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ABSTRACT
In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production
of carotenoids. The production of carotenoids is important because they are used as
natural colorants in food and some carotenoids are precursors of retinol (vitamin A).
However, the identification andmolecular characterization of the carotenoid pathway/s
in species belonging to the genus Rhodotorula is scarce due to the lack of genomic
information thus potentially impeding effective metabolic engineering of these yeast
strains for improved carotenoid production. In this study, we report the isolation, iden-
tification, characterization and the whole nuclear genome and mitogenome sequence
of the endophyte R. mucilaginosa RIT389 isolated fromDistemonanthus benthamianus,
a plant known for its anti-fungal and antibacterial properties and commonly used
as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in
length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny
supports the species designation of strain RIT389 within the genus in addition to
supporting the monophyly of the currently sequenced Rhodotorula species. Further,
we report for the first time, the recovery of the complete mitochondrial genome of
R. mucilaginosa using the genome skimming approach. The assembled mitogenome is
at least 7,000 bases larger than that ofRhodotorula taiwanensiswhich is largely attributed
to the presence of large intronic regions containing open reading frames coding for
homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore,
genomic regions containing the key genes for carotenoid production were identified
in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role
in the regulation of the biotechnologically important carotenoid synthesis pathways in
yeasts.
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INTRODUCTION
Rhodotorula mucilaginosa is a common saprophytic fungus that is a part of the
Basidiomycota phylum. The organism is typically found in soils, lakes, ocean water,
milk and fruit juice (Wirth & Goldani, 2012). Of the numerous species in the genus
Rhodotorula, only Rhodotorula mucilaginosa, Rhodotorula glutinis, and Rhodotorula minuta
have been known to be pathogenic to humans (Wirth & Goldani, 2012; Zaas et al., 2003).
Despite being categorized as an opportunistic and emerging pathogen, R. mucilaginosa
from natural environments appear to possess interesting biological traits ranging from
indole acetic acid production (plant growth-promoting), bacterial quorum sensing signal
degradation (quorum quenching) to carotenoid production (Ghani et al., 2014; Ignatova
et al., 2015; Libkind, Brizzio & Broock, 2004). Despite its genomic potential, resources for
R. mucilaginosa are surprisingly scarce in public database. To date, the only genomic
resource publicly available for this species is from R. mucilaginosa strain C2.5t1 that was
isolated from the seeds of the cacao plant in Cameroon (Deligios et al., 2015). Beyond the
NCBI database, another genome of R. mulaginosa (strain ATCC58901) can be found in
the JGI portal (https://genome.jgi.doe.gov/Rhomuc1/Rhomuc1.home.html) but a user
account is required to access the genome.

Carotenoid production in fungi has been suggested as a natural mechanism to protect
against photo-oxidative damage in light-intensive environments, given the known
antioxidant property of these lipid-soluble pigments as attributed to their chemical structure
(Avalos & Carmen Limon, 2015; Cerdá-Olmedo, 1989; Echavarri-Erasun & Johnson, 2002).
The biosynthetic pathway of beta-carotene from phytoene has been elucidated in fungal
species based on cDNA cloning and enzymatic characterization and was shown to require
two major proteins namely, a dehydrogenase and a bifunctional enzyme, encoding
both cyclase and phytoene synthase activities (Sanz et al., 2011; Verdoes et al., 2003).
Leveraging on the ease of mutant screening based on visual inspection, the carotenoid
pathway in the genus Rhodotorula has been conveniently selected for the development
of genetic manipulation tool in Rhodotorula (Abbott et al., 2013; Koh et al., 2014; Sun et
al., 2017) despite the biotechnological significance of this pathway in Rhodotorula (Cutzu
et al., 2013; Davoli, Mierau & Weber, 2004; Libkind, Brizzio & Broock, 2004; Marova et al.,
2012; Taccari et al., 2012). The heterologous expression of a 3-hydroxy-3-methylglutaryl
coenzyme A reductase from Saccharomyces cerevisiae substantially increased carotenoid
production in R. mucilaginosa strain KC8 (Wang et al., 2017), indicating the potential of
metabolic engineering as alternative and/or complementary approach to growth condition
optimization (Cutzu et al., 2013; Davoli, Mierau & Weber, 2004; Marova et al., 2012) for
improving carotenoid production in Rhodotorula species.

The plant Distemonanthus benthamianus is a semi-deciduous perennial tree commonly
found in second-growth forests in Nigeria, Cameroon and Ghana (Adeniyi, Obasi & Lawal,
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2011). D. benthamianus is of interest given that the plant is used as chewing sticks for
dental and oral hygiene by members of Yoruba community in Nigeria. A relatively recent
study showed that extracts from the bark of the stems exhibit bactericidal activity against
Staphylococcus aureus and Streptococcus mutans, two bacteria that are often associated with
skin and dental infections, respectively (Adeniyi & Odumosu, 2012).

In this study, an initial screen for endophytic bacteria that are resistant to the extracts
of D. benthamianus led to the isolation of a pink-pigmented strain subsequently identified
as a fungal strain belonging to the species Rhodotorula mucilaginosa. Given the intriguing
property of this fungal species and its lack of genomic resources, we sequenced its whole
genome on the Illumina platform and performed comparative genomic analysis to gain
insight into the carotenoid biosynthetic pathway of this species and more generally the
genus Rhodotorula. Notably, we also recovered the complete mitochondrial genome of
R. mucilaginosa, the first for its species and the second for its genus, using genome skimming
approach.

MATERIALS AND METHODS
Strain isolation
Two grams of internal tissue obtained from surfaced sterilized stem of Distemonanthus
benthamianus plant was used to inoculate 25 mL of half strength tryptic soy broth (TSB)
medium and grown overnight at 30 ◦C. Microorganisms were isolated by plating 100 µL of
10 fold serial dilutions from 10−5–10−10 of the overnight culture on half strength tryptic
soy agar.

Scanning electron microscopy (SEM)
To fix the organism, 100 µL of cells from 10−7 dilution from an overnight grown culture
was suspended in 3% glutaraldehyde in 0.1 M phosphate buffer pH 7.2 for 30 min.
Following fixing, the cells were washed three times and pelleted in sterile water followed by
a secondary fixation in 2% osmium tetroxide (in H20) for 30 min. The cells were washed
three more times in sterile water followed by dehydration of the cells in 25%, 50%, 75%,
95% and 100% ethanol for 5 min in each ethanol concentration. The cells were filtered
through a 0.22 µm polyethersulfone membrane and incubated at room temperature for
1 h followed by SEM stub mounting and sputter-coating using 10 nm gold/palladium.

Whole genome sequencing
Total DNA was extracted from a 3-day-old half strength tryptic soy agar culture
of R. mucilaginosa RIT389 using the MolBio DNA extraction kit according to the
manufacturer’s instructions. The gDNA was sheared to 500 bp fragment using the Covaris
ultrasonicator and subsequently prepared for whole genome sequencing using NEBNext
UltraTMDNALibrary Prep kit for Illumina (NewEnglandBioLabs, Ipswich,MA,USA). The
generated library was subsequently quantified using Qubit and sequenced on the MiSeq
(Illumina, San Diego, CA, USA) located at the Monash University Malaysia Genomics
Facility using the run configuration of 2 × 250 bp.
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Genome assembly and annotation
Genome size, heterozygosity rate and repeat content were initially estimated using
GenomeScope (Vurture et al., 2017). Based on the observed high genome heterozygosity of
strain RIT389, dipSPAdes version 3.10.1 was used to assemble the whole genome with the
additional option of ‘‘-expect-rearrangements’’ activated (Bankevich et al., 2012). Genome
completeness was calculated using BUSCO3 based on the Basidiomycota odb9 ortholog
dataset (Simao et al., 2015). Then, gene prediction was performed using GeneMark-ES
fungal version (Borodovsky & Lomsadze, 2011) with the enhanced intron submodel that
can better accommodate sequences with and without branch point sites in the fungal
genomes.

Complete mitogenome was recovered by randomly sub-sampling 1/10 of the pair-end
reads and assembling them using SPAdes version 3.10.1 (Bankevich et al., 2012). The contig
corresponding to the whole mitogenome was re-circularized manually, as previously
described (Gan, Schultz & Austin, 2014) and annotated automatically using MFannot
(http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl). Additional
genes coding for homing endonucleases commonly found in fungal mitogenomes were
identified based on the presence of protein domains corresponding to the GIY-YIG
catalytic domain (PF01541.23) and LAGLIDADG endonuclease (PF00961.18, PF03161.12
and PF14528.5) using hmmsearch3 with an E-value cutoff of 1e−5 (Eddy, 2011).

Phylogenomics and comparative genomics
Pair-wise average nucleotide identity (ANIm) was calculated using JSpecies (Richter et
al., 2016) and subsequently visualized with the library package pheatmap in Rstudio.
Single-copy genes present in all selected fungal genomes were identified using BUSCO3
(Simao et al., 2015). The protein sequences for each ortholog were aligned and trimmed
using Muscle and trimAl (-automated1), respectively (Capella-Gutierrez, Silla-Martinez &
Gabaldon, 2009; Edgar, 2004). The final trimmed alignments were concatenated and used
to construct a maximum likelihood tree using FastTreeMP (Price, Dehal & Arkin, 2010).
The reconstructed tree was visualized and annotated using TreeGraph2 (Stöver & Müller,
2010).

Identification of proteins involved in the carotenoid biosynthesis pathway was done
by scanning the whole predicted proteome for protein domain hits (NC cutoff for
TIGRfam and 1e−5 cutoff for Pfam) to lycopene cyclase (TIGR03462, CrtY), phytoene
desaturase/dehydrogenase (TIGR02734, CrtI), squalene/phytoene synthase (PF0494,
CrtB) and isopentenyl-diphosphate delta-isomerase (TIGR02150). Visualization and
comparison of gene neighborhoods were performed using EasyFig with the default BlastN
setting (Sullivan, Petty & Beatson, 2011). Proteins coded in each genomic sub-region were
functionally annotated using Interproscan5 (Jones et al., 2014).

RESULTS AND DISCUSSION
We noticed an organism that was pink/red in color from the screen on tryptic soy agar
(Fig. 1A). Based on our previous studies of isolating endophytic organisms, we initially
thought the organism belonged to genus Serratia or a related genus based on the color of
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Figure 1 (A) Color/morphology of Rhodotorula mucilaginosa RIT389 grown on half-strength tryptic
soy agar (B) Scanning electronmicroscopy of Rhodotorula mucilaginosa RIT389 at 52.8 Kmagnifica-
tion.

Full-size DOI: 10.7717/peerj.4030/fig-1

the colonies. However, based on SEM analysis, it was initially determined that the organism
was eukaryotic and not a bacterium based on the size and the morphology depicting cell
division (Fig. 1B). The identification of the organism was subsequently confirmed using
whole genome nucleotide sequencing.

GenomeScope estimated a genome size of 18.6 mega base pairs (Mbp) with an estimated
heterozygosity of 9.29% for strain RIT389 (Fig. 2). The predicted genome size is fairly
close to the de novo assembled genome length of 19.6 Mbp contained in 250 contigs.
The assembled genome has a GC content of 60.28% with an estimated completeness of
89.70%. De novo assembly using sub-sampled reads enabled the recovery of the complete
mitogenome of strain RIT389 which is the first mitogenome reported for this genus.
Approximately 4.55% of the total pair-end reads mapped to the complete mitogenome
with an estimated coverage of 400× (Table 1). The complete mitogenome length is
47,023 bp with a GC content of 40.43% which is substantially lower than that of the
nuclear genome.

Genomic and genetic approaches support the species identification
of strain RIT389 as Rhodotorula mucilaginosa
The ITS region of strain RIT389 exhibits a 100% identity with the sequences of various
Rhodotorula mucilaginosa strains including the type strain R. mucilaginosa ATCC 201848
(Table S1). At the whole genome level, it exhibits the highest average nucleotide identity of
94.10% to strain C2.5t1, the only other genome-sequenced strain of this species at the time
of this study (Deligios et al., 2015) (Fig. 3). Similar to strain RIT389, strain C2.5t1 is also
a plant-associated and was isolated from a cacao seeds (Theobroma cacao L) in Cameroon
and shown to produce high carotenoid levels when grown in medium supplemented with
glycerol (Cutzu et al., 2013). Although the plant growth-promoting activity of both strains
RIT389 and C2.5t1 has not been studied, a third strain of R. mucilaginosa, YR07 isolated
from legume plant rhizophere, has been shown to synthesize up to 45.3 µg of indole acetic
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Figure 2 GenomeScope estimation of genome size, repeat content and heterozygosity (Kmer length=

21, Read length= 251 bp andMax kmer coverage= 1,000).
Full-size DOI: 10.7717/peerj.4030/fig-2

acid (IAA) per mL of culture medium (Ignatova et al., 2015). In addition, strain YR07 also
exhibits antifungal activity as evidenced by the formation of large inhibition zone against
Fusarium graminearum, a phytopathogenic fungi.

Whole genome phylogeny supports the monophyly of the genus
Rhodotorula
A total of 789 single-copy genes universally present in all 19 fungal strains (Fig. 4) were
used to generate a concatenated amino acid alignment consisting of 539,792 sites (234,641
informative sites). By rooting Microbotyrum violaceum and Microbotyrum saponariae
belonging to a different order i.e., Microbotryales, as the outgroup, members of the genus
Rhodotorula formed a monophyletic group cluster with maximal SH-like support with
R. graminis WP1 being basal to the rest of the Rhodotorula strains (Fig. 4). The lack of
strong SH-like support at the shallow relationship especially for members of the species
R. toluroides is most likely due to the lack of genomic differences, which is expected
given that some of the strain names are the alternative strain name of the identical type
strain. For example, the type strain designations ATCC10788, IFO0559 and JCM10020 for
R. toluroides were all derived from the original strain CBS 14. Interestingly, phylogenomic
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Table 1 Strain RIT389 genome statistic and strain information.

Organism Rhodotorula mucilaginosa
Strain name RIT389
SRA SRR5860569
Bioproject PRJNA390458
Biosample SAMN07235707

Whole genome:
Accession number NIUW01000000
Assembled genome length 19,664,434 bp
N50 length 194,287 bp
Number of contigs 250
GC% 60.28%
Predicted protein-coding gene 7,065

BUSCO Completeness (Basidiomycota odb9)
Complete BUSCOs 89.70%
Complete and single-copy BUSCOs 86.70%
Complete and duplicated BUSCO 3.00%
Fragmented BUSCO 1.60%
Missing BUSCO 8.70%
Total BUSCO groups searched 1,335

Mitochondrial Genome
Accession number MF694646
Genome size 47,023 bp
GC% 40.43%
Coverage 400×
Alignment rate 4.55%

analysis indicates that the currently sequenced strains of Rhodotorula toluroides consist
of two major clades with a Jspecies-calculated intraclade and interclade average pair-wise
ANI difference of 0.4% and 13%, respectively (Fig. 3). Rhodotorula sp. JG1b together
with R. mucilaginosa strains RIT389 and C2.5t1 formed a monophyletic group that is
sister taxa to the major R. toluroides group. The close affinity of Rhodotorula sp. JG-1b to
R. mucilaginosa is interesting as it is an eurypsychrophilic yeast isolated from ∼150,000-
year-old ice-cemented permafrost soils (Goordial et al., 2016a). Given the close genomic
affinity of R. sp. JG-1b to the currently sequenced R. mucilaginosa strains and their
diverse isolation source, comparative genomics of these strains may assist in the future
identification of novel cold adaptive traits at the molecular level in the genus Rhodotorula
(Goordial et al., 2016b).

Homing endonuclease-mediated mitogenome expansion in
Rhodotorula mucilaginosa RIT389
Given the high abundance of mitochondrial organelle in an actively dividing cell, the
depth of mitochondrial-derived sequencing reads will be substantially higher than that of
the nuclear genome. Thus, by performing a shallow sequencing (genome skimming)
on the organism of interest, it is possible to obtain sufficient read representation
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Figure 3 Pairwise average nucleotide identity calculation of Rhodotorula genomes.Genomes with the
superscript ‘‘T’’ are type strains.

Full-size DOI: 10.7717/peerj.4030/fig-3

Figure 4 Maximum likelihood tree of a concatenated amino acid alignment consisting of 537,792 sites
that represent 798 universally present single-copy genes from 19 fungal strains. Labels on branches indi-
cate shimodaira-hasegawa (SH)-like local branch support values. The scale bar indicates the average num-
ber of amino acid substitutions per site.

Full-size DOI: 10.7717/peerj.4030/fig-4

of the mitochondrial genome which subsequently allows complete assembly. Since
the first reported success of genome skimming approach in the construction of the
bighorn sheep mitochondrial genome (Miller et al., 2012), similar success in recovering
mitogenomes across different organisms has been reported (Froufe et al., 2016; Gan et
al., 2016; Krzeminska et al., 2016; Pavlova et al., 2017). In addition, plastomes and other
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Figure 5 Complete mitochondrial genome of R. mucilaginosa RIT389 compared against that of R.
taiwanensis RS1. Orange frames indicate coding sequences commonly found in a typical mitochondrial
genome. Red and blue arrows indicate transfer and ribosomal RNAs, respectively. Arrow direction repre-
sents transcriptional orientation. Dotted lines indicate intronic regions.

Full-size DOI: 10.7717/peerj.4030/fig-5

high copy number genes have also been routinely recovered and assembled with genome
skimming (Bakker, 2017; Gan, Schultz & Austin, 2014; Grandjean et al., 2017; Richter et al.,
2015; Straub et al., 2012).

Contrary to genome skimming, a high coverage whole genome sequencing will generate
an extremely high read representation of the mitogenome that can negatively affect
mitogenome assembly due to the accumulation of sequencing errors, leading to the
generation of fragmented mitogenome (Mirebrahim, Close & Lonardi, 2015). In this work,
we show that a simple subsampling approach i.e., ‘‘in-silico genome skimming’’ followed
by de novo assembly substantially improves mitogenome assembly and leads to its recovery
as a circularized contig in R. mucilaginosa.

The reconstructed mitogenome of R. mucilaginosa RIT389 is 93% similar to that of
R. taiwanensis (accession number: HF558455), the only other publicly available complete
Rhodotorula mitogenome assembled from a low output paired-end run (470 megabases
output) of Roche 454 Genome Sequencer (Zhao et al., 2013) despite the availability of
various Rhodotorula whole genome sequences in the public database.

Future study focusing on the reconstruction of complete mitogenome using in-silico
genome skimming approach from fungal whole genome sequencing data that are publicly
available in the the NCBI sequence read archive (SRA) will be instructive.

Despite exhibiting a similar mitochondrial gene arrangement and a relatively high
nucleotide sequence similarity to R. taiwanensis RS1, the assembled complete mitogenome
of strain RIT389 is at least 7,000 bp larger than that of R. taiwanensis. Gene neighborhood
analysis indicates that a majority of the length difference was largely due to the presence of
intronic regions containing homing endonuclease genes (Fig. 5) which is consistent with
other studies reporting the prevalence of fungal mitogenome size polymorphism among
species from the same genus due to intron acquisition (Joardar et al., 2012; Kanzi et al.,
2016). Homing endonucleases recognize and cleave target sites ranging from 14 to 40 base
pairs which match the intron insertion site in donor DNA (Belfort et al., 2005). The homing
endonucleases identified in bothRhodotorulamitogenomes belong to the LADLIDADGand
GIY-YIG families. Both LADLIDADG and GIY-YIG endonucleases were named according
to the signature motifs presence in their protein sequence. For example, the GIY-YIG
endonucleases are characterized by the presence of a structural domain with two short
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motifs ‘‘GIY’’ and ‘‘YIG’’ in the N-terminal (Dunin-Horkawicz, Feder & Bujnicki, 2006).
In strain RIT389, approximately 3 kilobases of the large mitochondrial ribosomal

RNA gene consist of intronic regions coding for LAGLIDADG-type endonuclease and in
contrast, these regions are completely absent in the mitogenome of R. taiwanensis RS1.
A GIY-YIG endonuclease ORF could also be identified within the 1.5 kilobases intronic
region of RIT389 nad5 gene which is absent in that of R. taiwanensis RS1. Presence of
intronic region in the mitochondrial nad5 has been previously reported in Basidiomycota
and Ascomycota species such as Trametes cingulata, Moniliophthora perniciosa, Ustilago
maydis and Rhynchosporium commune (Abbott et al., 2013; Formighieri et al., 2008;Haridas
& Gantt, 2010). However, in the reported fungal mitogenomes, the intronic ORF(s) in
nad5 encodes for LAGLIDADG-type endonuclease instead of GIY-YIG endonuclease. The
first piece of evidence for a mobile intronic GIY-YIG endonuclease ORF in fungi was
demonstrated by the efficient transfer of the GIY-YIG ORF from the second intron of
mitochondrial cytochrome b gene in Podospora curvicolla to a GIY-YIG-less allele (Saguez,
Lecellier & Koll, 2000).

Identification of a genomic region associated with carotenoid
biosynthesis
Essential genes required for the biosynthesis of carotenoid could be identified in strain
RIT389 which is consistent with its red coloration (Fig. 1A, Table S2), a visual evidence for
carotenoid production. Such notable phenotype associated with carotenoid production
presents a huge advantage for molecular cloning and characterization of this pathway. As
expected, genes involved in the carotenoid synthesis pathway were frequently cloned and
characterized from a wide variety of bacteria, archaea, fungi and plants (Li et al., 2011; Li
et al., 1996;Misawa et al., 1995; Nupur et al., 2016; Reddy et al., 2017; Van Dien et al., 2003;
Yang et al., 2015).

The genes coding for phytoene synthase (crtB), lycopene cyclase (crtY ), and phytoene
desaturase (crtI ) are located in relatively close proximity with one another while the
gene coding for the enzyme geranyl pyrophosphate synthase which is crucial for the
production of an early precursor for carotenoid is located on separate contig (Table S2).
As observed in several fungal species, the crtB and crtY genes are fused and thus code for
a bifunctional protein containing both lycopene cyclase and phytoene synthase activities
(Arrach et al., 2001; Sanz et al., 2011). Within the genus Rhodotorula, the gene coding
for carotenoid oxygenase (crtX) responsible for the cleavage of carotenoid to retinal
(Vitamin A) and crtBY are located in close proximity and are convergently transcribed
except in the species R. mucilaginosa, whereby crtX and crtBY are divergently transcribed
and are separated by a large gene coding for OPT family small oligopeptide transporter
(Fig. 6). In Fusarium fujikuroi, mutation in the crtX gene led to the overproduction of
carotenoid (Prado-Cabrero et al., 2007), suggesting that carotenoid oxygenase is involved
in the regulation of the carotenoid synthesis through a negative feedback mechanism. The
notable difference in gene arrangement and transcription orientation involving crtX can
therefore affect the regulation of carotenoid synthesis and accumulation in R. mucilaginosa
(Noble & Andrianopoulos, 2013). It is also worth noting that the crtI gene in strain RIT389
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Figure 6 Comparison of genomic sub-region containing the gene cluster associated with carotenoid
biosynthetic pathway.Orange frames within the teal arrows indicate the coding sequences in the exonic
regions of the corresponding genes.

Full-size DOI: 10.7717/peerj.4030/fig-6

was predicted as two separate genes which is unexpected given that the gene region exhibits
high nucleotide homology and coverage to its respective orthologs in strains WP1 and
Ct2.5. Whole transcriptome analysis of strain RIT389 will be necessary to validate the
predicted spliced crtI gene in the future.

CONCLUSION
We demonstrate the feasibility of reconstructing the whole genome and complete
mitogenome of Rhodotorula mucilaginosa using only Illumina short reads. The whole
genome of R. mucilaginosa is the second to be reported to date for its species. Despite the
availability of various whole genome sequences of Rhodotorula in public databases, the
complete and annotated mitogenome of Rhodotorula mucilaginosa strain RIT389 is the first
to be successfully reconstructed via in-silico genome skimming and annotated for its species.
We also highlight the considerable dissimilarity in the syntheny of carotenoid synthesis
gene cluster among Rhodotorula strains with potential implications in the regulation of
carotenoid production.
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