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ABSTRACT
The latitudinal distributions in Devonian–Cretaceous ammonoids were analyzed at the
genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters)
and the geological durations. The results show that (1) length of temporal ranges of
ammonoids effected broader ranges of fossil distribution and paleobiogeography of
ammonoids, and (2) the hatchling size was not related to the geographical range of
fossil distribution of ammonoids. Reducing the influence of geological duration in this
analysis implies that hatchling sizewas one of the controlling factors that determined the
distribution of ammonoid habitats at any given period in time: ammonoidswith smaller
hatchling sizes tended to have broader ammonoid habitat ranges. These relationships
were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which
is possibly due to (1) the course of development of a reproductive strategy with smaller
hatchling sizes in the Devonian and (2) the high origination rates after the mass
extinction events.

Subjects Evolutionary Studies, Marine Biology, Paleontology, Zoology
Keywords Ammonoidea, Hatchling size, Reproductive strategy, Latitudinal distribution, Habitat,
Geological duration

INTRODUCTION
Reproductive strategy is one of the major factors controlling the geographic distribution,
evolutionary and extinction rates, and speciation in marine animals (Yacobucci, 2016 for
ammonoids). Yacobucci (2016) presented a model for ammonoid speciation, based on
their evolutionary characteristics, including heterochrony, homeomorphy, and a high
origination rate that is often linked to sea level cycles. In modern cephalopods (squids,
cuttlefishes, octopuses, and nautiluses), Villanueva et al. (2016) analyzed the hatchling
sizes and their geographical ranges, and suggested that species of smaller hatchling
size with a planktic post-embryonic mode of life have broader geographical ranges. In
ammonoids, embryonic shells can be recognized by the presence of a primary constriction
in the innermost whorl (Landman, Tanabe & Shigeta, 1996; De Baets, Landman & Tanabe,
2015; and references therein). The embryonic ammonoid, which is termed ammonitella
(Drushchits & Khiami, 1970), consists of an initial chamber and about one planispiral
whorl from the caecum terminating at the primary constriction (Fig. 1). Most ammonoid
hatchlings are thought to have had a planktic mode of life (Kulicki, 1974; Kulicki, 1979;
Kulicki, 1996; Drushchits, Doguzhayeva & Mikhaylova, 1977; Tanabe, Fukuda & Obata,
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Figure 1 Ammonitella diameter in ammonoids. Photograph of embryonic shell of Desmoceras latidor-
satum from Cretaceous. Arrow indicates the primary constriction.

Full-size DOI: 10.7717/peerj.4108/fig-1

1980; Tanabe et al., 2001; Tanabe, Landman & Yoshioka, 2003; Landman, 1985; Tanabe
& Ohtsuka, 1985; Landman, Tanabe & Shigeta, 1996; Westermann, 1996; Rouget & Neige,
2001; Ritterbush et al., 2014; De Baets, Landman & Tanabe, 2015). Therefore, a planktic
mode of life at post-embryonic stages in ammonoids is expected to have had a significant
impact on their geographical range (Landman, Tanabe & Shigeta, 1996;Westermann, 1996;
Tajika & Wani, 2011; Ikeda & Wani, 2012; Brayard & Escarguel, 2013; Yahada & Wani,
2013; Zacaï et al., 2016). However, there has been little quantitative analysis on how
hatchling size related to their geographical ranges.

The purpose of this study is to evaluate the relationship between hatchling size and
geographical ranges in ammonoids. Second, this study evaluates the relationship between
geological duration and geographical ranges in ammonoids. This is of value because the
geographical ranges of fossil marine organisms would appear to be positively correlated
with geological duration (Jablonski, 1987; Miller, 1997; Liow, 2007; Foote et al., 2008).
Three parameters for each species were chosen in order to examine the possible influence
of hatchling size and geological duration on the geographic distribution of ammonoids,
whichwould provide new insights into understanding the early life history and reproductive
strategy in ammonoids: mean hatchling size, latitudinal geographical range, and geological
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duration. The former two parameters are similar to those used by Villanueva et al. (2016)
for the analyses of modern cephalopods.

MATERIALS AND METHODS
This study analyzed the relationship between latitudinal distributions and hatchling sizes
in Devonian–Cretaceous ammonoids at the genus level only since the examined data set is
available at this taxonomic level. A total of 223 genera (30 genera from the Devonian, 28
genera from the Carboniferous, 25 genera from the Permian, 55 genera from the Triassic,
24 genera from the Jurassic, 61 genera from the Cretaceous) were analyzed for this study.
The hatchling sizes (i.e., ammonitella diameters; Fig. 1) of the examined genera were
obtained from De Baets, Landman & Tanabe (2015) (Table S1). The mean ammonitella
diameter for each genus was calculated from the data of ammonitella diameters of the
species of the same genus. The data of ammonitella diameters were grouped and analyzed
for the aggregate Devonian–Cretaceous interval and for each constituent period (Devonian
to Cretaceous).

For each ammonoid genus, the geographic extent of their fossil occurrences was obtained
through literature reviews (Chlupáč & Turek, 1983;Korn & Klug, 2002;Korn & Ilg, 2007;De
Baets, Klug & Korn, 2009, for the Devonian; Korn & Ilg, 2007; Furnish et al., 2009, for the
Carboniferous and Permian; Arkell et al., 1957; Tozer, 1981, ET Tozer, pers. comm., 1989,
for the Triassic; Arkell et al., 1957; Howarth, 2013; Hoffmann, 2015, for the Jurassic; Arkell
et al., 1957; Wright, Calloman & Howarth, 1996; Igolnikov, 2007, for the Cretaceous). The
paleogeographic maps for each period (Scotese, 2011) were used to calculate the latitudinal
ranges of the examined ammonoids. In this study, the geographical distribution of the
examined genera was evaluated by latitudinal ranges, which is a similar approach taken
by the analysis of modern cephalopods (Villanueva et al., 2016). The latitudinal ranges
were transformed into distance (km) by applying the Haversine formula to calculate the
great-circle distance between two points (mean radius of the Earth = 6,371 km):

2π× (mean radius of the Earth)×
latitudinal range(◦)

360
.

The latitudinal distribution of the examined genera were analyzed with respect to
the geological duration of each genus. The geological durations were obtained from the
geological ages at the stage level that were adapted from those in Gradstein et al. (2012).
This is because the examined data set is available at this stage level. In the case that the
geological durations were significantly correlated to the latitudinal ranges of ammonoids,
an index is introduced in order to reduce the influence from the geological durations of the
examined ammonoids: (latitudinal range)/(geological duration). This index corresponds
to the latitudinal ranges per unit of time. This index was calculated for each genus and was
compared to their ammonitella diameters.

Values were compared using analysis of variance (ANOVA) for the regression analyses
and differences were considered significant at P < 0.05. Linear regressions (reduced major
axes) were used for the graphics. The linear regressions with ANOVA are one of the most
simple and basic approaches, so that this study aims to recognize principal relationships
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among the examined parameters. Linear regressions are used in similar analyses of modern
cephalopods in Villanueva et al. (2016), thus the results of this study could be directly
comparable to those in Villanueva et al. (2016).

Fossil occurrences might be incomplete and therefore latitudinal distribution based
on them as well. Species diversity among fossil invertebrates during the Phanerozoic is
known to be highly correlated with volume and area of sedimentary rocks (Raup, 1976).
However, such difference of volume and area of sedimentary rocks in examined periods
were not considered in this study. Furthermore, it is widely acknowledged that the analysis
of comparative data from related species should be performed taking into account their
phylogenetic relationships (Paradis & Claude, 2002). Such phylogenetic relationships were
not taken into account in this study, because the numbers of the examined genera are
not sufficient and the phylogenetic relationships in most examined genera are not clearly
recognized.

The 223 genera in this study represent approximately 10% of the number of genera
listed in the Paleobiology Database data (approximately 2,500 genera). Analyses of modern
cephalopods including approximately 13% of the total number of living cephalopod
species described to date (110 species of the 845 living cephalopod species), reveal a
positive correlation between the hatchling sizes and geographical ranges (Villanueva et al.,
2016). This percentage is comparable to that found in this study.

RESULTS
Relationship between latitudinal range and ammonitella diameter
The scatter diagrams for the aggregate Devonian–Cretaceous interval and each constituent
period are shown in Fig. 2, which are derived from data summarized in Table 1. No
relationship between latitudinal ranges and ammonitella diameters was found for
the aggregate Devonian–Cretaceous interval nor for any constituent period (ANOVA,
F = 0.309 and P = 0.58 Devonian–Cretaceous interval, F = 2.015 and P = 0.17 for the
Devonian, F = 0.055 and P = 0.82 for the Carboniferous, F = 1.065 and P = 0.31 for the
Permian, F = 0.354 and P = 0.55 for the Triassic, F = 0.691 and P = 0.41 for the Jurassic,
F = 0.267 and P = 0.61 for the Cretaceous).

Relationship between latitudinal range and geological duration
The scatter diagrams for the aggregate Devonian–Cretaceous interval and each constituent
period are shown in Fig. 3. Statistically significant relationships between latitudinal
ranges and geological durations were found (ANOVA, F = 94.340 and P < 0.001 for the
Devonian–Cretaceous interval, F = 7.739 and P < 0.01 for the Carboniferous, F = 8.148
and P < 0.01 for the Permian, F = 7.785 and P < 0.05 for the Jurassic, F = 36.976 and
P < 0.001 for the Cretaceous). No significant correlation was found in the Devonian
(F = 0.988 and P = 0.33) and Triassic (F = 1.624 and P = 0.21).

Relationship between ammonitella diameter and index of latitudinal
range and geological duration
The scatter diagrams for the aggregate Devonian–Cretaceous interval and each constituent
period are shown in Fig. 4. Statistically significant relationships between ammonitella
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Figure 2 Scatter diagrams between latitudinal ranges and ammonitella diameters. (A) The aggregate
Devonian–Cretaceous interval; (B) Cretaceous; (C) Jurassic; (D) Triassic; (E) Permian; (F) Carboniferous;
(G) Devonian.

Full-size DOI: 10.7717/peerj.4108/fig-2

diameter and the index of latitudinal ranges and geological durations were not
found (P = 0.06, 0.54, 0.14, 0.76, 0.79, 0.98, and 0.37, for the aggregate Devonian–
Cretaceous interval, Devonian, Carboniferous, Permian, Triassic, Jurassic, and Cretaceous,
respectively). However, the larger indices are observed only in the smaller ammonitella
diameters. In the Carboniferous, Triassic, and Jurassic, the larger indices tend to shift to
the middle of the observed ranges of ammonitella diameters (Figs. 4C, 4D and 4F).
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Table 1 Statistics for examined values of genera. The data of examined genera for aggregate Devonian–Cretaceous interval and each constituent
period are summarized.

No. of
genus

Ammonitella diameter (mm) Latitudinal range (km)

Mean Median Standard
deviation

Min. Max. Mean Median Standard
deviation

Min. Max.

Devonian–Cretaceous 223 0.998 0.850 0.575 0.51 6.00 7,919 7,780 4,666 556 17,782
Cretaceous 61 0.921 0.850 0.288 0.62 2.64 10,986 11,114 5,311 556 17,782
Jurassic 24 0.794 0.805 0.163 0.51 1.08 8,243 8,891 4,625 1,111 17,782
Triassic 55 0.819 0.760 0.181 0.57 1.35 5,981 5,557 4,237 1,111 15,559
Permian 25 0.922 0.880 0.299 0.66 2.16 7,757 7,780 3,895 1,111 14,448
Carboniferous 28 0.916 0.875 0.236 0.62 1.92 7,026 6,113 2,397 1,667 11,670
Devonian 30 1.787 1.421 1.178 0.73 6.00 5,946 6,668 2,860 1,111 11,114

No. of
enus

Geological duration (My) Index (latitudinal range/geological duration) (km/My)

mean median standard
deviation

min. max. mean median standard
deviation

min. max.

Devonian–
Cretaceous

223 15.69 12.40 13.46 2.0 67.9 856.14 501.38 982.26 41.62 5,556.93

Cretaceous 61 23.79 17.80 16.92 3.1 67.9 632.47 458.49 511.76 62.44 2,710.70
Jurassic 24 8.55 7.65 12.55 2.0 65.4 1,676.82 1,092.85 1,540.59 261.50 5,556.93
Triassic 55 7.53 4.50 8.33 2.2 37.6 1,308.00 715.25 1,314.86 88.67 5,556.93
Permian 25 23.17 26.60 10.48 3.5 41.9 421.85 318.30 392.45 41.62 2,102.62
Carboniferous 28 15.88 13.60 8.71 7.7 35.4 549.23 462.02 287.67 182.94 1,111.39
Devonian 30 13.48 13.30 4.30 5.0 28.8 474.33 501.38 289.54 77.72 1,587.69

DISCUSSION
Controlling factors for latitudinal ranges of ammonoids
The scatter diagrams between latitudinal ranges and ammonitella diameters (Fig. 2)
revealed no relationship between the chosen parameters. In contrast, the hatchling sizes of
modern cephalopods together with developmental modes (planktic or benthic) influence
the geographical range (Villanueva et al., 2016). The evolutionary history of ammonoids
is long (Devonian–Cretaceous), thus the geographical ranges of ammonoids can be
considered as an accumulation of multiple geological time slices. Latitudinal ranges of
ammonoids had a statistically significant positive correlation with the geological durations,
except for the Devonian and Triassic (Fig. 3). These relationships show that the longer
the geological duration of taxa, the broader the latitudinal ranges through ammonoid
evolutionary history. Such a positive relationship is similar to those in other fossil marine
organisms (e.g., gastropods, bivalves, arthropods, foraminifers, radiolarians, crinoids;
Jablonski, 1987; Miller, 1997; Liow, 2007; Foote et al., 2008). Evolutionary longevity of
ammonoid taxa influenced their geographical ranges of fossil distributions (Fig. 3).

Figure 4 illustrates that the larger indices of the latitudinal ranges and the geological
durations are observed only in the smaller ammonitella diameters. The exceptions are
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Figure 3 Scatter diagrams between latitudinal ranges and geological durations of genera. (A) The ag-
gregate Devonian–Cretaceous interval; (B) Cretaceous; (C) Jurassic; (D) Triassic; (E) Permian; (F) Car-
boniferous; (G) Devonian. Regression lines are shown where correlations are statistically significant.

Full-size DOI: 10.7717/peerj.4108/fig-3

those in the Carboniferous, Triassic, and Jurassic, in which such relationships are blurred.
These tendencies in the analyses that reduce the influence by the geological durations imply
that the hatchling size was one of the main controlling factors for geographical ranges in
ammonoid habitats at a given geological point in time: ammonoids with smaller hatchling
sizes tended to have broader geographical ranges of ammonoid habitats.

Most ammonoid hatchlings are thought to have had a planktic mode of life (Kulicki,
1974; Kulicki, 1979; Kulicki, 1996; Drushchits, Doguzhayeva & Mikhaylova, 1977; Tanabe,
Fukuda & Obata, 1980; Tanabe et al., 2001; Tanabe, Landman & Yoshioka, 2003; Tanabe
& Ohtsuka, 1985; Landman, Tanabe & Shigeta, 1996; Westermann, 1996; Rouget & Neige,
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Figure 4 Scatter diagrams between index of latitudinal ranges and geological durations and
ammonitella diameters. (A) The aggregate Devonian–Cretaceous interval; (B) Cretaceous; (C) Jurassic;
(D) Triassic; (E) Permian; (F) Carboniferous; (G) Devonian.

Full-size DOI: 10.7717/peerj.4108/fig-4

2001; De Baets, Landman & Tanabe, 2015). In modern cephalopods, hatchlings smaller
than approximately 3 mm are considered to have a planktic habit in the post-embryonic
stages (Wani, 2011; De Baets et al., 2012; De Baets, Landman & Tanabe, 2015; Villanueva
et al., 2016), which also suggests a planktic mode of life in most ammonoids. A planktic
mode of life at the post-embryonic stage is thought to have had a significant impact
on their geographical ranges (Landman, Tanabe & Shigeta, 1996; Westermann, 1996;
Tajika & Wani, 2011; Ikeda & Wani, 2012; Brayard & Escarguel, 2013; Yahada & Wani,
2013; De Baets, Landman & Tanabe, 2015; Zacaï et al., 2016). However, there has been
little discussion of how the hatchling sizes are related to their geographical ranges. The
analyses that reduce the influence of geological duration in this study imply that the
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hatchling sizes were of importance to the geographical ranges of ammonoid habitats at
each geological point in time, similar to those in modern cephalopods. This similarity
to modern cephalopods shows a common reproductive strategy in ancient and modern
cephalopods: the planktic mode of life at the post-embryonic stages was important in order
to achieve wide geographic ranges.

Taxonomic treatment of ammonoid genera could also affect the geographical range and
geological duration of the examined genus depending on how the examined species are
attributed to a given genus. For example,Maeda (1993) examined ‘‘four’’ species of ‘‘two’’
genera of Late Cretaceous ammonoids and suggested that the examined nominal species
was one species (i.e., one genus), based on the stratigraphic occurrence, morphological
variation, and shell ontogeny. Such integration and separation of a genus would influence
the geographical range and geological duration, the averages of ammonitella diameters,
which impact analyses such as this study.

Comparison between different periods
The examination of the scatter diagrams for each period (Figs. 2–4) illustrates the
characteristics of the relationship between the hatchling sizes and geographical ranges
for each period. Scatter diagrams for the Permian and Cretaceous data demonstrate the
same tendency as data for the aggregate Devonian–Cretaceous interval.

But scatter diagrams of the Devonian, Carboniferous, Triassic, and Jurassic (Figs. 2–4)
demonstrate different tendencies. The ammonitella diameters in the Devonian tend to
be larger than found in other periods and the maximum ammonitella diameter within
the Devonian attained at least 6.0 mm (Table 1; De Baets, Landman & Tanabe, 2015).
Several genera had ammonitella diameters larger than 3 mm, which is thought to be the
approximated critical size for the planktic habit of the post-embryonic stage in modern
cephalopods (Wani, 2011; De Baets et al., 2012; De Baets, Landman & Tanabe, 2015).
De Baets, Landman & Tanabe (2015) mentioned a trend towards smaller ammonitella
diameters from the Early to Late Devonian: the maximum ammonitella diameters were
more than 3 mm in the Early Devonian, and less than 3 mm in the Late Devonian.
This implies that ammonoids developed a reproductive strategy with smaller hatchling
sizes during the Devonian, which possibly blurs the relationship between the latitudinal
ranges, ammonitella diameters, and geological durations in the Devonian, at the examined
temporal resolution (Fig. 3). Laptikhovsky, Nikolaeva & Rogov (2017) also concluded that
the evolution of reproductive strategies in cephalopods in the geological past was marked
by an increasing abundance of small-egged taxa, which agrees with the findings in this
study.

The scatter diagram between the latitudinal ranges and geological durations in the
Jurassic (Fig. 3C) shows a significant relationship. If only one long-ranged genus (Phylloceras
of Phylloceratina) is excluded from the analyses, the scatter diagram showed no statistically
significant correlation (F = 3.253 and P = 0.09). Such long-ranged genera are few in the
examined data set and might indicate a possible problem with species determination; most
ammonoid genera in the Triassic and Jurassic have shorter geological durations (Table 1;
Table S1) (see Korn & De Baets, 2015, for a similar bias on the paleogeography of Devonian
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ammonoids). The larger indices of the geographical ranges and geological durations are
observed not only in the smaller ammonitella diameters but also in the middle of the
observed ranges of ammonitella diameters (Figs. 4C and 4D). Based on these values,
the relationships between the hatchling diameters, geological duration, and geographical
ranges in the Triassic and Jurassic are regarded as similar.

There were mass extinction events at the end of the Permian and Triassic when drastic
taxonomic turnovers of ammonoid fauna occurred (e.g., House, 1988; Monnet, Brayard
& Brosse, 2015; Brayard & Bucher, 2015; Longridge & Smith, 2015). In the Early Triassic
and Early Jurassic, origination rates of ammonoids were high (Ceratitida originated in
the Triassic and Lytoceratina and Ammonitina originated in the Jurassic; Neige & Rouget,
2015; Yacobucci, 2015; Longridge & Smith, 2015), which probably indicate radiations into
open niche followed mass extinction events. At these times, ammonoids appear to have
originated and resulted in an increased diversity rather than an increased geographical
spread of each taxa (with the exception of some long-ranged taxa). This could blur the
relationship between latitudinal ranges, geological durations, and ammonitella diameters
in the Triassic and Jurassic (Figs. 2–4).

There was also amass extinction event at the end of theDevonian, after which ammonoid
diversity increased during the Carboniferous (Kullmann, 1981; Becker & Kullmann, 1996;
Korn, Klug & Walton, 2015). As with the Triassic and Jurassic, originations following mass
extinction events, those during the Carboniferous might influence the relationship between
latitudinal ranges, geological durations, and ammonitella diameters. This is possibly seen
in Fig. 4F where the larger indices tend to shift to the middle of the observed range of
ammonitella diameters.

Amore complete and detailed dataset of geographical range and geological duration with
larger data size, together with the paleobiogeography of each period and morphological
changes at the embryonic and post-embryonic stage, would allow us to analyze with
more elaborate approaches and therefore to better understand the geological transition of
ammonoid reproductive strategies during the Devonian–Cretaceous with finer geological
resolution (i.e., at the stage level) and on a lower taxonomic level (i.e., at the species level).
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