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Information about the distribution and abundance of the habitat-forming sessile organisms

in marine ecosystems is of great importance for conservation and natural resource

managers. Spatial interpolation methodologies can be useful to generate this information

from in situ sampling points; especially in circumstances where remote sensing

methodologies can not be applied due to small scale spatial variability of the natural

communities and low light penetration in the water column. Interpolation methods are

widely used in environmental sciences; however, published studies using these

methodologies in coral reef science are scarce. We compare the accuracy of the two most

commonly used interpolation methods in all disciplines, inverse distance weighting (IDW)

and ordinary kriging (OK), to predict the distribution and abundance of hard corals,

octocorals, macroalgae, sponges and zoanthids and identify hotspots of these habitat-

forming organisms in Madagascar reef, one of many reefs located on the Yucatan

continental shelf that have been poorly studied despite being important centers of

biodiversity and fishery resources. IDW and OK generated similar distribution patterns for

all the taxa; however, crossvalidation tests showed that IDW outperformed OK in the

prediction of their abundances. Despite its greater complexity, OK had higher mean

prediction errors and failed to correctly interpolate the highest abundance values

measured in situ, with the exception of macroalgae, whereas IDW had lower mean

prediction errors and high correlations between predicted and measured values in all

cases. The deeper sandy environments of the leeward and windward regions were

dominated by macroalgae, seconded by octocorals. However, the shallow rocky

environments of the reef crest had the highest richness of habitat-forming groups of

organisms; here, we registered high abundances of octocorals and macroalgae, but

sponges, Millepora alcicornis and zoanthids dominated in some patches, creating high

levels of habitat heterogeneity that could benefit many mobile species. The accurate

spatial interpolations created using IDW allowed us to see the spatial variability of each
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taxa at a biological and spatial resolution that remote sensing would not have been able to

produce. Our study sets the basis for further research projects and conservation

management in Madagascar reef and encourages similar studies in the region and other

parts of the world where remote sensing technologies are not suitable for use.
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13 ABSTRACT

14 Information about the distribution and abundance of the habitat-forming sessile organisms in 

15 marine ecosystems is of great importance for conservation and natural resource managers. 

16 Spatial interpolation methodologies can be useful to generate this information from in situ 

17 sampling points; especially in circumstances where remote sensing methodologies can not be 

18 applied due to small scale spatial variability of the natural communities and low light penetration 

19 in the water column. Interpolation methods are widely used in environmental sciences; however, 

20 published studies using these methodologies in coral reef science are scarce. We compare the 

21 accuracy of the two most commonly used interpolation methods in all disciplines, inverse 

22 distance weighting (IDW) and ordinary kriging (OK), to predict the distribution and abundance 

23 of hard corals, octocorals, macroalgae, sponges and zoanthids and identify hotspots of these 

24 habitat-forming organisms in Madagascar reef, one of many reefs located on the Yucatan 

25 continental shelf that have been poorly studied despite being important centers of biodiversity 

26 and fishery resources. IDW and OK generated similar distribution patterns for all the taxa; 

27 however, crossvalidation tests showed that IDW outperformed OK in the prediction of their 

28 abundances. Despite its greater complexity, OK had higher mean prediction errors and failed to 

29 correctly interpolate the highest abundance values measured in situ, with the exception of 
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30 macroalgae, whereas IDW had lower mean prediction errors and high correlations between 

31 predicted and measured values in all cases. The deeper sandy environments of the leeward and 

32 windward regions were dominated by macroalgae, seconded by octocorals. However, the 

33 shallow rocky environments of the reef crest had the highest richness of habitat-forming groups 

34 of organisms; here, we registered high abundances of octocorals and macroalgae, but sponges, 

35 Millepora alcicornis and zoanthids dominated in some patches, creating high levels of habitat 

36 heterogeneity that could benefit many mobile species. The accurate spatial interpolations created 

37 using IDW allowed us to see the spatial variability of each taxa at a biological and spatial 

38 resolution that remote sensing would not have been able to produce. Our study sets the basis for 

39 further research projects and conservation management in Madagascar reef and encourages 

40 similar studies in the region and other parts of the world where remote sensing technologies are 

41 not suitable for use.

42

43 INTRODUCTION

44 Coral reefs are important centres of biodiversity (Plaisance et al., 2011) that provide multiple 

45 natural resources to the human societies (Mumby et al., 2011). However, multiple disturbances 

46 are impacting these ecosystems and causing changes in their community structure (Norström et 

47 al., 2009). The main groups of sessile organisms inhabiting coral reefs are hard corals 

48 (scleractinian and millepores), macroalgae, octocorals, sponges, and zoanthids (Lewis, 2006; 

49 Diaz & Rützler, 2001; Norström et al., 2009; Wee et al., 2017); these taxa are habitat-forming 

50 organisms (HFO) that shelter many species of fishes, echinoderms, gastropods, mollusks and 

51 crustaceans (Duffy 1992, Goh, Ng & Chou, 1999; Pérez et al., 2005; Santavy et al., 2013; 

52 Cházaro-Olivera & Vázquez-López, 2014), which in turn sustain the fisheries and tourism 

53 industries of the world (Moberg & Folke, 1999). Traditionally, hard corals used to dominate the 

54 seascape of tropical reefs; however, their populations have declined since decades ago due to 

55 multiple disturbances such as overfishing, eutrophication and high temperatures (Nystrom & 

56 Folke, 2001), allowing other HFO to increase their abundances (Nyström, Folke & Moberg, 

57 2000; Wilkinson, 2004; Ruzicka et al, 2013; McMurray, Finelli & Pawlik, 2015). Many coral 

58 reefs are now dominated by macroalgae (McManus & Polsenberg, 2004), with other reefs 

59 presenting high percentages of substrate covered by octocorals, zoanthids and sponges (Norström 
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60 et al., 2009; Cruz et al., 2014; Bell et al., 2013). Although, there is uncertainty about the specific 

61 ecological changes that may take place in the future, it is very likely that these transitions will 

62 continue as global warming intensifies (Bell et al., 2013; Gross, 2013; Ruzicka et al., 2013). 

63 Most ecological studies have lacked a community perspective and have focused on just a couple 

64 of taxonomic groups, mainly scleractinian corals and macroalgae (McManus & Polsenberg, 

65 2004). However, as the community structure of coral reefs transitions, the need to monitor the 

66 distribution and abundance of all HFO has increasingly received more attention (Norström et al., 

67 2009; Bell et al., 2013; Ruzicka et al, 2013; McMurray, Finelli & Pawlik, 2015).

68

69 The assessment of the abundance of all HFO is important; however, its inclusion into geographic 

70 information systems (GIS) is needed for scientific, conservation and resource management 

71 organizations, since this allows the planning of monitoring programs and establishment of 

72 conservation areas (Franklin et al., 2003; Lee et al., 2015). Much research about the spatial 

73 distribution of the sessile benthic communities in reef ecosystems has focused on remote sensing 

74 (Kachelriess et al., 2014). Remote sensing technologies allow the assessment of the distribution 

75 of marine sessile organisms in extensive areas following complex procedures (Mumby et al., 

76 1998). However, its accuracy diminishes as water turbidity and depth increases because of the 

77 light absorption by the water column (Lucas & Goodman, 2014). In addition, its ability to 

78 identify different taxa and accurately estimate its abundance is limited (Kutser & Jupp, 2006) 

79 and the coarse spatial resolution of the images may not match the natural patchy variation of the 

80 sessile communities (Andrefouet et al., 2003; Kachelriess et al., 2014), requiring an in situ 

81 verification of the remote sensing estimations (ground-truthing), which ultimately add extra costs 

82 and effort to the studies (Botha et al., 2013; Lucas & Goodman, 2014). Thus, by now these 

83 procedures are only ideal for macro-scale studies of reefs located in clear and shallow water 

84 environments (e.g. Zapata-Ramirez et al., 2014). However, there are many coral reefs around the 

85 world with relatively small sizes (e.g. ~1 km2), having deep habitats and/or developing under 

86 turbid environments, many of which are of conservation priority (Cohen & Foale, 2013). For 

87 these cases, species distributions and abundance estimated through spatial interpolations based 

88 entirely on data gathered in situ may be more appropriate, since they do not have depth, water 

89 clarity or spatial scale limitations and can be integrated into GIS (McClanahan et al., 2011; 

90 Walker et al., 2012; D’Antonio et al., 2016).
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91 There are many spatial interpolation methodologies used to predict the distribution of variables 

92 of interest in different disciplines (Li & Heap, 2008). Among them, kriging, a geostatistical 

93 methodology, and inverse distance weighting (IDW), a simpler non-geostatistical methodology, 

94 have been used widely to predict many environmental and agricultural variables (reviewed by Li 

95 & Heap, 2008, 2011, 2014), such as soil fertility (Mueller et al., 2004), mud content (Li et al., 

96 2011) and bathymetry (Bello-Pineda & Hernández-Stefanoni, 2007). Published studies in marine 

97 ecology applying these methods to generate distribution and abundance maps of marine 

98 organisms are less common. Kriging has been used for crustaceans (Rufino et al., 2005, Surette, 

99 Marcotte & Wade, 2007), echinoderms (Hernandez-Flores et al., 2015), fish (Rueda & Defeo 

100 2003, De Mazières & Comley, 2008; Ruppert et al., 2009), seagrass (Holmes et al., 2007), hard 

101 corals and encrusting algae (Knudby et al., 2013); whereas studies using IDW have been limited 

102 to mollusks (Berry, Hill & Walker, 2016), coral cover (Walker et al., 2012; D’Antonio et al., 

103 2016), coral diameters (Burman, Aronson & Woesik, 2012) and coral and fish diversity 

104 (McClanahan et al., 2011). However, no study has applied these two methodologies across 

105 different HFO.

106 The Gulf of Mexico has many important reef systems that have been studied extensibly (Chávez, 

107 Tunnell & Withers, 2007; Hickerson et al., 2008; Horta-Puga et al., 2015); Nonetheless, many 

108 other smaller reefs located on the Yucatan continental shelf and developing on turbid waters lack 

109 information about their physical and biological characteristics, despite being important centers of 

110 biodiversity and fishery resources (Zarco-Perello et al. 2013). The present study (i) gathered 

111 baseline information of the abundance of all HFO inhabiting one of these poorly studied reefs, 

112 (ii) described its community structure, (iii) compared the accuracy of IDW and OK to interpolate 

113 their abundances and (iv) synthesize this information creating a map of the HFO richness in the 

114 reef.

115

116 MATERIALS AND METHODS

117

118 Sampling design

119
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120 15 photo-transects 200 m long, separated 200 m from each other and distributed along the whole 

121 extent of Madagascar reef (Zarco-Perello, Moreno-Mendoza & Simoes, 2014) were done from 

122 August to October of 2007 (Fig. 1). Photo-quadrats (0.8m2) of the benthos were taken every 5 m 

123 along the transects, each one representing a sampling point (n = 580). Information about 

124 geographic coordinates, depth, substrate type (i.e. rock, sand and rubble) and reef region (i.e. 

125 windward, crest and leeward) of each sampling point was recorded.

126

127 Community structure analyses

128

129 Abundance (i.e. percent cover) of all the HFO was calculated in each photograph using the point-

130 count method (see Fabricius & McCorry, 2006 and Ruzicka et al., 2013). Biological similarities 

131 between the different regions of the reef were analyzed with non-metric Multi-Dimentional 

132 Scaling (nmMDS) and an Analysis of Similarity (ANOSIM) to test for statistical significance; 

133 data was log transformed and the distance matrix was calculated with the bray-curtis method 

134 using the software R v.3.1.3 (vegan package) (The R Foundation) with the interphase RStudio 

135 v.0.99.473 (Rstudio, Inc.).

136

137 Spatial interpolation analyses

138

139 The spatially referenced percent cover data of each photography was used to interpolate the 

140 abundance of each HFO using IDW and Ordinary Kriging (OK), the most recommended 

141 univariate method of kriging (Li & Heap, 2014). IDW and OK interpolations are based on the 

142 principle of spatial autocorrelation of samples by distance, where the closer the samples are of 

143 each other, the more similar would be their values. Under this principle, the prediction of a value 

144 in an unsampled place is calculated by giving more weight to samples that are closer to the 

145 prediction point. However, IDW uses arbitrary exponential weighting of the influence that each 

146 sample has according to distance, whereas OK involves a process of variography to model the 

147 spatial autocorrelation of the data to assign weights, this can result in better interpolations under 

148 an appropriate sampling design; nonetheless it is time consuming and it is still subjective since it 

149 involves many user decisions (Li & Heap, 2014). Finally, both interpolators use a determined 

150 quantity of observations for the predictions; this observations must be located within a ‘searching 
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151 window’, an area around the point of prediction, which geometry is defined by the user based on 

152 the empirical knowledge of the phenomena under study (Li & Heap, 2014).

153 Before the predictions, our biological datasets were randomly separated in half: training and test 

154 datasets. OK and IDW models were created using the training dataset. For OK, the models (e.g. 

155 spherical and exponential) that best fitted the data of the variograms of each HFO were selected; 

156 for IDW different power values (i.e. 1, 2, 3) were used as weighting factors for each HFO. The 

157 parameters of searching window were the same for both methodologies. The best models of OK 

158 and IDW for each HFO were selected following cross-validations based on the test dataset 

159 (Goovaerts, 1997; Supplementary Information). The performance of both methodologies was 

160 compared based on the mean error of their predictions, the regression coefficient (r2) of predicted 

161 against measured values, graphical comparisons (box-plots) of the distribution of predicted and 

162 measured data and visual examination of the predicted maps (Hernandez-Flores et al., 2015). 

163 The interpolation map of hard corals was done only with data of Millepora alcicornis (millepora) 

164 since the inclusion in the model of scleractinian corals produced overestimations on the 

165 predictions given the small colony sizes found in situ (< 25 cm2).

166 The descriptions of the spatial patterns of all HFO were based on the interpolated abundance 

167 maps of the best performing methodology (OK vs IDW). These interpolated maps were 

168 transformed to rasters (5 m resolution) and reclassified to presence/absence with the same 

169 resolution. These rasters were used to create a map of the HFO richness on the reef by summing 

170 all the HFO present in each cell (0 to 5 scale). The spatial interpolation analyses were done using 

171 the software ArcMap v.10.3 with the Geostatistical and Spatial Analyst extensions (ESRI corp.).

172
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173

174 Figure 1. Localization of Madagascar reef in the Gulf of Mexico (a) and distribution of sampling points 

175 across the bathymetric gradient along the reef (b, c).

176

177 RESULTS

178

179 Community Structure

180

181 The sessile community of Madagascar reef differentiated spatially between the reef crest and the 

182 windward and leeward regions. The nmMDS showed two statistically significant different 

183 clusters; one belonging to sampling units from the reef crest and another one belonging to the 

184 leeward and windward regions (ANOSIM, p= 0.001) (Fig. 2). The reef crest presented all HFO, 

185 whereas the windward and leeward regions were greatly dominated by macroalgae, with 

186 octocorals in a lower magnitude (Fig. 3).

187

188 The reef crest, being the shallower region of the reef  (depth: 6.8 ± 1.4 m) and presenting rocky 

189 substrate, had the higher average abundances of hard corals (3.7 %), zoanthids (7.7 %) and 

190 sponges (7.0 %), with octocorals (44.0 %) and macroalgae (37.4 %) dominating the reefscape 

PeerJ reviewing PDF | (2016:03:9390:0:2:NEW 7 Jun 2017)

Manuscript to be reviewed

Lindsay
Cross-Out

Lindsay
Inserted Text
which is

Lindsay
Inserted Text
and rockier 

Lindsay
Cross-Out

Lindsay
Cross-Out

Lindsay
Inserted Text
,

Lindsay
Sticky Note
This figure is important and helpful, but it should not be in results. Move it to the methods section.



191 (Fig. 4); as depth increased towards the windward (depth: 16.2 ± 2.6 m) and leeward regions 

192 (depth: 14.8 ± 0.16 m) so did the sandy substrate and the abundance of macroalgae, whereas the 

193 abundance of all the other sessile groups decreased (Fig. 4); macroalgae covered 80% of the 

194 substrate in each of them, followed by octocorals covering 9% at the windward and 14 % at the 

195 leeward region (Fig. 4). Hard corals, sponges and zoanthids were scarce in these environments 

196 but had slightly higher abundances at the windward (2.6%, 1.0% and 0.7 % respectively) than at 

197 the leeward region (1.4 %, 0.8% and 0% respectively) (Fig. 4). Scleractinian corals had low 

198 abundances in general but were more abundant at the windward and leeward regions (0.7%) than 

199 at the reef crest (0.1%).

200

201

202 Figure 2. Non-metric Multidimensional Scaling biplot showing the similarity on the biological 

203 composition between sampling units taken at the windward, reef crest and leeward zones of 

204 Madagascar reef, Gulf of Mexico.

205
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206  

207 Figure 3. Typical reefscapes of Madagascar reef, Gulf of Mexico: The shallow (depth: 6.8 ± 1.4 m) rocky 

208 reef crest (A), and the deeper sandy leeward (14.8 ± 0.16 m) (B) and windward (16.2 ± 2.6 m) (C) 

209 regions.

210
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211

212

213

214 Figure 4. Relative abundance of the main groups of sessile organisms at different depth intervals and 

215 zones of Madagascar reef, Gulf of Mexico. Box-plots represent four quartiles and median, with outliers as 

216 points.

217

218 Spatial interpolations

219

220 The OK and IDW produced similar interpolation maps, capturing the same patterns of 

221 distribution and abundance of each HFO with no anomalies detected on the maps generated by 

222 each methodology. However, IDW outperformed OK in the accuracy of the abundance values 

223 interpolated. IDW presented lower mean errors than OK in the crossvalidation of all HFO, with 

224 the exception of macroalgae, and had higher r2 values on all the interpolations (Table 1); OK had 

225 low values of r2 for millepora, zoanthids and sponges (Table 1). Similarly, the distributions of the 

226 interpolated data of IDW had a higher resemblance to the measured values than those generated 

227 with OK for each HFO (Fig. 5). IDW was a good predictor of the highest values of abundance 

228 measured in situ for all HFO, whereas the predictions of OK fell short on octocorals, sponges, 

229 zoanthids and millepora (Fig. 5).

230

231

232
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233 Table 1. Mean error (ME) of the predicted interpolations and regression coefficients (r2) between 

234 predicted and measured values by Inverse Distance Weighting (IDW) and Ordinary Kriging (OK) 

235 of the main habitat-forming organisms (HFO) of Madagascar reef, Gulf of Mexico.

HFO IDW OK

ME r2 ME r2

Millepora 0.00001 0.938 0.00003 0.549

Zoanthids 0.00005 0.989 0.0001 0.437

Sponges 0.0000004 0.957 0.00006 0.732

Octocorals 0.0001 0.971 0.0004 0.852

Macroalgae 0.0006 0.957 0.0003 0.824

236  

237

238

239 Figure 5. Comparison of the abundance values measured in situ of macroalgae, octocorals, sponges, 

240 zoanthids and Millepora alcicornis of Madagascar reef, Gulf of Mexico, and those interpolated by Inverse 

241 Distance Weighting (IDW) and Ordinary Kriging during crossvalidation. Box-plots represent four quartiles 

242 and median, with outliers as points.

243

244 The interpolation maps presented detailed information of the distribution and abundance of each 

245 HFO. The spatial distribution of all HFO was patchy, with specific areas of the reef presenting 

246 higher abundances. Macroalgae were distributed in all regions of the reef but were more 

247 abundant in deeper areas at the windward and leeward regions, where they covered up to 100% 

248 of the substrate (Fig. 6). Octocorals covered extensive areas of the reefscape as well, but patches 

249 at the central and western reef crest had higher abundances, where they covered up to 85% of the 

250 substrate (Fig. 6). Sponges were mainly distributed all along the reef crest, with patches at the 

251 western side presenting higher abundances (25%), but there were also isolated colonies in deeper 
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252 zones (Fig. 6). Zoanthids presence was limited to the reef crest, where patches at the west and 

253 east sides covered up to 45% of the substrate; at the center-eastern side of the reef their 

254 distribution was interrupted, in this gap macroalgae and octocorals had high abundances (Fig. 6). 

255 Millepora distribution was the most restricted and covered the smallest total substrate area of the 

256 reef among all the HFO; colonies were distributed in three disconnected areas of the reef crest, at 

257 the western, center and eastern regions, each presenting patches covering up to 30% of the 

258 substrate (Fig. 6); the space gaps between areas of millepora had high abundances of the rest of 

259 the HFO (Fig. 6).
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261 Figure 6. Maps of fistribution and abundance (percent cover) generated by kriging (A) and inverse 

262 distance weighting (B) of the main groups of hábitat-forming organisms of Madagascar reef, Gulf of 

263 Mexico.

264

265 HFO richness had a positive relationship with depth (Fig. 7). Deep sandy areas at the windward 

266 and leeward regions had values of 1, having only macroalgae; slightly shallower areas, where 

267 octocorals were more common had values of 2. Only the reef crest had extensive areas with 

268 values of 3 and 4, where either M. alcicornis, sponges and zoanthids were present in addition to 

269 macroalgae and octocorals. Three areas with the highest richness levels were localized at the 

270 shallowest regions of the reef crest, one at the east and two on the west side (Fig. 7).

271

272

273 Figure 7. Richness of habitat-forming organisms (HFO) in Madagascar reef, Gulf of Mexico. The 

274 calculation considers the presence of macroalgae, octocorals, sponges, zoanthids and Millepora alcicornis.

275

276 DISCUSSION

277

278 Community structure 

279

280 Madagascar reef sessile community distinguishes from other reefs of the Gulf of Mexico. The 

281 windward and leeward regions of the reefs at the Campeche Bank Reef System, Veracruz Reef 

282 System and Tuxpan Reef System have been described as having important abundances of 

283 scleractinian corals (Chávez, Tunnell & Withers, 2007; Larson et al., 2014; Horta-Puga et al., 

284 2015); however, we found very small colonies and thus very low abundance of scleractinian 

285 corals, only the hard coral M. alcicornis was conspicuous at the reef crest, while the leeward and 
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286 windward regions were dominated by macroalgae. Our results also contrasted with reef systems 

287 further North, at the Flower Garden Banks, where surveys have reported high abundances of 

288 scleractinian corals (>50%) and low substrate cover (<1%) of other sessile organisms, excepting 

289 Stetson Bank that had high abundances of M. alcicornis (30%) and sponges (30%) (Hickerson et 

290 al., 2008). Madagascar reef crest was dominated by octocorals and macroalgae, but sponges and 

291 zoanthids were very conspicuous in different patches of the reef. Studies in the Caribbean have 

292 reported abundances of sponges as high as 24% in shallow environments (Diaz & Rützler, 2001), 

293 we found a lower average abundance at the reef crest (7%); however, substrate cover reached 

294 25% in some areas. Millepores usually cover < 10% of substrate over entire reefs but can be 

295 abundant in localized regions (Lewis, 2006), M. alcicornis covered ~3% on average in 

296 Madagascar reef but in its more important areas of distribution its abundance reached 30%. 

297 Zoanthids can have high abundances in shallow environments; reefs in Brazil had ~ 6% substrate 

298 covered on average (Silva et al., 2015) with 25% in localized areas (Francini-Filho et al., 2013), 

299 reefs at St. Croix had 36% (Suchanek & Green, 1981) and intertidal flats of the Southern 

300 Caribbean can have ~50% (Belford & Phillip, 2012; Rabelo et al., 2015); our data fell within 

301 these numbers, zoanthids covered 7.7% on average but reached 45% in its core distribution 

302 areas. Octocorals are a common element in reefs of the Gulf of Mexico, Caribbean (Jordan-

303 Dahlgren, 2002) and other coral reefs of the world (Fabricius & McCorry, 2006). however, 

304 abundances can vary widely, studies in the Gulf of Mexico and Caribbean have reported low 

305 abundances (2%) in Cuba (Chiappone et al., 2001), moderate abundances (~ 16%) at the Florida 

306 Keys (Ruzicka et al., 2013) and very high abundances (54%) at the Enmedio reef in Veracruz, 

307 Mexico (Nelson, Stinnett & Tunnell, 1988). Worldwide, some reefs at the Great Barrier Reef in 

308 Australia have presented an average of 20% cover (Fabricius, 1997), while unusual abundances 

309 have been reported in New Guinea (40%) (Tursch & Tursch, 1982) and the Red Sea (50%) 

310 (Benayahu & Loya, 1981). Our results are similar to the highest values reported regionally and 

311 globally: 44% on average with 85% substrate covered on extensive areas of the reef crest. On the 

312 other hand, the high cover of macroalgae on all environments of the reef is not extraordinary, 

313 since this group has become dominant in many coral reef regions of the world (Arias-Gonzalez 

314 et al., 2017).

315

316 Spatial interpolations
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317

318 IDW seems a very promising methodology for the interpolation of the abundance of the main 

319 HFO inhabiting coral reefs. Kriging and IDW are the most widely used interpolation methods in 

320 all disciplines, and kriging is generally considered a better interpolator (Li et al., 2011); however, 

321 our results showed that IDW can generate more reliable predictions for all HFO. OK 

322 interpolations generated successful maps of macroalgae and octocorals, but the interpolations for 

323 M. alcicornis, sponges and zoanthids fell short of the highest values measured in situ as shown in 

324 the crossvalidaton. Despite this, the OK interpolations represented the distributions correctly and 

325 could allow the creation of presence/absence data, which is a common expression of abundance 

326 in ecology (Royle & Nichols, 2003). However, IDW got lower mean errors and higher r2 on the 

327 crossvalidations because its predictions did not underestimate the values gathered in situ. Other 

328 studies have found similar results, where kriging is not able to predict the highest values of the 

329 measured data (Hernandez-Flores et al., 2015) and IDW outperforms kriging interpolators; Gong 

330 et al. (2014) found that IDW was the best interpolator for arsenic concentrations in comparison 

331 with kriging, Spokas et al. (2003) concluded that IDW performed best for methane flux, and 

332 Wartenberg et al. (1991) concluded that kriging was not superior to non-geostatistical methods at 

333 interpolating groundwater contamination despite its greater complexity. Many ecological studies 

334 in the past have assessed the abundance of different HFO, but have not presented the information 

335 in a clear spatially explicit fashion (e.g. Newman et al., 2006; Ruzicka et al., 2013). This is an 

336 important aspect in modern ecology that should be a standard procedure in studies regarding 

337 community structure of marine ecosystems; we show that this can be done accurately using a 

338 simple interpolation methodology.

339

340 The interpolations allowed us to see the precise spatial patterns of distribution and abundance of 

341 each HFO. Non-spatial analyses summarize ecological data and give general trends of abundance 

342 through statistical graphics (e.g. boxplots); however, without geographic coordinates this does 

343 not describe the spatial patterns precisely, hiding macro-ecological processes. Our interpolations 

344 showed how the space of the reef was distributed among all the HFO in a mosaic fashion. Each 

345 HFO had particular areas of high abundances at the reef crest, suggesting that despite the general 

346 dominance of octocorals and macroalgae there is an ongoing strong competition for space. All 

347 the HFO are strong competitors (Wulff, 2006; Lewis, 2006; Rabelo, Soares & Matthews-Cascon, 
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348 2013; Sebens & Miles, 1988; Fong & Paul, 2011; Cruz et al., 2016) and can influence the 

349 distribution and abundance of each other by means of physical and chemical mechanisms that 

350 alter individual colonies and demographic processes of whole populations (Chadwik & Morrow, 

351 2011).

352

353 The higher HFO richness and competition among the sessile groups at the reef crest seems to be 

354 related to depth and substrate type. The rocky substrate of the reef crest allows the recruitment of 

355 individuals from all the HFO (Kinzie, 1973) and the expansión of colonies through asexual 

356 reproduction (Jackson, 1977). In contrast to the unstable sandy substrate of the windward and 

357 leeward regions that benefit macroalgae due to their high propagation capacities, faster growth 

358 rates and substrate attachment through rhizoids (Zakaria et al., 2006; Fong & Paul, 2011). 

359 Additionally, the reef crest is associated with higher light irradiance and water movement that 

360 can benefit all HFO, since all groups have photosynthetic species and all invertebrate HFO are 

361 suspension feeders (Rützler, 1990; Lewis, 2006; Fabricius & De’ath, 2008; Fong & Paul 2011; 

362 Rabelo, Rocha & Colares, 2014). However, octocorals are well known colonizers of turbulent 

363 environments due to their flexibility (Sánchez, Diaz & Zea, 1997), and their branching 

364 morphologies can give them advantage to overshadow other HFO and feed on plankton under 

365 high water flows (Labarbera, 1984; Sebens, 1984; McFadden, 1986; Sebens & Johnson, 1991; 

366 Fabricius, Genin & Benayahu, 1995), which could explain their higher abundances at the reef 

367 crest. Madagascar reef receives waters from an upwelling in the eastern corner of the Yucatan 

368 Peninsula (Merino, 1997; Zavala-Hidalgo, 2006) which supplies the nutrients to support high 

369 abundances of plankton in the region (Ghinaglia, Herrera-Silveira & Comin, 2004). High levels 

370 of nutrients can affect coral health (Vega et al., 2014) and species diversity (Duprey, Yasuhara & 

371 Baker 2016), while benefiting other HFO (De'Ath & Fabricius, 2010), and leading to sessile 

372 communities with low scleractinian coral cover (Arias-Gonzalez et al., 2017), such as 

373 Madagascar reef.

374

375 The places with highest levels of HFO richness provide habitat heterogeneity that could benefit 

376 many mobile species. Since each of the HFO provides unique habitats where different species 

377 find refuge and food, these regions can be important centers of biodiversity in the ecosystem 

378 (Santavy et al., 2013). For instance, the lobster Panulirus argus (Marx & Herrnkind, 1985; 
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379 Herrnkind et al., 1997) and the grouper Epinephelus striatus (Dahlgren & Eggleston, 2000) take 

380 refuge on sponges, octocorals and macroalgae during their juvenile stage and many species of 

381 invertebrates (e.g. amphipods, copepods, mollusks, echinoderms and polychaetes) and fish 

382 inhabit the micho-habitats of macroalgae (Dulvy et al., 2002), octocorals (Goh, Ng & Chou, 

383 1999), sponges (Duffy, 1992; Wulff, 2006), zoanthids (Pérez, Vila-Nova & Santos, 2005) and 

384 millepores (Lewis, 2006). Furthermore, HFO serve as food resources; Hawksbill turtles feed on 

385 sponges and macroalgae (Bjorndal, 1990) and several species of fish feed on zoanthids (Francini-

386 filho & Moura 2010), macroalgae (Choat, Clements & Robbins, 2002) and sponges (Pawlik et 

387 al., 1995), while species of molluscs, echinoderms and crustaceans consume sponges as well 

388 (Wulff, 2006).

389

390 CONCLUSION

391

392 The generation of spatial information about the distribution and abundance of biological 

393 organisms is needed to establish monitoring programs, detect changes in the community over 

394 time and allow conservation planning for the natural ecosystems. The comparison between IDW 

395 and OK, a popular but more complex and time consuming methodology, showed that in this case 

396 simple was best. The only published past studies using IDW in coral reef sessile organisms found 

397 this method as a good interpolator for coral cover (Walker et al., 2012; D’Antonio et al., 2016); 

398 our results agree with them and we extend its applicability to other important sessile organisms 

399 that are emerging under climate change (Norström et al., 2009). We showed that the benthic 

400 community of Madagascar reef had important abundances of all the main HFO at the reef crest 

401 region, with specific areas having high HFO richness. The accurate spatial interpolations created 

402 using IDW allowed us to see the spatial variability of each HFO at a biological and spatial 

403 resolution that remote sensing would not have been able to produce. This study sets the basis for 

404 further biological research projects and conservation management in Madagascar reef and 

405 encourages similar studies in the region and other parts of the world where remote sensing 

406 technologies are not suitable for use. 

407
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