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ABSTRACT
Dispersal forms are an important component of the ecology of many animals, and
reach particular importance for predicting ranges of invasive species. African clawed
frogs (Xenopus laevis)move overland betweenwater bodies, but all empirical studies are
from invasive populations with none from their native southern Africa. Here we report
on incidents of overland movement found through a capture-recapture study carried
out over a three year period inOverstrand, South Africa. Themaximumdistancemoved
was 2.4 km with most of the 91 animals, representing 5% of the population, moving
∼150 m. We found no differences in distances moved by males and females, despite
the former being smaller. Fewer males moved overland, but this was no different from
the sex bias found in the population. In laboratory performance trials, we found that
males outperformed females, in both distance moved and time to exhaustion, when
corrected for size. Overland movement occurred throughout the year, but reached
peaks in spring and early summer when temporary water bodies were drying. Despite
permanent impoundments being located within the study area, we found no evidence
for migrations of animals between temporary and permanent water bodies. Our study
provides the first dispersal kernel for X. laevis and suggests that it is similar to many
non-pipid anurans with respect to dispersal.

Subjects Animal Behavior, Zoology, Freshwater Biology
Keywords Aquatic, Clawed frogs, Dispersal, Migration, Pipidae, Terrestrial, Locomotion,
Stamina, Performance

INTRODUCTION
The ability to disperse is present in most organisms (Clobert et al., 2009) and is one
of their most important characteristics (Bonte & Dahirel, 2017). Dispersal entails the
individual movement between habitat patches, and as such not only affects individual
traits, but also population characteristics, such as community structure (Bowler & Benton,
2005; Doebeli, 1995; Holt, 1985; Matthysen, 2005). Dispersal differs between as well as
within species (Altwegg, Ringsby & Sæther, 2000; Bowler & Benton, 2009; Schneider, Dover
& Fry, 2003; Stevens, Pavoine & Baguette, 2010); this is because factors, which include
mate finding, habitat quality and competition (both intra and interspecific) influence
the costs and benefits relationship of dispersal (Bowler & Benton, 2009; Clobert et al.,
2009). Characterising dispersal differences is increasing its significance as models and
simulations require accurate character traits. To characterise the statistical distribution
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of dispersal distances for a species, it is common to produce a dispersal kernel which is
a probability density function of the distribution of different Euclidian distances from
their source to post-dispersal points (Nathan et al., 2012). This is particularly important
for invasive species (Travis et al., 2009) where dispersal is a key characteristic. The use of
dispersal kernels in models of invasion help inform managers of potential invasive spread
(e.g., Vimercati et al., 2017b; Vimercati et al., 2017a).

Animal movement, including dispersal, has been linked to an individual’s morphology
by studies of laboratory performance (Arnold, 1983;Huey & Stevenson, 1979). Performance
ability represents the animal’smaximumexertion,whereas dispersal represents the observed
distancemoved. As such, performancemeasures such as endurancemay be a good indicator
of the relative dispersal ability of that animal. For example,Herrel, Vasilopoulou-Kampitsi &
Bonneaud (2014) demonstrated that the influence of morphology on jumping performance
was sex-specific for Xenopus tropicalis, suggesting that this differentially influenced their
dispersal ability (see alsoHerrel & Bonneaud, 2012). Morphology ultimately determines the
performance ability of the animal and consequently the animal’s dispersal ability, which
is why natural selection acts upon morphology (Hertz, Huey & Garland Jr, 1988; Zug,
1972) Another interesting example was observed in cane toads (Rhinella marina) where
populations at the invasion front were found to have increased dispersal abilities (Alford et
al., 2009) due to an increase in endurance (Llewelyn et al., 2010) resulting from longer leg
length (Phillips et al., 2006), and shifts in behavioural traits (Gruber et al., 2017). This spatial
sorting of a population has now been found in an increasing number of invasive species,
including the pipid frog, X laevis (Courant et al., 2017a; Louppe, Courant & Herrel, 2017).

Xenopus laevis occurs throughout southern Africa, occupying almost every aquatic
habitat found within this range (Furman et al., 2015;Measey, 2004). The frogs in this genus
are highly adapted for an aquatic lifestyle (Trueb, 1996), as most of their life is spent in
the water. It has been suggested that dispersal is facilitated through aquatic corridors
(i.e., rivers, streams, irrigation ditches, etc.) leading to the classical view that these frogs
are fully aquatic (Fouquet & Measey, 2006; Lobos & Measey, 2002; Measey & Channing,
2003; Van Dijk, 1977). However this view has been challenged by many observations
of overland movements (reviewed by Measey, 2016), which suggest that these frogs are
capable of dispersing overland, and that they might better be termed ‘‘principally aquatic’’.
However, the majority of the literature represents anecdotal or inferred movements with
little or no information on what proportion of the population disperses, what time of year
they disperse and the function of the dispersal kernel. It has been suggested that X. laevis
migrates (Hey, 1949), adult movements between permanent and temporary habitats, but
no data exist to substantiate this (Measey, 2016). It is important to clarify whether or not
individuals migrate back to ponds or disperse between ponds, as regular dispersal would
mean that ponds do not represent discrete populations and instead that X. laevismay meet
some of the conditions for a metapopulation (cf Smith & Green, 2005).

Literature on the ecology of X. laevis is growing rapidly, due to increasing numbers of
studies of invasive populations (e.g., Amaral & Rebelo, 2012; Courant et al., 2017b; Lillo,
Faraone & Valvo, 2011). However, there have been very few empirical studies conducted
within its native range, despite the species being almost ubiquitous in southern Africa. Here
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X. laevis is associated with artificial impoundments, such as farm dams, sewage works, fish
hatcheries, etc. (Schoonbee, Prinsloo & Nxiweni, 1992; Van Dijk, 1977) while their presence
in natural water bodies goes almost unnoticed Intriguingly, this species appears to occur
in impoundments in desert areas where it is likely to have had anything but a transient
presence, making it the most widespread amphibian species in South Africa (Measey, 2004).
This might be because there is a tendency for human mediated dispersal of X. laevis for
fishing bait and via universities (Measey et al., 2017; Van Sittert & Measey, 2016; Weldon,
De Villiers & Du Preez, 2007) Poynton (quoted in De Moor & Bruton, 1988) was of the
opinion that X. laevismade use of artificial water bodies to expand their range and become
an extra-limital species, and it has been suggested that there is leading edge dispersal in
X. laevis which could explain the near ubiquitous distribution (Measey et al., 2017; Van
Dijk, 1977). However, the extent to which populations disperse between natural and
artificial impoundments in their native southern Africa is largely unknown (Measey, 2016).

To redress the dearth of data on overland movement from native populations, we
conducted a capture-mark-recapture exercise with X. laevis in eight water bodies in the
Overstrand region, southwestern South Africa. We conducted a study over 33 months
asking the same four questions posed by Measey (2016) of our data: (1) Is there evidence
for overland dispersal in a native population of X. laevis; (2) What distances are moved
overland; (3) Is there evidence that overland movement is seasonal or associated with
rain or drying habitats; (4) Is there evidence of overland movement being migratory with
respect to breeding? Lastly, we use a small laboratory study of maximum performance
of endurance to ask whether sex and size differences match population movements in
the field.

MATERIALS & METHODS
Study site
The study area (34.325◦S, 19.103◦E) 8 km east of Kleinmond (hereafter referred to as
Kleinmond) covers an area of 5.4 km2 (3.5 km by 1.5 km) in the Overstrand, Western
Cape Province, South Africa (Fig. 1). It falls within a single catchment and is relatively
homogenous with a very gentle slope running approximately north–south with a change of
less than 10m altitude in 1.5 km. The eight water bodies are divided between five temporary
waterbodies (vleis: typically full between July and November) and three permanent
impoundments (dams) which contain water all year, but may vary in depth. In each case
the permanent impoundments are artificial, while the vleis are natural. The study area had
a maximum distance between water bodies almost spanning the entire area (3.7 km), while
the minimum distance was 91 m. Three streams run north-south through the study area,
but flow only part of the year. A paved road and several unpaved roads run through the
area (Fig. 1)

Xenopus laevis is known to occur in all water bodies, but the congeneric X. gilli only
occurs in vleis (see De Villiers, De Kock & Measey, 2016; Fogell, Tolley & Measey, 2013;
Furman et al., 2017; Vogt et al., 2017). The dams have only X. laevis, A. fuscigula and
S. capensis. Vegetation is lowland sand-stone fynbos (Mucina & Rutherford, 2006), with
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Figure 1 Position of the study site. (A) Southern Africa, with black dots showing known locations of
Xenopus laevis. The data demonstrates the widespread distribution over (continued on next page. . . )

Full-size DOI: 10.7717/peerj.4039/fig-1
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Figure 1 (. . .continued)
the full altitudinal range of the region from the highlands of Lesotho (>3,000 m asl in white), through
the Highveld of the escarpment (1,000 to 2,000 m asl in brown and yellow, respectively) to the lowland
seaboard in grey (<500 m asl). (B) The site in the extreme southwest is 8 km East of Kleinmond (red star)
borders the Botrivier Estuary to the South. The position of Jonkershoek (45 km north–west of the study
site) is shown with a yellow star. The area is chosen to show the Cape Fold Mountains (brown to yellow)
and extensive lowland (grey) areas.

areas particularly heavily invaded by Acacia saligna (Port Jackson Willow), Hakea sericea
(Silky Hakia) and Acacia mearnsii (Black Wattle).

It is noteworthy that the southwestern Cape of South Africa was undergoing a drought
at the time of this study and periodicity of temporary water was affected. The temporary
pools held water for six and seven months in the first and second years of the study, and
these times did not coincide with seasonal changes due to a lag between the onset of rains
and the filling (and emptying) of pools. In contrast the permanent dams contained water
throughout the study, although the levels changed considerably.

Capture-mark-recapture
Frogs were collected from January 2014 to June 2016 by using baited traps (bucket or
fyke traps; see Lobos & Measey, 2002; Vogt et al., 2017). Three to five traps were set in five
temporary and three permanent ponds (Fig. 1). Each trapping session was conducted for all
water bodies for which water was deep enough to contain a trap (>20 cm deep), from one
to four consecutive nights, each night the traps were set and collected again the following
morning. Regular trapping with three to four week intervals between sessions took place
from 2014 to the end of 2015. Thereafter trapping has taken place at six-monthly intervals.
All animals were processed at the edge of each site and returned to the site in which they
were trapped. In addition to the eight regular trapping sites, in June 2016 we placed traps
for three nights in three water bodies immediately outside of the area, but none were found
to contain X. laevis, leading us to believe that we were covering a discrete population.
Ethical clearance for capture-mark-recapture was obtained from Stellenbosch University
(SU-ACUD14-00028) and permits were issued from CapeNature (AAA007-00092-0056).

Upon emptying traps, all frogs were first scanned with a hand-held scanner (APR 350,
Agrident, Barsinghausen Germany) and the unique number recorded together with the
locality of the individual. Frogs (>30 mm SVL) without tags were then tagged using 8 mm
PIT tags, which are small glass capsules with an electromagnetic coil (Guimaraes et al.,
2014). The tag was placed in 15-gauge hypodermic needle and injected underneath the skin
above the dorsal lymph sac (Donnelly et al., 1994). Each frog was photographed dorsally
on a 10 × 10 mm grid. Image numbers were recorded together with tag numbers, and
the scaled images used to calculate (SVL) using ImageJ (Rasband, 2012). Frogs were sexed
externally by the presence of labial lobes in females and nuptial pads on the forearms of
males (see Measey, 2001). Generally, it was possible to sex individuals greater than 45 mm
snout-vent length (SVL), and smaller animals were classified as juveniles if sex could not
be unambiguously determined.
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Performance measures
Twenty (10 male and 10 female) X. laevis were collected from Kleinmond, and transported
to and housed at Stellenbosch University’s Department of Botany and Zoology. Each
frog was PIT tagged and housed in its own aquarium at a constant temperature of 20 ◦C
(Careau et al., 2014; Herrel et al., 2012; Louppe, Courant & Herrel, 2017). Animals were fed
every second day with sheep’s heart, ad libitum, and weighed once a week to monitor their
well-being Ethical clearance for performance measures was obtained from Stellenbosch
University (SU-ACUD14-00028).

Prior to performance trials, each animal was measured using digital callipers (to the
nearest 0.01 mm). Measurements were taken as follows: body length (SVL: the length from
the tip of the snout to the cloaca (Herrel et al., 2012), the length and width of the head, the
length of the jaw radius, humerus, hand, longest finger, longest toe foot tibia femur length
and width of the ilium and interaxial distance (i.e., a lateral measurement of the vertebral
and ilium length: Herrel et al., 2012; Louppe, Courant & Herrel, 2017) where appropriate,
all measurements were size (SVL) corrected for comparison.

All performance trials were conducted within three weeks of capture in a controlled
environment with a constant temperature of 20 ◦C (±2◦), as this is the optimal performance
temperature for X. laevis (Miller, 1982). All animals were rested for at least 24 h between
trials, with each animal undergoing three trials where the longest distance in the shortest
time was retained for analysis. Dry endurance was determined on a 4 m circular track with
a rubber grip mat as substrate. Each trial was timed and the distance moved was calculated
from the number of laps with continuous movement insured by tapping the frog between
the hind legs. The trial was considered finished if the frog refused to move after multiple
taps, and was unable to right itself (Herrel & Bonneaud, 2012).

Data analysis
In order to assess potential bias in capture rates in our dataset, we first compared sex ratios
and sizes of animals that were captured once (26.7%) with those that were captured more
than once. A chi-squared test (χ2) showed that sex ratios were the same for animals that
were captured once or more than once (χ2

= 0.012, p-value = 0.9123), but an ANOVA
showed that there was a significant difference in size (see below). Therefore to test for sex
bias in dispersal, we use the entire dataset. But for size, we use only those animals which
were captured more than once. In each case, a χ2 test was used in R (R Core Team, 2017)
with a P-value based on 10,000,000 bootstraps.

Sex ratio was calculated as the number of males per 100 females per capture session.
The distance between the pond of origin (i.e., the pond where the frog was tagged) and
the destination pond were measured (to the closest meter) using ArcGIS (Version 10.2;
ESRI, Redlands, CA, USA). As such this represented the Euclidian distances between
sites. Dispersal distances were log transformed to meet assumptions of homoscedasticity.
Normality of data was determined by using QQ-plots and the homogeneity of the variances
were determined by using Levene’s test. Occurrence of movements (where an animal was
tagged in one location, but recaptured in another) were coded according to whether or
not they occurred within one season (dry: December to May; wet: June to November), sex
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and the size of the individual at first capture. The dataset for comparison was made up of
individuals that were marked and recaptured during the same period within one of the
ponds.

The dispersal kernel was fitted using all dispersal distances (including instances where
individuals moved more than once). We used the fitdistrplus package (Delignette-Muller
& Dutang, 2015) in R v3.3.3 (R Core Team, 2017) to test the fit of the data against four
distribution types: exponential, lognormal, Weibull and gamma. We then inferred the best
fit through minimum AIC. All means are reported ± Standard Deviation.

For the performance data, we logged all linear measurement data to fulfill assumptions
of normality and homoscedasticity. To test for differences between sexes, we conducted
a MANCOVA (R Core Team, 2017) with all morphological measurements as dependent
variables, with size (SVL) as a covariate with Wilk’s Lambda statistic. Next, we conducted
another MANCOVA using the (log of) maximum distance moved and time to exhaustion
as dependent variables, with size (SVL) as a covariate.

RESULTS
Capture-mark-recapture
We made 9,401 captures of 1,755 individual X. laevis in 80 capture nights over 28 sessions
in 3 years. The mean number of animals captured per session was 354 (±258.2: range
1,128 to 15), and the sex ratio was always female biased, varying from 30 to 74 males per
100 females. Animals found to have been captured more than once were larger (n= 1,303;
SVL 64.95 ± 14.96 mm) than those not recaptured (n= 452; SVL 61.39 ± 13.80 mm;
F1,1,753= 20.609; P < 0.0001), the discrepancy being made by smallest marked individuals
(30–49 mm SVL) for which sex could often not be determined (n= 81), and which did not
move. Juveniles (<45 mm) made up a significant part of some capture sessions, averaging
4.1% (±4.64). We noted large numbers of metamorphs at one of the sites (Ysterklip), but
animals <30 mm SVL rarely entered our traps. The majority of individuals was recaptured
at least once (n= 1,303), with only 34.7% of individuals (n= 452) captured only once. We
found significant differences between the sizes of males (SVL mean 63.2 ± 9.12 mm; max
93.0 mm; n= 673) and females (SVL mean 66.4 ± 16.60 mm; max 129.6 mm; n= 1001:
F1,1,672= 9.318; P = 0.0023).

Ninety-one individuals (5.2%) moved between one and four times (mean 1.19± 0.576)
over the entire period. Of the 11 animals that moved two or more times, five returned to
their original site of capture. The modal overland distance moved was 147 m, with the
frequency of small movements far exceeding long ones (Fig. 2). A lognormal distribution
fitted the highest dispersal values best as well as performing well on the mid-range values.
However, all four distributions fitted the data well, differing by less than 60 δAIC values
(Table 1). Equation (1), gives the probability density function, where Y is the expected
frequency of moving frogs and x is the distance moved

Y =
1

0.62x
√
2π

e−
(lnx−5.575)

0.765 . (1)

The nature of capture-recapture using our baited traps does not allow for the precise timing
of the majority of movements that occurred between capture sites. Of the 69 individuals for
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(a)

(b)

Figure 2 Schematic of movement by marked Xenopus laevis in (A) summer and (B) winter between
water bodies. Thickness of red (A) and green (B) lines is proportionate to the amount of dispersal move-
ments within that season. The site 5 km East of Kleinmond has natural temporary vleis (light blue) and
anthropogenic impoundments (dark blue), and lies north of the brackish Botrivier Estuary. Paved (black
line) and unpaved (brown lines) roads run through the area together with three temporary streams (blue
lines).

Full-size DOI: 10.7717/peerj.4039/fig-2

which the season of movement was known because they were recorded at both the origin
and destination sites in the same season, there was no difference between seasons in either
the number of animals moving (χ2

= 0.552, p= 0.519; dry = 57, wet = 48) or in the sex
of animals moving (χ2

= 0.552, p= 0.519 dry sex ratio = 39/18 , wet sex ratio = 36/12).
However, we did find that individuals moved significantly farther during the wet period
(mean = 387.5 m; median = 344.9 m) than during the dry (mean = 245.4 m; median
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Table 1 Model testing for distributions of dispersal kernel of Xenopus laevis from Kleinmond. Models
are based on capture-mark-recapture data of 108 movements of 91 individuals over a three-year period.

Distribution Akaike’s information
criterion (AIC)

1AIC Bayesian
information
criterion

Anderson–Darling
statistic

Log normal 1,410.92 0 1,416.29 3.069861
Gamma 1,433.32 22.40 1,438.69 3.927477
Weibull 1,450.97 40.05 1,456.33 5.497646
Exponential 1,469.55 58.63 1,472.23 10.39505

= 147.7 m; F1,101= 6.833, p= 0.0103). The maximum dispersal distance observed was a X.
laevis female, which travelled 2.42 km in less than six weeks, while another X. laevis female
dispersed 1.36 km in less than three weeks. Neither of these movements was downhill or
appeared to follow any form of stream or movement of water overland. In addition, we
have a record of a single male animal that was caught in one temporary water site on one
night and in another 147 m away on the next night. We also found some synchronous
movements. For example, in October 2015 we captured five animals in Arabella that were
all captured two nights later 91 m away, and in February 2015 we captured six animals at
Rondegat that were all captured two months later in another water body 147 m away.

Many of the movements during the dry summer season happened between adjacent
temporary sites (Fig. 3A). However, during the wet winter season movements happened
between temporary and permanent sites, as well as between temporary sites (Fig. 3B).
The timing of these movement events was related to drying of temporary water sites in
December 2014 and in October 2015 which also coincided with drying events after very
poor winter rains (Fig. 4). These two events encompassed the majority of movement events
(58.6%), but we recorded movements during almost every capture session (83%; Fig. 4).

Even though we had twice the number of females (n= 63) moving as males (n= 28), this
was not significantly different from the sex ratio of animals that did not move (females 988;
males 672; χ2

= 3.668, P = 0.0630). Females (mean = 330.0 m; median = 249 m) moved
no farther than males (mean = 324.0 m; median = 249 m; F1,101 = 0.002, p= 0.967).
No significant bias was found in the size of animals that were moving (n= 91; mean
= 66.5 ± 15.47 mm; median = 63.4 mm) compared to those that were recaptured only
within the same water body (n= 1 213; mean = 64.8±14.94 mm; median = 63.4 mm;
F1,1,302= 1.200, p= 0.274).

Performance
We found significant differences between the sizes of male and female X. laevis within the
small subset (n= 20) which we tested for performance (F1,18= 10.4; P = 0.0047). In this
subsample, the size-corrected forelimb measures of males were significantly longer than
those of females. However, the relative length of the longest toe on the foot was longer
in females (Table 2). We found a difference in the size-corrected distance moved by the
two sexes before exhaustion, with males moving significantly farther (Table 2). Time to
exhaustion, when both sex and corrected size were included, was significant (Table 2), with
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Figure 3 Dispersal kernel of Xenopus laevis at a site near Kleinmond, South Africa. Bars show the fre-
quency of distances moved between water bodies by individuals during capture-mark-recapture based on
108 movements of 91 individuals over three years. The data is best described by a lognormal curve (red
line), for which the probability density function is provided (Y is the expected frequency of moving frogs,
and x is the distance moved).

Full-size DOI: 10.7717/peerj.4039/fig-3

smaller males moving for a longer time than larger females. The mean distance moved was
24.9 m (±3.53 m) in around 3 min (187 ± 36.46 s).

DISCUSSION
We present the first empirical data for overland movement of X. laevis within its native
range, demonstrating that distances moved are up to 2.42 km over a period of less than
6 weeks. This finding is an important extension to the data reviewed by Measey (2016)
in which the longest distance moved was 2 km in an invasive population. In addition to
extending the maximum distance moved overland, we were able to calculate a dispersal
kernel for this species. Over a period of three years, we found that 5% of individuals
moved between sites, although this does not necessarily mean that 95% of the animals were
philopatric, as we captured 26% of animals only once.

Do Xenopus laevis migrate?
Hey (1949) provided a description of X. laevis in Jonkershoek (45 km north–west of our
study site) involved in a migration from permanent impoundments into freshly filled vleis
in order to breed. We had expected that the combination of permanent and temporary
water bodies in our study area would allow us to collect data on such migration events
over the three years of study, but we found none. Only five animals were found to
return to their original site of capture, but these movements were not necessarily through
permanent waters. Instead, we presume that animals that left the temporary water went
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into subterranean aestivation (cf Balinsky et al., 1967), although efforts to find any Xenopus
through excavations in the area proved unsuccessful (J Measey, 2015, unpublished data).
Whether these animals hide collectively or are scattered throughout the area is potentially
important. Attempts at eradicating invasive populations may flounder if a proportion of
buried animals goes undetected. Like Measey (2016), we cannot discount the possibility
that X. laevis do migrate between water bodies under particular circumstances, but we
found no evidence of this in the Kleinmond population. However, we did find examples
of synchronous movements, both during the wet and dry periods. Movements of large
numbers of X. laevis have been witnessed (Lobos & Jaksic, 2005; Measey, 2016), but our
data suggest that this may also happen on a smaller scale.

Sexual or size difference in dispersal?
Our study found no bias in sex of animals dispersing, once the highly skewed sex ratio
was considered. Other studies have found similar skews toward females (Lobos & Measey,
2002). It could be that there is dispersal bias toward smaller life-history stages (metamorphs
and juveniles, see Sinsch, 2014), although we also found that the smallest animals we tagged
did not move. If there were a male-biased dispersal (as might be expected Hamilton &
May, 1977; Trochet et al., 2016), high mortality might help explain the skewed sex ratio.
Metamorph survival might be altered in densely populated water bodies such as these
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Table 2 Morphological variables measured for Xenopus laevis used in performance tests. Results from a MANCOVA (with SVL as the covariate)
show that sexes are morphologically different. Means (in mm± Standard Deviation) are given for measures of females (n= 10) and males (n= 10),
together with tests which show that significant differences centred on limb measures. Distance (in m± SD) and Time (in s± SD) for stamina per-
formance trials are also given. Stars (∗) indicate statistical significance.

Effect Variable Wilk’s
Lambda

Mean ±SD Mean ±SD F df P

Females Males

Sex 0.035 17.52 11 0.0004 ***
Mass 38.46 20.524 25.60 12.777 0.23 1 0.6381
Ilium length 31.53 5.750 26.25 3.705 2.52 1 0.1306
Ilium width 14.41 2.253 13.12 1.926 1.63 1 0.2195
Femur 22.31 3.654 20.66 2.694 3.24 1 0.0898
Tibia 22.37 4.217 20.64 2.473 3.63 1 0.0738
Astragalus 15.95 3.459 14.55 2.366 3.45 1 0.0808
Longest toe 23.89 3.858 22.87 3.256 41.59 1 <0.0001 ***
Humerus 11.27 1.929 11.39 1.619 10.64 1 0.0046 **
Radius 10.27 1.854 11.55 2.028 36.07 1 <0.0001 ***
Hand 4.26 0.758 4.08 0.728 17.1 1 0.0007 **
Longest finger 10.32 1.777 10.02 1.619 4.97 1 0.0395 *
Distance 23.23 1.491 26.63 4.203 10.4 1 0.0047 **
Time 167.50 33.033 206.50 29.504 5.113 1 0.0182 *

(see De Villiers, De Kock & Measey, 2016) because adults are cannibalistic (Measey et al.,
2015; Vogt et al., 2017). Capture-mark-recapture studies on adult amphibians generally
suggest no sex biasedmovement (e.g., Sinsch, 2014; Smith & Green, 2006). In fact, examples
of female-biased dispersal (Austin et al., 2003; Lampert et al., 2003; Palo et al., 2004) and
male biased dispersal (Liebgold, Brodie & Cabe, 2011) in amphibians have been revealed
using genetics, which suggest that juveniles (individuals that we cannot tag in most of
amphibian species) are responsible for most of dispersal events (inducing gene flow).
Because more females than males moved, a genetic study on our population would indicate
female-biased dispersal. However, this would not be due to a bias in dispersal of individuals,
but simply reflect the already skewed population sex ratio.

The fact that females were found to disperse provides important information for
phylogeographic studies using mitochondrial DNA (De Busschere et al., 2016; Furman et
al., 2015;Measey & Channing, 2003). African clawed frogs are known to form well defined
mtDNA clades in southern Africa, and these have been shown to correspond to sufficiently
rapidly evolving nuclear DNA (Furman et al., 2015; Furman et al., 2017). Presumably, these
clades represent areas where both males and females are equally inhibited from dispersing.
The extent of dispersal in this study may exceed the first condition for a metapopulation:
that ponds sampled would represent local breeding populations (Hanski, 1999). A 5%
movement of adults between ponds may effectively unite the study site into a single unit, or
large patch, with the possibility that a metapopulation occurs at a larger spatial scale (Smith
& Green, 2005). Existing genetic studies are too coarse to test the potential effective scale
at which metapopulations exist within X. laevis. More fine scale genetic sampling could
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inform the scale at which dispersal occurs as well as what constitutes a dispersal barrier for
this species.

In addition to the field data, we present a performance dataset that suggests that
males and females are equally able to move long distances. This required males to move
proportionately farther and longer than females before exhaustion. Distances moved in our
laboratory study are around double those reported by Louppe, Courant & Herrel (2017) for
two invasive populations of X. laevis in France. Similarly, our animals had higher stamina,
being able tomove for longer before exhaustion. The studies differed in the temperature the
trial was conducted (22 ◦C in France and 20 ◦C in South Africa). Despite these differences,
both studies found that males moved relatively farther for relatively longer such that they
were able to perform as well as larger females. The increased performance for males is not
explained by their limb morphology, as both studies show males have longer forelimbs
(linked with mating), but that hindlimbs are the same length, relative to size, with the
exception of longer toes (larger feet) in females. The time taken to move before exhaustion
would make it easily possible for animals to move between close sites in a single night as we
observed. However, the longest distances observed would likely have taken many nights,
and may have included periods in water bodies between sites.

It is noteworthy that within our study site there were two temporary streams (Fig. 2A);
one not associated with any water bodies, and the other with three of the sites. While these
three sites received the most animals moving between them, this was largely confined to
dry periods when the water did not flow. This suggests that X. laevis are not reliant on
watercourses to guide their movements. However, when the weather is dry watercourses
may offer increased levels of humidity that reduce dehydration during overlandmovements.
Dehydration remains an important risk for X. laevis moving overland (Hillman, 1978), as
has been emphasised for other amphibians (Tingley, Greenlees & Shine, 2012).

Seasonality and habitat drying
Our data demonstrate that African clawed frogs move overland throughout the year, and
that this behaviour is not restricted to periods of winter rainfall. However, during the wet
winter period individuals moved farther. Both observations match the recent literature
review (Measey, 2016). Additionally, movements between water bodies peaked at the same
time that the vleis were drying. This suggests that the majority of animals move some
distance in order to aestivate, and do not simply burrow into the mud of a drying pond
(although this has been observed, seeMeasey, 2016).

Conclusion
We found that 5% of X. laevis moved between water bodies within an area of 3 km2,
with examples of animals moving nearly the full length of the study site. This suggests
that frequency of movement within the study site may exceed that required to maintain
a metapopulation structure, and instead represent a large patchy population (cf Smith &
Green, 2005) in what has previously been thought of as a purely aquatic species (seeMeasey,
2016). Although longer distances were moved overland during the wet period, animals
moved year round. More females moved than males, but this was in proportion with the
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sex bias observed in the population. Males and females moved the same distances between
sites, even though males are significantly smaller; identical to results found in previous
performance studies (Louppe, Courant & Herrel, 2017). Animals found in temporary water
bodies did not move into permanent impoundments, despite their presence in the area. We
suggest instead that these animals are aestivating underground at an unknown location.
This is the first empirical data of overland movement within the native range of X. laevis,
and the largest mark-recapture study conducted on this species to date.
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