoscion dentex	0.40	0.63	0.14	0.38
Pareques umbrosus	X			
Family Scorpaenidae				
Pterois volitans	X		X	
Scorpaena plumieri	X			
Family Serranidae				
Cephalopholis cruentata	0.53	0.64	0.29	0.49
Hypoplectrus puella	0.27	0.46	X	
Hypoplectrus unicolor	X		X	
Mycteroperca bonaci	X			
Serranus tigrinus	0.53	0.92	1.29	1.98
Family Synodontidae				
Synodus intermedius			0.14	0.38
Family Tetraodontidae				
Canthigaster rostrata	0.60	0.74	1.14	0.38
Spheroides spengleri	X			
Family Urobatidae				
Urobatis jamaicensis	X			