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Background. Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross

the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory

waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways,

often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so

transmission into domestic birds likely occurs through other means. In many cases, human activities are

thought to spread the virus into domestic populations. Consequently, biosecurity measures have been

implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United

States, which occurred among poultry operations with strict biosecurity controls, suggests that

alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus

from areas of high waterfowl and shorebird densities.

Methods. Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa,

one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals

carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling

period, we also present results from surveillance of waterfowl by the Iowa Department of Natural

Resources and Unites Stated Department of Agriculture.

Results. Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals,

internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR.

Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species

were captured at both wetland and poultry sites, the overall community structure of wild species differed

significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive

for influenza A via qPCR.

Discussion. These results suggest that even though influenza A viruses were present on the Iowa

landscape at the time of our sampling, small, wild birds and rodents were unlikely to be frequent bridge

hosts.
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30 Abstract

31 Background. Avian influenza virus (AIV) infections occur naturally in wild bird 

32 populations and can cross the wildlife-domestic animal interface, often with devastating 

33 impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV 

34 reservoirs and can carry the virus along migratory pathways, often without exhibiting 

35 clinical signs. However, these species rarely inhabit poultry farms, so transmission into 

36 domestic birds likely occurs through other means. In many cases, human activities are 

37 thought to spread the virus into domestic populations. Consequently, biosecurity measures 

38 have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza 

39 outbreak in the United States, which occurred among poultry operations with strict 

40 biosecurity controls, suggests that alternative routes of virus infiltration may exist, 

41 including bridge hosts: wild animals that transfer virus from areas of high waterfowl and 

42 shorebird densities. 

43 Methods. Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and 

44 mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to 

45 determine whether these animals carry AIV. To assess whether influenza A virus was 

46 present in other species in Iowa during our sampling period, we also present results from 

47 surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated 

48 Department of Agriculture. 

49 Results. Capturing animals at wetlands and near poultry facilities, we swabbed 449 

50 individuals, internally and externally, for the presence of influenza A virus and no samples 

51 tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies 

52 against influenza A. Although several species were captured at both wetland and poultry 
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53 sites, the overall community structure of wild species differed significantly between these 

54 types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A 

55 via qPCR.

56 Discussion. These results suggest that even though influenza A viruses were present on 

57 the Iowa landscape at the time of our sampling, small, wild birds and rodents were unlikely 

58 to be frequent bridge hosts.

59

60 Introduction 

61 Avian influenza (AI) is caused by Type A influenza viruses that exist naturally in 

62 wild bird populations and can cross the wildlife-domestic animal interface, sometimes 

63 causing widespread epizootics in domestic poultry [1]. Such events can prove extremely 

64 costly to the commercial poultry industry and enhance the potential for zoonotic spillover 

65 into humans [2,3]. Clinical manifestations of avian influenza virus (AIV) infection can vary 

66 and the viruses are classified as highly or low-pathogenic strains (HPAIV and LPAIV, 

67 respectively) based on virulence in poultry, with H5 and H7 subtypes being the most 

68 common HPAIVs [4–12]. In the spring of 2015, a HPAIV strain of H5N2 subtype caused the 

69 most detrimental and costly outbreak in the United States [13–15]. This epizootic event 

70 had a devastating impact on the regional commercial poultry industry, particularly in Iowa 

71 where over 30 million chickens were destroyed with an estimated economic impact of at 

72 least $1.2 billion [16–18]. In some cases, initial introduction of AIV from wild bird 

73 populations into domestic flocks has been attributed to migratory waterfowl, but in others 

74 it has been introduced via human activities or other unknown factors [8]. Given the 
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75 destructive impacts of HPAI outbreaks it is important to better understand modes of AIV 

76 transmission. 

77 Migratory waterfowl and shorebirds are natural reservoirs for AIV [19–25; but see 

78 also 26]. These birds often exhibit few clinical signs of infection, but they can carry and 

79 shed the virus along migratory pathways [20,27–31], and thus are generally considered to 

80 be vital reservoirs for AIV [32]. AIV can infect other species, including terrestrial bird 

81 populations (i.e., songbirds, woodpeckers, etc.) and domestic poultry [26,27,33]. Such 

82 infections typically do not result in severe disease outbreaks, but HPAI outbreaks can 

83 emerge in domestic flocks if LPAIV strains mutate into HPAIV strains, if multiple LPAIV 

84 strains reassort and become HPAIV strains [4,7,8,10,34], or if domestic poultry are infected 

85 with HPAIV from elsewhere [35]. It remains unclear how AIV is transmitted into domestic 

86 bird populations, especially considering that most poultry farms now enforce strict 

87 biosecurity protocols to prevent outbreaks facilitated by human activities (although in 

88 practice, compliance may be inconsistent), waterfowl rarely inhabit commercial poultry 

89 farms in areas where some outbreaks have occurred, and disease outbreaks spread 

90 regionally among domestic populations even after migratory bird movements have ended 

91 [8]. Further complicating the issue of AI outbreaks, prior studies have shown that annual 

92 prevalence of AIV can be cyclical in wild waterfowl, suggesting that re-emergence of the 

93 disease is a threat even after isolated outbreaks have subsided [36,37]. 

94 Given the severity of the 2015 AIV outbreak, along with Iowa’s close proximity to 

95 multiple migratory pathways (Iowa is administratively classified under the Central flyway, 

96 but birds from the Mississippi and Atlantic flyways pass through some parts of the state), 

97 and intense egg production in the state, this region is at high risk for AIV and is thus an 
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98 important area in which to study potential means of AIV transmission. With uncertainty 

99 about the mechanisms of AIV transfer into domestic poultry and the high possibility of AIV 

100 re-emergence, we sought to examine alternate conduits of AIV transmission from wildlife 

101 reservoirs into domestic poultry farms. Specifically, we performed surveillance on small, 

102 wild birds (i.e., non-waterfowl) and mammals as potential bridge hosts for AIV transfer 

103 from wetlands to commercial poultry operations [38–44].

104 We focused on wild bird (non-waterfowl) and small mammal species for the 

105 following reasons. First, modern poultry production often occurs in confinements without 

106 large openings, effectively barring waterfowl from entering. Second, as part of the 

107 biosecurity measures concerning introduction of AIV from waterfowl, many of these 

108 facilities are located away from large water bodies such as lakes or ponds commonly used 

109 by migratory waterfowl. Third, the most abundant wildlife residing in poultry farms and 

110 feed mills are small songbirds and rodents [45,46], some of which have been shown 

111 capable of carrying AIV experimentally or through surveillance programs [25,26,38–40,42]. 

112 Fourth, these small wild birds and mammals are capable of travel between poultry barns 

113 and wetlands where waterfowl stop during migration, serving as potential bridge hosts 

114 that may augment the risk of poultry epizootics [43,44,47,48]. Given the severity of the 

115 2015 AI epizootic in North America and the potential for these small animals to act as 

116 conduits between AIV-contaminated wetlands and commercial poultry facilities [43,44], it 

117 is important to understand the roles, if any, that non-waterfowl wild birds and mammals 

118 play in spreading the virus. 

119 Although some prior studies have reported AIV in atypical reservoir or vector 

120 species, such as songbirds and small mammals [49,50], such work often omits critical 
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121 considerations about AIV biology and salient sampling locations [51]. First, prior studies of 

122 AIV in small terrestrial birds have focused almost exclusively on successful infection of 

123 these species (i.e., detecting AIV inside an animal) [49]. This type of study, while 

124 informative, neglects an important aspect of AIV biology: these viruses can persist outside 

125 of the body [52] and could be transmitted mechanically (i.e., on the outside of an animal) 

126 [45,53]. As such, the ability of small, wild birds to transfer AIV from conventional wildlife 

127 reservoirs (e.g., waterfowl) into commercial poultry facilities may be underestimated. 

128 Second, persistence of AIV outside of an avian host leaves open the possibility that other 

129 animals, such as rodents, could also transport AIV, either internally or externally [40,41]. 

130 Third, prior studies of AIV in songbirds or mammals have often included habitat types with 

131 little or no potential for interaction among species of concern (i.e., waterfowl), thus missing 

132 or diluting the most important sampling locations [54–57; but see also 42,43,46,54–56]. In 

133 contrast, ideal sampling should focus on habitats where potential bridge hosts, including 

134 small mammals and birds, are most likely to interact with known AIV reservoirs like 

135 migratory waterfowl and shorebirds (e.g., wetlands and marshes) and to interact with 

136 poultry or their feed (e.g., commercial poultry operations, or feed-mills that serve those 

137 operations) [43,44,58–60]. Hence, the actual role of small birds and mammals in spreading 

138 AIV has not been definitively evaluated, particularly in the United States, even though these 

139 species have the potential to carry AIV biologically and mechanically. 

140 While surveillance among these types of species will help determine their potential 

141 to carry AIV, successful bridge species must also have the potential to visit both wetland 

142 sites and poultry facilities [43,44]. As such, assessing the risk of small birds and mammals 

143 as potential bridge species requires some consideration of community structure (i.e., the 
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144 types and abundances of species present) at different types of sites [43,44]. For instance, if 

145 a given species is found to carry AIV, but inhabits wetlands exclusively and never visits 

146 poultry facilities, that species is unlikely to successfully facilitate AIV transmission from 

147 wild to domestic animals.

148 Our objective in this study, conducted in the wake of the 2015 AIV outbreak in the 

149 United States, was to evaluate the potential of small wild birds and rodents to serve as 

150 bridge species for AIV transmission. To do so, we assessed the prevalence of AIV in a 

151 variety of wild birds and rodents (internally or externally) using qPCR and serology, and 

152 compared species communities captured at sites near wetlands vs. commercial poultry 

153 facilities across Iowa, USA. To determine whether influenza A viruses were present on the 

154 Iowa landscape more generally during our sampling, we compared our results with those 

155 from sampling efforts in waterfowl performed under a separate effort by the Iowa 

156 Department of Natural Resources and U.S. Department of Agriculture Wildlife Services. 

157

158 Materials and Methods

159 Field Sampling, Small Birds and Mammals

160  The Iowa State University Animal Care and Use Committee approved all procedures 

161 for the handling of specimens and samples (Protocol 9-15-8094-W). Field collections and 

162 captures were approved under the following state and federal permits: Iowa Department of 

163 Natural Resources Scientific Collecting Permit (SC1133 to JSA), United States Geological 

164 Survey Bird Banding Lab Master Banding Permit (23952 to JSA). We obtained samples 

165 from wild birds and small mammals at seven sites distributed across Iowa, USA (Fig. 1; 
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166 Table 1). Samples were collected during and after the fall migration of 2015 (October 23 – 

167 December 14), and during spring migration of 2016 (March 22 – May 10), when the 

168 movements of waterfowl would be most likely to bring AIV to the region and when ambient 

169 temperatures are low enough to allow persistence of AIV in the environment [61,62]. 

170 Sampling sites (Fig. 1) were chosen based on their proximity to areas that experienced 

171 HPAI outbreaks in 2015 or where prior monitoring (2006-2011) [63] detected AIV in 

172 waterfowl (John Baroch, USDA-APHIS-WS, personal communication with KJY). Four of the 

173 sites were wetlands (Big Wall Lake, Little Wall Lake, Malcom, Marathon Poland Park), three 

174 of which are located in counties where HPAI outbreaks occurred in 2015, and the 

175 remaining three sites were commercial properties (Ellsworth, Rembrandt, Riverside), two 

176 of which were in counties that experienced HPAI occurrence during 2015. Precise choices 

177 of sampling sites were constrained by cooperation with local landowners and poultry 

178 producers concerned with the additional surveillance our sampling would represent on 

179 their property. Waterfowl were observed at all wetland sites during the fall and spring 

180 sampling periods (by DDH and CL). The time spent sampling each site averaged 4.9 days in 

181 the fall and 3.1 days in the spring, with time spent sampling per day ranging from 8 to 12 

182 hours.

183 For capture, we targeted small bird and mammal species that spend significant time 

184 on the ground, where they were most likely to interact with waterfowl or wading birds. 

185 Small wild birds were captured using mist nets deployed near bird feeders that had been 

186 placed at sites between two and five days prior to sampling. At wetland sites, nets were 

187 placed within 100m of water; at poultry farms, nets were placed as close to buildings as 

188 cooperators would permit, with a range of 10-200m. In addition, some samples of invasive 
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189 avian species (house sparrows [Passer domesticus] and European starlings [Sturnus 

190 vulgaris], N=9) were obtained by lethal collection via air rifle. Small mammals were 

191 trapped using folding, metal live-traps (H.B. Sherman Traps, Inc., Product #: LFA, 

192 Tallahassee, FL, USA). We deployed 200 traps at each site. Mammal traps were placed on 

193 the ground within 100m of water at wetland sites and between 10-200m of buildings at 

194 poultry facilities. Traps were baited with peanut butter, which was wrapped in waxed 

195 paper and frozen prior to deployment. Traps were placed at dusk. On nights with projected 

196 overnight temperatures below 40°F, traps were lined with cotton balls for any trapped 

197 animals to use for insulation. 

198 At both wetland and commercial poultry sites, we began netting birds and checking 

199 mammal traps between 6-8am and continued through the daylight hours, weather 

200 permitting. Nets and traps were closed if rain or snow became heavy, but left open in light 

201 drizzle or flurries. In such cases, nets were checked and any captured animals were 

202 removed every 5-10 minutes.

203
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204

205 Fig. 1: Sampling sites were chosen in counties where the 2015 H5N2 outbreak 

206 occurred (red, orange) or along a diagonal band where prior surveillance had found 

207 AIV in waterfowl (yellow, orange). Sampling localities visited for this study (during Fall 

208 2015 and Spring 2016) are marked with black circles and names are abbreviated as 

209 follows: Big Wall Lake (BW), Ellsworth (EL), Little Wall Lake (LW), Malcom (MA), Marathon 

210 Poland Park (MP), Rembrandt (RM), Riverside (RV). 

211 Three samples were obtained from each animal captured. First, individuals were 

212 swabbed externally (e.g., feet, feathers/fur) with single-use, sterile polyester fiber-tipped 

213 synthetic swabs, which were placed into individually labeled tubes containing 2 mL of 

214 brain heart infusion (BHI) medium, which has been demonstrated to be optimal for AIV 
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215 recovery [64]. Next, internal samples were taken with oropharyngeal and cloacal/anal 

216 swabs, and the two internal swabs from each individual were pooled into a single labeled 

217 tube containing 2 mL of BHI. Both oropharyngeal and cloacal/anal swabs were taken 

218 because it has been demonstrated that different species exhibit different levels of AIV in 

219 these swabs, suggesting variation among species, or virus strains, in potential transfer [65]. 

220 Lastly, blood samples were taken using heparinized microhematocrit tubes following 

221 venipuncture of the brachial vein (wing) using 26 or 27 gauge needles for birds, or the 

222 saphenous vein (leg) using a 23 gauge needle for mammals (after removing leg hair using 

223 electric clippers). Blood samples were immediately transferred to individually labeled 0.7 

224 mL microcentrifuge tubes, free of any additional anticoagulant. All BHI and blood samples 

225 were chilled during transport, and were usually back in the laboratory within 8 hours of 

226 collection. All individuals were released at their point of capture after processing was 

227 completed; and birds were banded prior to their release. Recaptured individuals identified 

228 by bands (birds) or by the presence of a shaved patch of fur (mammals), were immediately 

229 released without resampling. Upon arrival at the laboratory, all blood samples were 

230 immediately spun in mini-centrifuges for 10 minutes to separate red blood cells from 

231 plasma, then plasma was transferred to new individually labeled microcentrifuge tubes 

232 using a 100 μL Hamilton syringe. All blood, plasma, and BHI samples were stored at -20˚C 

233 until they were transferred in an Iowa State University vehicle, still frozen, to the 

234 Veterinary Diagnostic Laboratory (VDL) at Iowa State University for further processing. 

235 Transfer to the VDL occurred one week after the end of each sampling season, each of 

236 which spanned eight weeks, so individual samples were frozen for 1-9 weeks before 

237 transfer.
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238

239 Field Sampling, Waterfowl

240 From August 2015 through January 2016, a separate team of researchers from the Iowa 

241 Department of Natural Resources (DNR) and the United States Department of Agriculture 

242 (USDA) Wildlife Services (WS) collected 527 samples of waterfowl, both from hunter-

243 collected carcasses and by live-trapping. Data presented here are done so in accordance 

244 with USDA data transfer policy. Oropharyngeal and cloacal swabs were collected and 

245 pooled by individual (making one sample per individual) to assess the presence of virus via 

246 qPCR (see below), but blood samples were not drawn to assess serology. Samples were 

247 collected from several Iowa counties: Adair, Appanoose, Cerro Gordo, Hancock, Harrison, 

248 Jackson, Johnson, Louisa, Lucas, Marshall, Union, Wayne, and Winneshiek (Fig. 2). As with 

249 samples for small birds and mammals, swabs from waterfowl were placed into BHI 

250 medium and stored on ice until freezing at -20˚C before lab processing. Samples were 

251 collected, processed and shipped following the protocols previously described [66,67]. 

252

253 Laboratory Testing, Small Birds and Mammals

254 Sample processing 

255 All samples were processed as soon as possible upon arrival to the veterinary 

256 diagnostic laboratory, or otherwise stored at -80˚C. All swab tubes containing BHI medium 

257 were vortexed for 60 seconds and an aliquot of BHI medium from each tube was dispensed 

258 into 96-well plates for RNA extraction. No additional processing other than aliquoting 

259 plasma samples was required prior to testing for the virus or anti-AIV antibodies. 
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260

261 PCR assay for influenza A virus

262 We extracted viral RNA from each swab sample via magnetic bead based separation 

263 technology using an Ambion® MagMAX™-96 Viral RNA Isolation Kit (Life Technologies, 

264 Carlsbad, CA) following the protocol provided by the manufacturer. The procedure was 

265 performed in a KingFisher® 96 automated magnetic particle processer (ThermoFisher 

266 Scientific, Prussia, PA) as per manufacturer’s instructions. Extracted viral RNA was eluted 

267 in 50-µL elution buffer. 

268 We used a commercially available one-step real-time multiplex RT-PCR kit 

269 (VetMAX™-Gold AIV Detection Kit; Life Technologies, Austin, TX), designed to target viral 

270 matrix and nucleoprotein genes, to amplify influenza viral RNA. The USDA approves this kit 

271 for AIV surveillance testing. The PCR reaction was set up in a 25 µL volume containing 12.5 

272 µL of 2X multiplex RT-PCR buffer, 1.0 µL nuclease-free water, 1.0 µL of influenza virus 

273 primer probe mix, 2.5 µL of multiplex RT-PCR enzyme mix and 8.0 µL of RNA template (i.e., 

274 extract) or controls. Xeno™ RNA Control supplied with the kit was included as an internal 

275 control for RNA purity to assess possible PCR inhibition from samples. Influenza Virus-

276 Xeno™ RNA Control (1000 copies/µL) included in the kit was used as a positive 

277 amplification control (PAC). An AIV isolate [A/Turkey/WI/68 (H5N9)], which was obtained 

278 from the USDA, was used as an AIV Matrix PCR extraction control. Nuclease-free water was 

279 used as a no amplification control. Thermocycling was performed in a 7500 Fast PCR 

280 System (Applied Biosystems, Foster City, CA) under the following conditions: reverse 

281 transcription at 48 °C for 10 minutes, reverse transcriptase inactivation/initial 
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282 denaturation at 95 °C for 10 minutes, and 40 cycles of amplification and extension (95 °C 

283 for 15 seconds and 60 °C for 45 seconds) [68]. 

284 We analyzed the PCR data using “Manual Cycle Threshold (CT)” and default baseline 

285 cycle 3-15. The AB AIV master detector threshold was determined by multiplying the delta 

286 Rn of PAC at cycle 40 by 0.05. Amplification plots were viewed to ensure that positive 

287 controls crossed the threshold and that negative controls did not. AIV RNA and Xeno™ RNA 

288 control were detected by using FAM™ and VIC™ dyes, respectively. Samples with CT values 

289 ≤ 40 were recorded as positive for influenza A viral RNA, whereas samples with CT values > 

290 40 were recorded as negative as per manufacturer’s instructions.

291

292 Serology

293 Plasma samples were tested on a USDA-approved IDEXX AI MultiS-Screen Ab Test 

294 kit (IDEXX Laboratories, Inc. Westbrook, ME) for influenza A virus antibodies. In brief, 

295 samples were vortexed before transferring them to test plates, 100 µL of undiluted 

296 negative and positive kit controls each, as well as 100 µL of 1:10 diluted house controls or 

297 plasma samples were dispensed into appropriate wells of the plate, and plates were 

298 incubated for 60 minutes. Each plate was washed 3-5 times with the wash solution that 

299 was supplied with the kit, after which 100 µL of anti-AI horseradish-peroxidase conjugate 

300 was dispensed into each well and the plate was incubated for another 30 minutes. After 

301 incubation, the plates were washed again, then 100 µL of substrate solution was dispensed 

302 into each well and the plates were incubated for another 15 minutes. The reaction was 

303 stopped by addition of 100 µL of stop solution and absorbance (i.e., optical density) was 

304 read at a 650 nm wavelength. All incubation steps were conducted at ambient temperature. 
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305 Each plate was validated by noting the absorbance of the negative and positive 

306 control means, and, if validated, the Sample/Negative (S/N) ratio was calculated for each 

307 sample. In accordance with manufacturer recommendations, if the S/N ratio was < 0.5, the 

308 sample was classified as positive for antibodies to influenza A virus. If the S/N ratio was ≥ 

309 0.5, the sample was classified as negative for antibodies to influenza A virus. We note that if 

310 a more conservative cutoff value of 0.6 is applied, our results do not change. 

311

312 Laboratory Testing, Waterfowl

313 Waterfowl samples were tested at the United States Geological Survey National 

314 Wildlife Health Center (NWHC) in Madison, Wisconsin. The NWHC is one of the National 

315 Animal Health Laboratory Network facilities and is certified by the USDA National 

316 Veterinary Services Laboratories. Samples were tested following the national wild bird 

317 surveillance program protocols, including qPCR matrix tests and additional qPCR to probe 

318 for H5 and H7 if matrix tests proved positive. Detailed descriptions of the national wild bird 

319 surveillance diagnostic testing protocols have been described previously [66,69]. 

320

321 Analyses

322 When estimating disease prevalence, frequentist statistical approaches assume 

323 perfect detection in the laboratory assays. Because this is unlikely, we estimated the 

324 prevalence of AIV infection and exposure in potential bridge species using a Bayesian 

325 approach that incorporates estimates of assay sensitivity and specificity [70] in R v.3.1.3 

326 [71]  We used the following values for assay sensitivity and specificity, obtained from the 

327 manufacturers, with a possible range from 0-1: ELISA sensitivity = 0.820, ELISA specificity 
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328 = 1.00; qPCR sensitivity = 0.984, qPCR specificity = 0.991. We report only raw results for 

329 waterfowl sampling because these data are included for the sole purpose of illustrating that 

330 influenza A viruses were present in Iowa around the time of our sampling. As such, our goal 

331 was not to provide any estimate of prevalence in these species.

332 Communities of small birds and mammals captured (number and abundances of 

333 different species) were compared between wetland and poultry sites using the vegan 

334 package v.2.3-5 in R [72]. Briefly, community similarity was calculated between each site 

335 using Bray-Curtis distance estimation and analyzed using permutation-based ANOVA 

336 (PERMANOVA). This analysis was conducted including all species and for birds only. 

337 Analyses were not performed on mammals alone, as so few species were captured. In these 

338 analyses, we assume, as have several prior studies, that the animals captured reflect an 

339 accurate sample of the community present. We note, however, some species present were 

340 likely not captured, particularly high-flying avian species [73]. 

341

342 Results

343 Samples from a total of 449 wild birds and small mammals were obtained from four 

344 wetland sites and three domestic poultry farms distributed across Iowa (Fig. 2, Tables 1 

345 and 2). None of these 449 individuals tested positive for influenza A virus by qPCR from 

346 external or internal swabs (95% confidence interval of prevalence: 0.005% – 0.83%; note 

347 that because our analyses account for less than 100% sensitivity, confidence intervals do 

348 not include 0). Serology was possible on blood samples from 402 animals, none of which 

349 showed antibodies against influenza A virus (95% confidence interval of prevalence: 0.01% 

350 - 1.21%). Our sample sizes were more modest for any one species and as such, estimates of 
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351 prevalence for specific species are considerably less precise. For qPCR estimates, these 

352 would range from 0.03 % - 3.75 % for the most abundant species (dark-eyed juncos—note 

353 “Peromyscus sp.” included more individuals, but of two difficult-to-distinguish species 

354 lumped together, P. maniculatus and P. leucopus) to 1.39 % - 85.2 % for the least abundant 

355 species (any of those with only 1 individual). Similarly, serology-based estimates would 

356 range from 0.04 % - 4.61 % for dark-eyed juncos to 1.37 % - 91.6 % for those species with 

357 only one individual captured.

358

359 Table 1. List of sampling localities during fall 2015 and spring 2016. Numbers of 

360 animals sampled from each locality are listed for each season. The first number represents 

361 the sample size included in qPCR analysis; the number in parentheses represents the 

362 sample size included for serology. Discrepancies reflect individuals from which blood 

363 samples were not taken due to escape or insufficient blood draw. Recaptured animals were 

364 immediately released and not sampled a second time.

Fall 2015 Spring 2016

Sampling locality Birds Mammals Birds Mammals Total

Big Wall Lake w 23 (21) 25 (15) 25 (24) 10 (9) 83 (69)

Ellsworth p 27 (25) 22 (19) 29 (29) 10 (10) 88 (83)

Little Wall Lake w 19 (18) 33 (18) 21 (20) 1 (0) 74 (56)

Malcom w 18 (17) 21 (21) 27 (26) 11 (7) 77 (71)

Marathon Poland Park w 14 (14) 16 (16) 42 (42) 2 (2) 74 (74)

Rembrandt p 0 (0) 0 (0) 21 (18) 0 (0) 21 (18)

Riverside p 0 (0) 0 (0) 31 (30) 1 (1) 32 (31)

Total 101 (95) 117 (89) 196 (189) 35 (29) 449 (402)
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365 p denotes a domestic poultry farm; w denotes a wetland site 

366

367 Overall species community composition of species captured showed differences 

368 between wetland-adjacent and poultry-adjacent sites (PERMANOVA, all species: F1,5 = 5.36, 

369 p = 0.026; bird species only: F1,5 = 3.94 , p = 0.025). However, there was overlap in 

370 community composition, with 14 out of 39 species captured at both types of sites (Table 2), 

371 including six of the 10 most commonly captured species (three bird and three mammal 

372 species). 

373 Surveillance of waterfowl conducted by the USDA WS and Iowa DNR from August of 

374 2015 through January of 2016 show that avian influenza was present on the Iowa 

375 landscape during our sampling (Fig. 2, Table 3). Of 527 samples collected from waterfowl, 

376 83 tested positive for avian influenza A virus by matrix qPCR, with 20 testing positive for 

377 H5 subtypes and none testing positive for H7 subtypes by additional, specific qPCRs (Table 

378 3). Virus was not isolated from any of these samples. Positives were spread among 8 out of 

379 13 counties sampled across the state (Fig. 2).

380   

381

382

383
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384

385 Table 2. Potential AIV bridge species sampled by species and site type (poultry-

386 adjacent or wetland-adjacent). Individuals were sampled at four wetland sites and three 

387 domestic poultry farms in Iowa during the Fall 2015 and Spring 2016 sampling seasons. 

388 Numbers in parentheses indicate the percentages of all individuals captured at a given site 

389 type that belong to a given species. All individuals were swabbed externally (feet, 

390 feathers/fur) and internally (oropharyngeal, anal/cloacal) to test for the presence of AIV. 

391 We were able to collect blood samples from the majority of individuals (402/449) to test 

392 for presence of anti-AIV antibodies.

Species

Num. 

Individuals,

Poultry Sites

Num. 

Individuals, 

Wetland 

Sites

Num. 

Individuals, 

Total

Birds (%) (%) (%)

dark-eyed junco* Junco hyemalis 22 (15.6%) 75 (24.4%) 97 (21.6%)
house sparrow Passer domesticus 44 (31.2%) 0 (0%) 44 (9.8%)
song sparrow Melospiza melodia 0 (0%) 22 (7.1%) 22 (4.9%)
American tree sparrow* Spizelloides arborea 1 (0.7%) 20 (6.5%) 21 (4.7%)
American robin* Turdus migratorius 13 (9.2%) 7 (2.3%) 20 (4.5%)
red-winged blackbird Agelaius phoeniceus 0 (0%) 13 (4.2%) 13 (2.9%)
northern cardinal Cardinalis cardinalis 0 (0%) 11 (3.6%) 11 (2.4%)
common grackle* Quiscalus quiscula 1 (0.7%) 9 (2.9%) 10 (2.2%)
black-capped chickadee Poecile atricapillus 0 (0%) 6 (1.9%) 6 (1.3%)
European starling Sturnus vulgaris 5 (3.5%) 0 (0%) 5 (1.1%)
fox sparrow Passerella iliaca 0 (0%) 5 (1.6%) 5 (1.1%)
blue jay Cyanocitta cristata 0 (0%) 4 (1.3%) 4 (0.9%)
chipping sparrow Spizella passerina 4 (2.8%) 0 (0%) 4 (0.9%)
white-throated sparrow Zonotrichia albicollis 4 (2.8%) 0 (0%) 4 (0.9%)
eastern phoebe* Sayornis phoebe 2 (1.4%) 1 (0.3%) 3 (0.7%)
rusty blackbird* Euphagus carolinus 1 (0.7%) 2 (0.6%) 3 (0.7%)
white-crowned sparrow* Zonotrichia leucophrys 2 (1.4%) 1 (0.3%) 3 (0.7%)
American goldfinch * Spinus tristis 1 (0.7%) 1 (0.3%) 2 (0.4%)
brown-headed cowbird* Molothrus ater 1 (0.7%) 1 (0.3%) 2 (0.4%)
brown thrasher* Toxostoma rufum 1 (0.7%) 1 (0.3%) 2 (0.4%)
rock pigeon Columba livia 2 (1.4%) 0 (0%) 2 (0.4%)
swamp sparrow Melospiza georgiana 0 (0%) 2 (0.6%) 2 (0.4%)
wood thrush Hylocichla mustelina 2 (1.4%) 0 (0%) 2 (0.4%)
Baltimore oriole Icterus galbula 1 (0.7%) 0 (0%) 1 (0.2%)
Brewer’s blackbird Euphagus cyanocephalus 0 (0%) 1 (0.3%) 1 (0.2%)
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brown creeper Certhia americana 0 (0%) 1 (0.3%) 1 (0.2%)
downy woodpecker Picoides pubescens 0 (0%) 1 (0.3%) 1 (0.2%)
eastern bluebird Sialia sialis 0 (0%) 1 (0.3%) 1 (0.2%)
golden-crowned kinglet Regulus satrapa 0 (0%) 1 (0.3%) 1 (0.2%)
Harris’s sparrow Zonotrichia querula 0 (0%) 1 (0.3%) 1 (0.2%)
ring-necked pheasant Phasianus colchicus 1 (0.7%) 0 (0%) 1 (0.2%)
white-breasted nuthatch Sitta carolinensis 0 (0%) 1 (0.3%) 1 (0.2%)

mammals

deer mouse* Peromyscus sp. 3 (2.1%) 109 (35.4%) 112 (24.9%)
house mouse* Mus musculus 19 (13.5%) 1 (0.3%) 20 (4.5%)
northern short-tailed shrew* Blarina brevicauda 5 (3.5%) 6 (1.9%) 11 (2.4%)
meadow vole* Microtus pennsylvanicus 2 (1.4%) 2 (0.6%) 4 (0.9%)
Norway rat Rattus norvegicus 4 (2.8%) 0 (0%) 4 (0.9%)
long-tailed weasel Mustela frenata 0 (0%) 1 (0.3%) 1 (0.2%)

Totals 141 308 449

* species occurs at both poultry and wetland sites.

393

394 Table 3. Waterfowl sampled by USDA-WS/IADNR indicate that Influenza A was 

395 present on the Iowa landscape during 2015-2016. Samples reflect pooled cloacal and 

396 oropharyngeal swabs collected from both live-captured and hunter-harvested individuals 

397 from 13 Iowa counties between August 2015 to January 2016.

Species

Total 

Num. 

Sampled

Num. 

positive for 

Influenza A 

(matrix 

qPCR)

Num. 

positive for 

H5 qPCR

Num. 

positive for 

H7 qPCR

American green-
winged teal

Anas carolinensis 17 1 0 0

American wigeon Anas americana 3 0 0 0
blue-winged teal Anas discors 63 9 1 0
mallard Anas platyrhynchos 206 70 17 0
northern pintail Anas acuta 7 0 0 0
northern shoveler Anas clypeata 11 3 2 0
redhead Aythya Americana 1 0 0 0
wood duck Aix sponsa 219 0 0 0

Totals 527 83 20 0

398

399
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400

401 Fig. 2: All but one of our sampling sites fell within counties impacted by the 2015 

402 H5N2 outbreak or adjacent to counties where low pathogenic AIV was detected in 

403 waterfowl between August 2015 and January 2016. Black circles and abbreviated site 

404 names (see Fig. 1) indicate locations where we sampled small birds and mammals during 

405 this study (October-December, 2015; March-May 2016).

406

407 Discussion

408 We found no evidence for low- or high-pathogenic AIV in small wild birds or 

409 mammals across a predominantly agricultural landscape in two migratory seasons 
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410 following an AIV epizootic. None of the 449 individuals we sampled carried AIV internally 

411 or externally based on our qPCR results. Moreover, no Influenza A-specific antibodies were 

412 detected in the 402 serological samples, suggesting these animals had not been recently 

413 exposed. It remains unclear how long anti-AIV antibodies persist in small mammals and 

414 birds. However, results from wild geese surveillance suggest that although antibody levels 

415 can wane across seasons, they remain detectable for at least 3-6 months [74,75]. Given that 

416 the HPAI outbreaks occurred in summer 2015, we expected to detect antibodies in wild 

417 birds or mammals at least during our fall 2015 sampling if these animals had been exposed. 

418 That we did not detect AIV in any of our samples via qPCR or anti-AIV antibodies in 

419 serology suggests that infection was highly unlikely in small birds and mammals in Iowa at 

420 the time of sampling, consistent with most prior surveillance in these types of animals 

421 [25,38,40,42,76]. 

422 The lack of AIV positive samples among small birds and rodents cannot be explained 

423 by a complete absence of AIV in Iowa during our sampling (Fig. 2). Because surveillance by 

424 state and federal agencies detected AIV in waterfowl during the fall of 2015, we can be 

425 confident that some amount of virus was present in the state. However, because this 

426 surveillance was not conducted in a randomized design, estimates of overall prevalence for 

427 AIV in the state’s waterfowl would not be robust. Moreover, we must note that surveillance 

428 for AIV in waterfowl did not completely overlap (spatially or temporally) with our 

429 sampling of small birds and rodents (Fig. 2). As such, it is possible that AIV was only 

430 present briefly in a select few locations in Iowa, which contributed to our lack of positive 

431 samples in small birds and rodents. However, the fact that 8/13 sampled counties showed 

432 positive samples from waterfowl suggests that this is unlikely. Additionally, because 
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433 several waterfowl positives were located in counties adjacent to our small bird and rodent 

434 sampling (Fig. 2), it is unlikely that a complete absence of the virus on the Iowa landscape 

435 drove the patterns presented here. 

436 Although some species of small birds and mammals are found at both wetland sites 

437 and poultry facilities, the overall community structure of these small birds and mammals 

438 differs between these types of sites. Taken together with our disease surveillance results, 

439 this suggests that on the whole, small, wild birds and mammals are unlikely to play major, 

440 ongoing roles in transporting AIV from waterfowl to domestic poultry. However, these 

441 community data provide an important set of potential species for further surveillance in 

442 the future. Specifically, species that were found at both wetland and poultry sites (Table 2) 

443 are those with the most potential to act as bridge species [43,44]. Future sampling, with 

444 capture techniques targeted toward these species, could improve estimation of AIV 

445 prevalence in these animals and our understanding of their role as bridge species. We also 

446 note that because we have analyzed communities from samples across the state, it is 

447 possible that our estimates of co-occurrence at poultry and wetland sites would vary 

448 within specific sub-regions. Moreover, sampling techniques like bird point counts could 

449 provide additional information about broader avian communities and may reveal new 

450 potential bridge species [43,44]. We suggest that future surveillance efforts in the Midwest 

451 U.S. take such community ecology into account if conducting surveillance in small birds and 

452 rodents. 

453 If wild songbirds and small mammals were major sources of AIV transmission to 

454 domestic flocks from wetland sites, we would expect these animals to be exposed 

455 regardless of whether or not outbreaks were ongoing in commercial operations. However, 
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456 our data do not suggest that this is the case: we found no evidence of viral RNA or 

457 antibodies despite a ~16% LPAIV infection rate of waterfowl in the region at the time we 

458 collected our samples. Indeed, when researchers examine wild populations of small birds 

459 and mammals, they typically have only detected AIV in a small proportion of individuals 

460 sampled, and detection was more likely during active AIV outbreaks [25,38,40,42].

461 The pattern of small birds and mammals exhibiting low levels of AIV during an 

462 epizootic holds true in other surveillance efforts performed during the 2015 HPAI outbreak 

463 in the U.S. Jenelle et al. [25] found very low levels of AIV by PCR in non-waterfowl in 

464 Minnesota, U.S., just north of the areas of Iowa hit hardest during the AI outbreak. 

465 Specifically, they isolated HPAIV from one Cooper’s hawk, that they postulated had likely 

466 been infected via a prey item [25]. They also sampled three chickadees that exhibited 

467 erratic behavior, but the virus was not isolated, despite HPAI viral RNA being detected in 

468 one of them [25]. Despite these detections, they found no HPAIV in Minnesota waterfowl at 

469 the height of the 2015 outbreak in the Midwest [25]. Additionally, after the outbreak had 

470 subsided, Grear and colleagues [76] sampled small, wild birds and mammals at three sites 

471 in WI during the fall of 2015, finding no animals positive by qPCR and only two deer mice 

472 (Peromyscus sp.) with antibodies against AIV (both at poultry farms) out of a total of 284 

473 animals sampled. Finally, sampling at Iowa poultry facilities during the 2015 outbreak, 

474 Shriner et al. [77] found only one of 648 peridomestic birds and mammals to be qPCR 

475 positive for AIV. Combining these results with ours, collected after the HPAI outbreak had 

476 subsided, it is plausible that the AIV detections reflect the virus crossing the wildlife-

477 domestic interface into wild birds from infected domestic populations. This is not 
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478 unprecedented, as AI outbreaks in African and Asian wild birds have been attributed to 

479 spread of the disease from infected domestic poultry [see 62 and references therein]. 

480 Even though we found no evidence here that small wild birds and mammals 

481 contribute to the spread of AIV, we are unable to conclude that they cannot. First, with truly 

482 low prevalence of disease, sample sizes required for precise estimation of prevalence are 

483 extremely high. As such, the true risk of infection may be higher than estimated here or in 

484 other recent studies [25,76,77]. Moreover, at the level of individual species, our (and 

485 others’ [25,76,77]) sample sizes are often quite modest, meaning that confidence of 

486 prevalence for each species is low. We note, however, that our total sample sizes of small 

487 birds and mammals are comparable to or exceed those of other studies published in the 

488 wake of the 2015 HPAI outbreak that arrive at similar conclusions [25,76,77]. Second, it is 

489 possible that when small birds and mammals become infected, they die quickly, becoming 

490 evolutionary dead ends for AIV [78–81], and proving difficult to sample. As such, it is 

491 possible that any surveillance of these species underestimates true prevalence. Finally, 

492 ecological barriers, such as habitat types and distance should help mitigate the spread of 

493 AIV by small birds and mammals [43,44,82]. However, it is plausible that such species 

494 could still help spread the disease to a degree. Importantly, although the virus may occur at 

495 extremely low prevalence in non-waterfowl, among highly abundant species like European 

496 starlings, low prevalence could translate a significant number of infected individuals. As 

497 such, there remains a real risk that initial outbreaks could be triggered by rare infections 

498 and propagated by other means, such as farm-to-farm contact. In addition, species likely to 

499 be found at both poultry sites (particularly scavengers) could become infected via food 

500 items and then transmit AIV back into waterfowl. For instance, some commercial 
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501 operations dispose of dead birds via on-site outdoor composting [17,83]. While proper 

502 composting protocols state that care should be taken so that no dead birds are exposed, if 

503 wild animals access carcasses before the virus is heat-killed, they could potentially become 

504 infected prior to interacting with other wild animals on- or off-site. Jenelle et al. [25] 

505 reported HPAI in a Cooper’s hawk, which although not typically a scavenger, would 

506 regularly prey on birds such as rock pigeons and European starlings that commonly 

507 frequent poultry farms and could interact with compost bins. We note, however, that this 

508 scenario merely outlines one possibility regarding virus spread once an outbreak in 

509 domestic flocks has already begun. 

510  

511 Conclusions

512 We estimated very low prevalence of AIV in small, wild bird and mammal 

513 populations, supporting the hypothesis that these organisms do not play major roles as 

514 bridge species in the transmission of AIV in Iowa. The differences in types and abundances 

515 of small wild birds and mammals at wetland vs. poultry facilities further support this 

516 notion. Therefore, our results suggest that spread of the virus likely relies on alternative 

517 routes of transmission and further research on alternative routes of AIV transmission, 

518 including human-mediated transfer (on clothing, equipment, etc.), airborne particulates, 

519 and contaminated food/water sources is warranted. However, given the cyclical nature of 

520 AIV outbreaks, the large numbers of small birds and mammals on Midwestern landscape in 

521 general, and the possibility of disease reemergence, continued surveillance of these species, 

522 particularly those species likely to appear at both wetland and commercial poultry 

523 operations, may yet improve our understanding of virus ecology. 
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