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ABSTRACT

Inbreeding in hermaphroditic plants can occur through two different mechanisms:
biparental inbreeding, when a plant mates with a related individual, or self-fertilization,
when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants
have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization.
One particular SI system—homomorphic SI—can also reduce biparental inbreeding.
Homomorphic SI is found in many angiosperm species, and it is often assumed
that the additional benefit of reduced biparental inbreeding may be a factor in the
success of this SI system. To test this assumption, we developed a spatially-explicit,
individual-based simulation of plant populations that displayed three different types of
homomorphic SI. We measured the total level of inbreeding avoidance by comparing
each population to a self-compatible population (NSI), and we measured biparental
inbreeding avoidance by comparing to a population of self-incompatible plants that
were free to mate with any other individual (PSI). Because biparental inbreeding is
more common when offspring dispersal is limited, we examined the levels of biparental
inbreeding over a range of dispersal distances. We also tested whether the introduction
of inbreeding depression affected the level of biparental inbreeding avoidance. We
found that there was a statistically significant decrease in autozygosity in each of
the homomorphic SI populations compared to the PSI population and, as expected,
this was more pronounced when seed and pollen dispersal was limited. However,
levels of homozygosity and inbreeding depression were not reduced. At low dispersal,
homomorphic SI populations also suffered reduced female fecundity and had smaller
census population sizes. Overall, our simulations showed that the homomorphic SI
systems had little impact on the amount of biparental inbreeding in the population
especially when compared to the overall reduction in inbreeding compared to the NSI
population. With further study, this observation may have important consequences for
research into the origin and evolution of homomorphic self-incompatibility systems.
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INTRODUCTION

Alarge portion of angiosperm species (~72%) produce hermaphroditic flowers (Yamipolsky
& Yampolsky, 1922), which bear both male (stamen) and female (carpel) reproductive
systems. In some cases, these species are capable of self-fertilizing and reproducing without
a mating partner. Self-fertilizing plants benefit from reproductive assurance when mates
are limited (Darwin, 1876; Baker, 1955; Stebbins, 1957; Busch, 2005; Herlihy ¢ Eckert,
2005) and have a pollen transmission advantage over outcrossing plants (Fisher, 1941).
Nevertheless, outcrossing remains the dominant reproductive strategy in angiosperms (Igic
¢ Kohn, 2006), likely due to the negative effects of inbreeding depression outweighing the
advantages of self-fertilization (Darwin, 1876; Charlesworth ¢ Charlesworth, 1979b). Many
hermaphroditic plant species exhibit a wide variety of morphologically- or molecularly-
enforced self-incompatibility (SI) systems to avoid self-fertilization.

In morphology-enforced or heteromorphic SI systems, self-fertilization is reduced
through spatial or temporal separation of the male and female reproductive organs (anther
and stigma, respectively). For example, Darwin (1862) first described the heterostyly SI
system in Priumula (P. vulgaris and veris), in which each plant expresses one of two flower
morphologies that differ in the relative heights of the anther and stigma. The different
arrangements ensure that pollinating insects that visit the anther of one morph will only
deposit pollen on stigmas with the opposite morph.

Molecularly-enforced or homomorphic SI systems are more common and are found
in species spanning at least 100 angiosperm families (Igic, Lande ¢» Kohn, 2008). In
homomorphic plants, the female reproductive system is able to recognize and reject
self-generated pollen using various molecular mechanisms. In order for self-recognition to
be successful, the genes controlling the molecular phenotypes of the pollen and the carpel
must be inherited together. Typically, these phenotypes are controlled by two genes at the S
locus that are tightly linked, due to repressed recombination (Casselman et al., 2000; Castric
et al., 2010; Charlesworth & Awadalla, 1998; Kamau, Charlesworth & Charlesworth, 2007;
Kawabe et al., 2006; Vieira, Charlesworth ¢ Vieira, 2003), and highly polymorphic. The S
locus is under negative, frequency-dependent selection and pollen with rare S phenotypes
are favored. Homomorphic SI mechanisms ensure that plants will recognize and reject
all self-generated pollen as well as some pollen from closely related plants. As a result,
homomorphic SI systems not only reduce inbreeding by preventing self-fertilization,
they also reduce mating between close relatives (biparental inbreeding Charlesworth &
Charlesworth, 1987).

It is often assumed that the success of homomorphic SI systems across the angiosperms
is due to this two-fold inbreeding avoidance strategy. Unfortunately, because the genetic
outcomes of biparental inbreeding and self-fertilization are similar, it is difficult to
distinguish between these two types of inbreeding in natural populations without a
controlled experimental setup (Griffin ¢ Eckert, 2003). This makes it difficult to draw
strong conclusions about the role of biparental inbreeding avoidance in the evolution of
homomorphic SI systems.
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Mixed-mating models and genetic markers are often used to estimate levels of biparental
inbreeding (Ennos & Clegg, 1982), but these estimates can be inaccurate even when a large
number of loci are used (Ritland, 2002). These estimates are complicated by the fact that
mixed-mating models assume that a certain proportion of progeny are a product of self-
fertilization while the rest are a product of outcrossing with random unrelated individuals.
In many natural plant populations, however, outcrossing is more likely to occur with
related individuals, particularly when the population displays fine-scale spatial genetic
structure (Zhao, Xia ¢ Lu, 2009). Because angiosperms are sessile, dispersal is achieved
through the movement of pollen and seed, and in many species, pollen and seed dispersal
distances rarely exceed more than a few meters (Fenster, 1991; Levin, 1981). Consequently,
plants will often become established near their parents surrounded by related individuals,
which they will likely mate with. This phenomenon, known as isolation-by-distance,
results in greater genetic similarity between individuals that are near each other than
those that are farther away. The increased potential for biparental inbreeding under
isolation-by-distance can be beneficial because it reduces the genetic cost of outrcrossing
by increasing parent-offspring relatedness (Uyenoyama, 1986). On the other hand, it may
also increase homozygosity allowing the expression of deleterious recessive alleles.

The extent to which inbreeding is detrimental depends on the history of inbreeding in the
population. Both biparental inbreeding and self-fertilization can increase homozygosity
within a genome, and inbred offspring are more likely to express recessive deleterious
alleles and suffer reduced viability and fecundity (Charlesworth ¢ Charlesworth, 1987;
Charlesworth, Morgan & Charlesworth, 1990). While, self-fertilization facilitates purifying
selection to purge highly deleterious alleles, a large number of slightly deleterious alleles
can be maintained (Charlesworth, Morgan & Charlesworth, 1990; Wang et al., 1999).
Outcrossing species tend to maintain recessive deleterious alleles in a heterozygous state,
which can lead to inbreeding depression. When biparental inbreeding is common, some
of the segregating deleterious alleles can be purged in outcrossing populations. However,
in many plant species, crosses between close neighbors have been shown to produce less
fit offspring, and because the reduction in fitness is associated with spatial proximity,
this is likely evidence of inbreeding depression resulting from isolation-by-distance
(Heywood, 1991).

Previous studies have provided evidence that homozygosity is reduced in regions
of the genome that are linked to the S locus. The forced heterozygosity at the S locus
extends to other linked loci and can reduce the expression of recessive deleterious alleles
at those loci. Deleterious alleles can accumulate in this region because they are sheltered
from selection (Llaurens, Gonthier ¢ Billiard, 2009). It remains unclear, however, whether
homomorphic SI systems reduce biparental inbreeding at loci that are not linked to the S
locus. Cartwright (2009) presented results from a simulation study which showed a large
decrease in biparental inbreeding in homomorphic SI simulations near the S locus, but at
unlinked loci, the reduction in biparental inbreeding was relatively small. This suggests that
at unlinked loci, homomorphic SI systems may only have a small impact on the amount
of biparental inbreeding. This study, however, did not model inbreeding depression which
may provide a selective advantage to avoid inbreeding.

Furstenau and Cartwright (2017), PeerdJ, DOI 10.7717/peerj.4085 3/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.4085

Peer

In this current study, we analyzed the impact homomorphic SI systems have on the level
of biparental inbreeding in a population. We used a spatially-explicit, individual-based
simulation to model plant populations with three different homomorphic SI systems. To
differentiate between inbreeding due to self-fertilization and biparental inbreeding we
compared the level of inbreeding (autozygosity and homozygosity) in the homomorphic SI
populations to a partial SI (PSI) population where individuals were obligate out-crossers
but no genetic SI system was in place to prevent biparental inbreeding. Any decrease in
the level of inbreeding in the SI populations compared to the PSI population would be
due to biparental inbreeding avoidance. To determine the reduction in total inbreeding,
the populations were also compared to a self-compatible population that had no SI system
(NSI). We focused on measuring the level of inbreeding at loci that were not linked to
the S locus, and we incorporated inbreeding depression by simulating the segregation of
recessive deleterious alleles in the population.

The three homomorphic SI systems vary in the way that they discriminated against pollen
from plants with a matching S allele, and they are each described in the Fig. 1 diagram.
The first system was modeled after the gametophytic SI system (GSI), which is the most
widespread SI system and is found in Solanaceae, Rosaceae and Scrophulariaceae (Franklin-
Tong & Franklin, 2003). In GSI systems, the pollen phenotype is solely determined by the
S haplotype that it inherits. From a single diploid plant, roughly 50% of the pollen will
carry one S haplotype, and 50% will carry the other S haplotype. If two plants have one S
allele in common, half of the pollen from each plant—those that do not carry the common
haplotype—will be able to fertilize the other plant.

The second system is modeled after the sporophytic SI system that is common in
Brassicaceae (BSI). One often studied example is Arabidopsis lyrata, a self-incompatible
relative of the self-compatible model angiosperm, Arabidopsis thaliana (Kusaba et al.,
2001; Charlesworth et al., 2003; Mable, Schierup & Charlesworth, 2003; Kawabe et al., 2006
Kamau, Charlesworth & Charlesworth, 2007; Schierup, Bechsgaard & Christiansen, 2008). In
the BSI system, the phenotype of the pollen is determined by the diploid S genotype of the
parent plant. Dominance relationships exist between the S alleles and the pollen expresses
the phenotype of the dominant allele. If two plants share the same dominant S allele, they
will be unable to interbreed; however, if they share only the same recessive S allele, all of
the pollen will be compatible between the two plants. Consequently, this is the only system
that potentially allows a plant to become homozygous for recessive S alleles (Hiscock ¢
Tabah, 2003).

Finally, we modeled a sporophytic SI (SSI) system that is similar to BSI except all the
S alleles are codominant. There is no known biological equivalent of this SI system, and a
situation where all S alleles are equally codominant is highly unlikely. Nevertheless, the SSI
system serves to model an extreme case of discrimination where pollen is prevented from
fertilizing any plant that shares either S allele. We predict that this more stringent SI system
will show the greatest reduction in biparental inbreeding. In each of the homomorphic SI
systems, we treat the S alleles that control the female phenotype as codominant.

Because biparental inbreeding is more likely when dispersal is limited, we ran each
simulation with a range of different seed and pollen dispersal distance parameters. We
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Figure | Homomorphic self-incompatibility systems. Four different S haplotypes are represented by
the colors red, blue, orange, and purple. The plants in the first column produce the pollen represented by
the circles above each plant. The color of the inner circle indicates the pollen’s haplotype and the outer cir-
cle indicates the pollen’s phenotype in each of the three SI systems: GSI, BSI, and SSI. Under the GSI sys-
tem, the pollen phenotype is the same as the pollen haplotype; under the BSI system, the red allele is dom-
inant to the blue allele so all of the pollen are phenotypically red; and under the SSI system, both of the
parental alleles are codominant so both are expressed in the pollen phenotype. The S alleles controlling the
female phenotype are all codominant. In every SI system, none of the pollen is compatible with the plant
that produced it (self) and all of the pollen is compatible with unrelated individuals that do not share any
of the same S alleles with the parent plant. The arrows indicate which related plants (those that share one S
allele with the parent plant) are compatible with each of the pollen types.

Full-size Gal DOIL: 10.7717/peerj.4085/fig-1

suspected that the homomorphic SI populations would have the greatest advantage over the
PSI population, in terms of biparental inbreeding avoidance, when the dispersal distances
were small. We also tracked the population size and the number of viable seeds produced
to monitor population declines and female fecundity.
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METHODS

Simulation

We developed a spatially-explicit, individual-based simulation to model discrete
generations of self-incompatible plant populations. In the simulation, populations
inhabited a 100 x 100 toroidal lattice (cf. Epperson, 1995; Robledo-Arnuncio ¢ Rousset, 2010;
Rousset, 1997; Slatkin ¢ Maddison, 1990; Slatkin, 1993) where each cell was occupied by a
single, hermaphroditic individual. The plants were diploid and had several, independently
assorting genetic loci.

In plants, the S locus consists of multiple, tightly linked, highly polymorphic genes;
however, in our simulations we treated the S locus as a single gene, with multiple alleles.
Typically, the formation of novel functional S haplotypes through mutation is rare because
it requires coordination between the genes controlling both the pollen and the carpel
phenotypes; a mutation in just one component will result in the breakdown of self-
incompatibility (Charlesworth & Charlesworth, 1979a; Uyenoyama, Zhang & Newbigin,
20015 Igic, Lande ¢ Kohn, 2008). Therefore, in the simulation, we kept the mutation rate
at the S locus low (s = 107>) and each mutation resulted in either a completely new
S haplotype according to the infinite alleles mutation model (Kimura & Crow, 1964) or
changed to one of 10 alleles according to the K-alleles mutation model (Crow ¢ Kimura,
1970) where specified. We did not allow mutations that would result in the breakdown of SI.

The marker locus, M, was used to measure the amount of inbreeding in the population.
The alleles at the M locus were all selectively neutral and mutated at rate ., = 1074, under
the infinite alleles model. The higher mutation rate at the M locus maintained higher levels
of polymorphism which aided in the estimation of inbreeding. In the initial population,
each Sand M allele was unique and the simulation was run for a 10,000-generation burn-in
period to reach a drift-mutation equilibrium.

Each individual carried a total of 10 independent deleterious loci (D;, D»,..., D) that
were not linked to each other or to any other locus. Each D locus carried either a wild-type
allele or a recessive deleterious allele. In the initial population, all individuals carried
wild-type alleles that permanently mutated into deleterious alleles at rate ;s = 0.1; this
resulted in a genome-wide recessive mutation rate that was close to 1. Each homozygous
recessive genotype at a D locus increased the probability that an individual would be sterile
by 0.005. Individually, these alleles were only slightly deleterious and thus were more likely
to be maintained in the population; in combination, they produced an appreciable number
of sterile individuals. Affected individuals were viable but were unable to produce pollen or
seed. Typically, the probability that a deleterious mutation occurs at a single locus is rare,
but the probability of a deleterious mutation occurring across the whole genome is high.
Therefore, to maintain a large enough penalty for inbreeding, we used a high mutation
rate at each D locus so that, on average, there would be one new deleterious mutation per
haploid gamete.

At the beginning of each generation, fertile parent plants produced gametes—10 pollen
grains and five ovules—through the independent assortment of loci. Pollen grains were
dispersed from the parent’s location according to a normal distribution along each axis
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with standard deviation o. Incoming pollen was checked for compatibility with the plant
in the new location based on the rules of the designated SI system. If compatible, the pollen
was randomly assigned to an ovule; otherwise it was discarded. When pollen dispersal
was complete, some ovules remained unfertilized while other ovules had a pool of pollen
from which one pollen grain was randomly chosen. Unfertilized ovules were aborted and
fertilized ovules formed seeds. Seeds were then dispersed from the parent’s location in the
same way as the pollen. When seed dispersal was complete, a single seed from each cell was
randomly selected to become a parent in the next generation. Mutations occurred in the
germ line of the parents before they produce gametes so all of their offspring carried the
mutation. The pollen and seed dispersal parameters were both set to either 0 =1, 2, 4, or 6.

In each simulation, pollen compatibility was determined by one of the five different
compatibility systems: NSI, PSI, GSI, BSI, and SSI. A serial dominance scheme, similar
to that described in Vekemans, Schierup ¢ Christiansen (1998), was used to model the
dominance relationships between the S alleles in the BSI system. The S alleles were sorted
into a dominance hierarchy such that each allele was dominant to all alleles below it and
recessive to all alleles above it in the hierarchy; new alleles, introduced through mutations,
were randomly inserted into the hierarchy. For the self-compatible NSI system, outcrossing
occurred when pollen dispersed outside of the parent cell; otherwise, self-fertilization
occurred. Consequently, self-fertilization was relatively more common than outcrossing
when pollen dispersal distance was limited.

Source code for the simulation is available at https://github.com/tfursten/SI-cpp/ (doi:
10.5281/zenodo.1016153).

Analysis

A random sample of 500 individuals was collected from the population every 10,000
generations for a total of 500 nearly independent samples. To measure inbreeding in each
sample, we calculated the proportion of sampled individuals that were autozygous and
homozygous at the M locus. An individual’s M alleles were considered to be autozygous
(identical-by-descent) if they both descended from the same allele in a grandparent
(autozygosity through the parents is not possible for SI systems), regardless of mutation.
Individuals were homozygous if their two M alleles were the same.

To analyze the results, we used the Anderson-Darling two-sample test (Scholz & Stephens,
1987) implemented in the kSamples R package (R Core Team, 2015; Scholz & Zhu, 2016).
The test statistic was T, = (AD— (k—1)) /0, and the p-value estimation method was set to
simulate the default 10,000 random rank permutations using the average rank score for ties.
The distribution of values (proportion of heterozygotes and autozygotes) was compared
between the different simulations under the null hypothesis that the values came from the
same underlying distribution. The p-values from the pairwise comparisons were adjusted
for multiple tests using the Holm correction (Holm, 1979), and the significance criterion
was set at 0.05 for all tests.

We also recorded the average number of alleles at the S and M locus, and the average
squared parent-offspring dispersal distance (s?). In plants, s* =02 + GPZ /2, where o;
represents seed movement and o), represents pollen movement (Crawford, 1984). In this
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formula, seed dispersal contributes more than pollen dispersal because seeds carry gametes
from both parents whereas pollen only carries gametes from the father. From the whole
population, we recorded the total number of adults, the number of seeds produced, and
the number of sterile individuals.

RESULTS

Effect of inbreeding depression

Unlike the simulations in Cartwright (2009), our simulations included inbreeding
depression which should provide a selective advantage to avoid inbreeding. To determine
if the simulated inbreeding depression had an effect, we compared simulations with (Del)
and without (Neu) a penalty for inbreeding (Fig. 2). Introducing inbreeding depression
resulted in a significant difference in the level of homozygosity. Median homozygosity was
lower in each SI system when inbreeding depression was present. Comparing across the
different SI systems, PSI, GSI, BSI, and SSI were not significantly different from each other
in simulations with and without inbreeding depression (See Table S1 for a list of p-values).
Autozygosity, which measures very recent inbreeding, was not significantly different in
simulations with and without inbreeding depression within the same SI system, except for
in the PSI system. In simulations with and without inbreeding depression, the NSI systems
had significantly higher level of autozygosity and the SSI system had a significantly lower
level of autozygosity.

Reduction in biparental inbreeding

The amount of inbreeding in the PSI system was used as a baseline value to determine
how much biparental-inbreeding-avoidance occurred in the homomorphic SI simulations.
Because the PSI system only prevented self-fertilization, any reduction in inbreeding
below the level observed in the PSI simulations represented a reduction in biparental
inbreeding. Compared to the large drop in inbreeding between the NSI and PSI systems
(due to the prevention of self-fertilization), the decrease in inbreeding between PSI and
the homomorphic SI systems was statistically significant but relatively small. Figure 3
shows the empirical density plot of measures of autozygosity in each of the simulations,
and the difference between the homomorphic SI systems and the PSI system was about an
order of magnitude smaller than the difference between PSI and NSI. Autozygosity was
not significantly different between the GSI and BSI systems (inset), but it was significantly
lower in the more stringent SSI system.

Isolation-by-distance

Biparental inbreeding is more common under isolation-by-distance and the biparental
inbreeding avoidance strategy provided by homomorphic SI systems may provide a
greater advantage in this situation. To test this, we compared the amount of inbreeding
in simulations with various pollen and seed dispersal distance parameters. Figure 4 shows
pairwise comparisons of the level of homozygosity and autozygosity in each SI system
with a range of dispersal distance parameters. Homozygosity was significantly higher when
isolation-by-distance was strongest but there was no difference between the different SI
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Figure 2 Inthe homomorphic SI simulations, inbreeding depression had a significant effect on ho-
mozygosity. The plot shows pairwise comparisons for each SI system with inbreeding depression (Del)
or without inbreeding depression (Neu). The upper (blue) and lower (purple) triangles compare the dis-
tribution of proportions of homozygotes and autozygotes, respectively, in 500 samples from each simula-
tion. The color of each square indicates the outcome of a Holm-corrected, pairwise Anderson-Darling test
which determined whether the pair of distributions were significantly different (p < 0.05; light color) or
not (dark color). The values along the right and top axes are the median homozygosity and autozygosity
for each simulation, respectively. The simulations are sorted on both axes by median homozygosity. The
simulations were run on a 100 x 100 landscape with pollen and seed dispersal parameter o = 1.

Full-size Gl DOI: 10.7717/peer;j.4085/fig-2

systems. When isolation-by-distance was strongest (o = 1), autozygosity was significantly
different between all of the SI systems except BSI and GSI. The median autozygosity
was highest for PSI and lowest for SSI. When isolation-by-distance was weak (o =6),
autozygosity was not significantly different between BSI, GSI, and SSI but each of these
were still significantly different from PSI. The median autozygosity at ¢ = 6 was 0 for each
SI system and the average autozygosity was 0.0011 for PSI, 0.0007 for GSI, 0.0008 for BSI,
and 0.0006 for SSI. Overall, we observed a greater decrease in the median autozygosity
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Figure 3 The reduction in biparental inbreeding in homomorphic SI systems was small compared
to the reduction in self-fertilization. The empirical density plot (main) shows the distribution of the
proportion of autozygotes in 500 samples from simulations of each SI system. The inset shows the pair-
wise comparisons of each distribution where the color of each square indicates the outcome of a Holm-
corrected, pairwise Anderson—Darling test which determined whether the pair of distributions were signif-
icantly different (p < 0.05; light color) or not (dark color). The values along the right axis of the inset are
the medians in increasing order. The simulations included inbreeding depression and were run on a 100
% 100 landscape with pollen and seed dispersal parameter o = 1.

Full-size Gl DOI: 10.7717/peer;j.4085/fig-3

levels, in both absolute and relative differences, between PSI and the homomorphic SI

simulations when isolation-by-distance was stronger.

Population demographics and allele diversity

Tracking population parameters in the simulation allowed us to better understand how
the SI systems effect population size, inbreeding depression, fecundity, effective dispersal,
and allele diversity. Table 1 provides a summary of median per-generation population
demographic values for each of the simulations including: census population size, the
number of sterile individuals, seed set, dispersal distance, and the number of alleles at the

M locus and the S locus.
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indicates the outcome of a Holm-corrected, pairwise Anderson—Darling test which determined whether
the pair of distributions were significantly different (p < 0.05; light color) or not (dark color). The values
along the right and top axes are the medians for homozygosity and autozygosity, respectively. The simu-
lations are sorted on both axes by median homozygosity. The simulations included inbreeding depression
and were run on a 100 x 100 landscape with pollen and seed dispersal parameters o = 1, 2, 4, and 6, indi-
cated in the subscript.

Full-size & DOI: 10.7717/peerj.4085/fig-4

In the simulations, the maximum allowable population size was 10,000 individuals;
however, in many cases the population size was smaller because seeds would fail to disperse
into some locations, especially when fewer seeds were produced. The PSI simulations
had the largest median population size and the population size was not affected by
different dispersal distance parameters. In the homomorphic SI simulations, the number
of individuals increased with dispersal distance. When o = 1, the homomorphic SI
simulations all had a significantly reduced population size and the greatest reduction was
observed under the SSI system.
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Table 1 Seed set and population size is reduced when the SI system is more stringent. The table pro-
vides the medians for the number of individuals (N), the number of sterile individuals, the seed set, the
mean squared parent-offspring dispersal distance (s*), the number of unique M alleles, and the number of
unique S alleles for simulations with different SI systems and different dispersal parameters (o). The max-
imum possible number of individuals in the population is 10,000 and the maximum number of seeds is

50,000.
o N Sterile Seed set s M alleles S alleles
1 9,907 486 45,679 1.72 24 4
PSI 2 9,905 485 46,351 6.20 23 4
4 9,905 486 46,458 24.24 22 4
6 9,905 485 46,481 54.11 22 4
1 9,886 484 44,127 1.72 23 75
GSI 2 9,902 486 45,963 6.21 22 73
4 9,903 482 46,296 24.27 22 73
6 9,903 484 46,340 54.06 22 73
1 9,879 484 43,547 1.73 24 50
BSI 2 9,900 485 45,755 6.21 22 38
4 9,902 484 46,107 24.22 22 35
6 9,901 484 46,166 54.16 22 34
1 9,847 482 41,555 1.73 24 81
SSI 2 9,897 484 45,447 6.24 23 76
4 9,901 485 46,072 24.18 22 75
6 9,901 484 46,174 54.10 22 75

Inbreeding in the population increased the probability that sterile individuals were
produced. The average number of sterile individuals per generation across all simulations
was 484.5 which represents approximately 5% of the population. For most of the dispersal
levels, the PSI simulations had the highest number of sterile individuals; although, none of
the differences were statistically significant.

A maximum of 50,000 seeds can be produced in one generation (10,000 individuals
with five ovules each). Seed set was highest in the PSI simulations and lowest in the SSI
simulations. In each of the SI systems, seed set increased as dispersal distance increased.

The expected mean-squared parent-offspring dispersal distances were 1.5, 6, 24, and
54 for dispersal parameters 1, 2, 4, and 6, respectively. The observed s2 values were
slightly higher across all simulations but the relative difference was much greater when
isolation-by-distance was strong. The s* values were not significantly different between
the different SI systems when o = 2, 4, and 6, but when o = 1, the SSI simulation had
significantly higher effective dispersal than GSI and PSI.

In the homomorphic SI systems, high diversity is maintained at the S locus. The SSI
system maintained the largest number of S alleles followed by the GSI system then the BSI
system. Few alleles were maintained at the S locus in the PSI system because the S allele
was not active, essentially behaving as a selectively neutral marker. The number of alleles
maintained at both the S locus and the M locus decreased as the average dispersal distance
increased in all of the SI systems.
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Figure 5 Biparental inbreeding avoidance is fairly stable with respect to S allele diversity. The plot
shows pairwise comparisons for simulations of each SI system in which the number of S alleles were re-
duced to 10 under the k-alleles mutation model. The upper (blue) and lower (purple) triangles compare
the distribution of proportions of homozygotes and autozygotes, respectively, in 500 samples from each
simulation. The color of each square indicates the outcome of a Holm-corrected, pairwise Anderson—
Darling test which determined whether the pair of distributions were significantly different (p < 0.05; light
color) or not (dark color). The values along the right and top axes are the medians for homozygosity and
autozygosity, respectively. The simulations are sorted on both axes by median homozygosity. The simula-
tions included inbreeding depression and were run on a 100 x 100 landscape with o =1 for the pollen and
seed dispersal parameters.

Full-size & DOI: 10.7717/peerj.4085/fig-5

Reduced S-allele diversity

At equilibrium, the homomorphic SI populations maintained a high number of S alleles.
Because the number of S alleles in natural populations is often lower, we ran simulations
where the maximum number of S alleles was ten (under the k-alleles mutation model).
Homozygosity and autozygosity were largely unaffected in these simulations (Fig. 5).
Similar to the simulations with greater S-diversity, homozygosity was not significantly
different for any of the SI systems. Autozygosity was significantly different between all SI
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systems except for GSI and BSI. The median autozygosity and homozygosity increased
slightly for SSI and BSI compared to the simulations with more S allele diversity.

DISCUSSION

Measuring the amount of inbreeding in the PSI simulations was important because it
allowed us to tease apart inbreeding due to self-fertilization and inbreeding between related
individuals in the homomorphic SI simulations. The statistically significant decrease in
autozygosity in the homomorphic SI systems compared to the PSI system supports the
assumption that homomorphic SI reduces biparental inbreeding. These results also suggest
that biparental inbreeding avoidance is stronger under isolation-by-distance, when seed
and pollen dispersal is limited. Nevertheless, the reduction in inbreeding due to biparental
inbreeding avoidance was negligable, even under strong isolation-by-distance, compared
to selfing avoidance. This suggests that the effect may not be biologically significant.
While these results were from simulations with a population size of 10,000 individuals, we
repeated these simulations with a range of population sizes (2,500, 40,000, and 160,000)
and verified that the pattern we observed was consistent (Furstenau, 2016).

Our results agree with Cartwright (2009), which found that autozygosity at loci that are
unlinked to the S locus is only slightly lower in homomorphic SI compared to PSI. That
study, however, did not include inbreeding depression which would have provide a selective
advantage for plants that avoided inbreeding. We found that when a penalty for inbreeding
was introduced, there was a significant reduction in the proportion of homozygotes at the
unlinked locus but the proportions were not different between the homomorphic ST and
PSI systems. The penalty did not affect autozygosity except in the case of the PSI population
which increased. This may have been a consequence of the type of inbreeding penalty that
we introduced. Seeds that were impacted by the deleterious effects of inbreeding were
viable but they were not fertile so they effectively took up space and reduced the number
of potential mates for neighboring plants. The reduced mating pool near these individuals
may have increased the potential for biparental inbreeding particularly in the PSI system
where there was no genetic mechanism to avoid it. We have also explored modeling
inbreeding depression in different ways including using rare deleterious alleles with more
extreme fitness effects and an early acting effect which resulted in aborted ovules rather
than sterile offspring. The simulations that we ran using both of these conditions were
indistinguishable from the simulations without inbreeding depression. We settled on the
final model because it provided a strong enough penalty that could be detected (on average
about 5% of the population was sterile) and the deleterious mutations were not quickly
purged from the population.

Among the different homomorphic SI systems, the BSI and GSI outcomes were not
significantly different in most cases. The simple linear dominance scheme that we used
to model the relationships between the S alleles in the BSI system is likely responsible
for the similarities between the two systems. Under the GSI model, if we consider three
related plants with S genotypes S15;, S;S3, and S;S;3, the first plant would be able to
accept approximately 50% of the pollen produced by both plants two and three —the
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pollen with the S3 haplotype in both cases. Under the BSI system with linear dominance
(81 > S, > S3), the first plant can accept 100% of the pollen from the second plant but it
would not be compatible with the third plant. In both systems, the first plant receives the
same total amount of pollen from the related plants, the only difference is that the number
of compatible mates is higher under the GSI system. In many cases in Brassicaceae, the
dominance between S alleles is not linear; for example, the S alleles in self-incompatible
field mustard (Brassica campestis) and marrow-stem kale (Brassica oleracea) fall into general
classes that are dominant and recessive to each other while alleles within the same group
are codominant (Bateman, 1955; Thompson, 1957; Thompson & Taylor, 1966; Hatakeyama
et al., 1998). Under these more complicated dominance patterns, the S allele frequency
dynamics may cause very different behavior in the BSI system.

In homomorphic SI systems, the Slocus is under negative frequency-dependent selection
which favors low frequency alleles (Wright, 1939). Self-incompatible plant populations
tend to maintain a high level of S allele polymorphism; however; when § allele diversity is
reduced (e.g., due to a bottleneck or population fragmentation) potential mates become
scarce which can lead to population declines or a breakdown of the SI system (Byers ¢
Meagher, 1992; Leducq et al., 2010; Reinartz ¢ Les, 1994; Young & Pickup, 2010). We found
that, at equilibrium, the SSI simulations maintained the highest number of S alleles,
especially when dispersal was restricted. Because the SSI system was the most strict—
plants were only compatible when they had completely different S alleles—there was a
selective advantage to having a unique set of S alleles that was different than neighboring
individuals. The BSI populations maintained the fewest S alleles and this was likely due
to a weakening of the negative frequency dependent selection for the recessive S alleles
(Billiard, Castric & Vekemans, 2007; Schierup, Vekemans ¢ Christiansen, 1997; Vekemans,
Schierup ¢ Christiansen, 1998). The number of S alleles maintained in the population was
very high compared to what would normally be expected in a natural population. Mable,
Schierup ¢ Charlesworth (2003) estimated that there were 25 S alleles in a population of
Arabidopsis lyrata and according to Lawrence (2000), the largest number of S alleles that
have been identified in a species is 49. To ensure that the low level of biparental inbreeding
avoidance that we observed was not an artifact of the large number of S alleles maintained
in the population, we ran additional simulations with a maximum of 10 S alleles. We found
that the number of S alleles did not have an impact on our results.

Homomorphic SI systems have a negative effect on population size and female fecundity
(Vekemans, Schierup ¢ Christiansen, 1998). Fecundity selection in the simulation was
modeled by limiting the number of pollen grains produced by each plant. After pollen
dispersal, each plant had a finite pollen pool that was further reduced when a high
proportion of the pollen grains are incompatible. If the number of compatible pollen grains
were less than the number of ovules, there was a reduction in seed set. The lowest seed set
was observed in the SSI simulations because it had the strictest rules for compatibility. Seed
set was lowest when dispersal was limited because the pollen pool consisted of a higher
proportion of close neighbors which were more likely to be related and thus incompatible.
This also resulted in higher effective dispersal distances in the SSI populations. The
reduction in seed set translated into a reduction in the census population size which
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then further limited the number of available mates in the next generation. Seed set and
population size were significantly higher for the PSI populations at each dispersal level,
which suggests that reduced fecundity and population size was unique to the homomorphic
SI systems. Smaller populations are not able to maintain high levels of S diversity which
reduces the number of compatible mates and ultimately reduces seed set. As a result,
population size continues to decline and the population is likely to go extinct. This raises
concerns for endangered SI species suffering from habitat fragmentation and population
bottlenecks such as Arnica montana, a grassland perennial in Europe (Luijten et al., 2000);
Aster furcatus (Forked aster) of the midwestern United States (Les, Reinartz ¢ Esselman,
1991); three cliff dwelling species, Sonchus pustulatus, S. fragilis, and S. masguindalii, of the
western Mediterranean Basin (Silva, Brennan ¢» Mejias, 2016); and Hymenoxys acaulis var.
glabra (grassland daisy) of the Great Lakes region (Demauro, 1993).
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