Generation and mimotope identification of agylcosylated neutralizing human monoclonal antibody against 4 serotypes of dengue virus without ADE activity (#18165)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes

Editor and deadline

Mario Alberto Flores-Valdez / 16 Jun 2017

Files 5 Figure file(s)

2 Table file(s)

4 Other file(s)

Please visit the overview page to $\frac{\mbox{download and review}}{\mbox{download and review}}$ the files

not included in this review PDF.

Declarations Cell lines were used.

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Generation and mimotope identification of agylcosylated neutralizing human monoclonal antibody against 4 serotypes of dengue virus without ADE activity

Subenya Injampa 1,2 , Nataya Muenngern 1 , Chonlatip Pipattanaboon 1 , Surachet Benjathummarak 1 , Khwanchit Boonha 1 , Waranya Wongwit 2 , Hathairad Hananantachai 2 , Pongrama Ramasoota 1,2 , Pannamthip Pitaksajjakul $^{\text{Corresp. }1,2}$

Corresponding Author: Pannamthip Pitaksajjakul Email address: pannamthip.pit@mahidol.ac.th

Background. Dengue disease is a leading cause of illness and death in the tropics and subtropics. Most severe cases occur among patients secondarily infected with a different dengue virus (DENV) serotype from the first infection, resulting in antibody-dependent enhancement activity (ADE). Our previous study generated the neutralizing human monoclonal antibody, D23-1B3B9 (B3B9), targeted to 1 main II of E protein, which showed strong neutralizing activity (NT) to four DENV serotypes. However, at subneutralizing concentrations, it showed ADE activity in vitro. In addition, for understanding of antibody-antigen interaction, determination of an epitope residue of this antibody is further required. Nods. In this study, phage display random peptide libraries were used to identify the common B-cell epitopes that recognized by cross neutralizing human monoclonal antibody clone B3B9. Further, to generate a similar antibody that avoids ADE, we constructed a new expression plasmid using the existing IgG heavy chain plasmid as a template for Fc modification at position N297Q by site-directed mutagenesis. The resulting plasmid was then co-transfected with a light chain smid to produce full recombinant IgG (rlgG) in mammalian cells (N297Q-B3B9). This rlgG was characterized for neutralizing and enhancing activity by using different FcxR bearing cells. To produce sufficient quantities of B3B9 rlgG for further characterization, CHO-K1 cells stably secreting N297Q-B3B9 rlgG were then established. Results. The epitope of human monoclonal antibody clone B3B9 was located in the N-terminal fusion loop of E protein of DENV (107LXXXG111) based on the obtained consensus sequences. With Fc modification, the generated N297Q-B3B9 rlgG showed cross-neutralizing activity to all four DENV serotypes, similar to wild type rlgG. In both FcyRI- and RII-bearing THP-1 cells and FcyRII-bearing K562 cells, N297Q-B3B9 rlgG lacked ADE activity against all DENV serotypes at sub-neutralizing concentrations. Fortunately, the N297Q-B3B9 rlgG secreted from these stable cells showed NT and ADE

¹ Center of Excellence for Antibody Reserach, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

² Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

activities similar hose of the N297Q-B3B9 ring obtained from transient expression. The stable CHO-K1 cells can be further developed as high producer stable cells and used for further characterization as a promising dengue therapeutic candidate. Discussions. To our knowledge, this is the first aglycosylated human monoclonal antibody rlgG, targeted to fusion loop of EDII, which showed cross-neutralizing activity to 4 serotypes of DENV, but not caused any viral enhancement activity *in vitro*. A protective activity in animal model is further required to evaluate its application as immune therapy.

- 1 Generation and mimotope identification of agylcosylated neutralizing human monoclonal
- 2 antibody against 4 serotypes of dengue virus without ADE activity
- 3 Subenya Injampa^{a,b}, Nataya Muenngern^b, Chonlatip Pipattanaboon^b, Surachet Benjathummarak^b,
- 4 Khwanchit Boonha^b, Waranya Wongwit^a, Hathairad Hananantachai^a, Pongrama Ramasoota^{a,b},
- 5 Pannamthip Pitaksajjakul^{a,b,*}

- 7 a Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol
- 8 University, Thailand
- 9 b Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol
- 10 University, Thailand

11

- **Corresponding author at: Department of Social and Environmental Medicine, Faculty of
- 13 Tropical Medicine, Mahidol University, Bangkok, Thailand, 420/6 Ratchathewi, Bangkok,
- 14 Thailand, 10400
- 15 E-mail address: pannamthip.pit@mahidol.ac.th (P. Pitaksajjakul).

16

17

18 Abstract

19	Background. Dengue disease is a leading cause of illness and death in the tropics and
20	subtropics. Most severe cases occur among patients secondarily infected with a different dengue
21	virus (DENV) serotype from the first infection, resulting in antibody-dependent enhancement
22	activity (ADE). Our previous study generated the neutralizing human monoclonal antibody,
23	D23-1B3B9 (B3B9), targeted to 1st domain II of E protein, which showed strong neutralizing
24	activity (NT) to all four DENV serotypes. However, at sub-neutralizing concentrations, it
25	showed ADE activity in vitro. In addition, for understanding of antibody-antigen interaction,
26	determination of an epitope residue of this antibody is further required.
27	Methods. In this study, phage display random peptide libraries were used to identify the
28	common B-cell epitopes that recognized by cross neutralizing human monoclonal antibody clone
29	B3B9. Further, to generate a similar antibody that avoids ADE, we constructed a new expression
30	plasmid using the existing IgG heavy chain plasmid as a template for Fc modification at position
31	N297Q by site-directed mutagenesis. The resulting plasmid was then co-transfected with a light
32	chain plasmid to produce full recombinant IgG (rIgG) in mammalian cells (N297Q-B3B9). This
33	rIgG was characterized for neutralizing and enhancing activity by using different FcyR bearing
34	cells. To produce sufficient quantities of B3B9 rIgG for further characterization, CHO-K1 cells
35	stably secreting N297Q-B3B9 rIgG were then established.
36	Results. The epitope of human monoclonal antibody clone B3B9 was located in the N-terminal
37	fusion loop of E protein of DENV (107LXXXG111) based on the obtained consensus sequences
38	With Fc modification, the generated N297Q-B3B9 rIgG showed cross-neutralizing activity to all
39	four DENV serotypes, similar to wild type rIgG. In both FcγRI- and RII-bearing THP-1 cells and
40	FcγRII-bearing K562 cells, N297Q-B3B9 rIgG lacked ADE activity against all DENV serotypes

41	at sub-neutralizing concentrations. Fortunately, the N297Q-B3B9 rIgG secreted from these stable
42	cells showed NT and ADE activities similar to those of the N297Q-B3B9 rIgG obtained from
43	transient expression. The stable CHO-K1 cells can be further developed as high producer stable
44	cells and used for further characterization as a promising dengue therapeutic candidate.
45	Discussions. To our knowledge, this is the first aglycosylated human monoclonal antibody rIgG,
46	targeted to fusion loop of EDII, which showed cross-neutralizing activity to 4 serotypes of
47	DENV, but not caused any viral enhancement activity in vitro. A protective activity in animal
48	model is further required to evaluate its application as immune therapy.
49	
50	Keywords: Therapeutic antibody, Dengue virus, Neutralization, Human monoclonal antibody,
51	Epitope mapping
52	
53	Introduction
54	Dengue disease, transmitted by mosquito-borne infection, is a leading cause of illness and
55	death in the tropics and subtropics. More than one-third of the world population lives in areas at
56	
57	risk of dengue virus (DENV) infection (Natasha Evelyn and Mikkel, 2013). DENV is the
3,	risk of dengue virus (DENV) infection (Natasha Evelyn and Mikkel, 2013). DENV is the member of the <i>Flavivirus</i> genus in the <i>Flaviviridae</i> family. There are four antigenically different
58	
	member of the <i>Flavivirus</i> genus in the <i>Flaviviridae</i> family. There are four antigenically different serotypes of DENV (DENV-1 to DENV-4) (Kuhn et al., 2002). Primary infection with one DENV serotype induces the production of homotypic neutralizing antibodies, which provide
58	member of the <i>Flavivirus</i> genus in the <i>Flaviviridae</i> family. There are four antigenically different serotypes of DENV (DENV-1 to DENV-4) (Kuhn et al., 2002). Primary infection with one
58 59	member of the <i>Flavivirus</i> genus in the <i>Flaviviridae</i> family. There are four antigenically different serotypes of DENV (DENV-1 to DENV-4) (Kuhn et al., 2002). Primary infection with one DENV serotype induces the production of homotypic neutralizing antibodies, which provide
58 59 60	member of the <i>Flavivirus</i> genus in the <i>Flaviviridae</i> family. There are four antigenically different serotypes of DENV (DENV-1 to DENV-4) (Kuhn et al., 2002). Primary infection with one DENV serotype induces the production of homotypic neutralizing antibodies, which provide lifelong immunity against the infecting serotype and typically cause asymptomatic or self-limited

64	increased risk of developing severe disease, including life-threatening dengue hemorrhagic
65	fever/dengue shock syndrome (DHF/DS This is because the production of cross-reactive but
66	non-neutralizing antibodies can lead to higher viremia resulting from antibody-dependent
67	enhancement activity (Schmidt, 2010). currently, there is no available antiviral drug specific for
68	all four DENV serotypes. As such, therapeutic antibodies able to neutralize all four DENV
69	serotypes, particularly fully human monoclonal antibodies (HuMAbs), are considered to be the
70	main option for passive immune therapy.
71	Previously, we generated HuMAb clone D23-1B3B9 (B3B9) with strong in vitro
72	neutralizing activity (NT) against DENV-1 to DENV-4. This HuMAb targeted to domain II of
73	envelope proteins residue 52-132, analyzed by western blot using truncated E protein
74	(Setthapramote et al., 2012; Sasaki et al., 2013). However, the information of epitope residues
75	need to be clarified. wis study, a phage display random peptide libraries were used to identify
75 76	need to be clarified. is study, a phage display random peptide libraries were used to identify the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human
76	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human
76 77	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human monoclonal antibody.
76 77 78 79	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human monoclonal antibody. Moreover, investigating the viral infection enhancing activity of this HuMAb clone B3B9
76 77 78 79	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human monoclonal antibody. $Moreover, investigating the viral infection enhancing activity of this HuMAb clone B3B9 \\ on Fc-gamma receptor (Fc\gammaR)-bearing cells revealed an increasing in DENV infection at sub-$
76 77 78 79 80	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human monoclonal antibody. $Moreover, investigating the viral infection enhancing activity of this HuMAb clone B3B9 \\ on Fc-gamma receptor (Fc\gammaR)-bearing cells revealed an increasing in DENV infection at subneutralizing concentrations, which limit its application as a therapeutic candidate (Sasaki et al.,$
76 77 78 79 80 81	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human monoclonal antibody. Moreover, investigating the viral infection enhancing activity of this HuMAb clone B3B9 on Fc-gamma receptor (Fc\(\gamma\)R)-bearing cells revealed an increasing in DENV infection at subneutralizing concentrations, which limit its application as a therapeutic candidate (Sasaki et al., 2013). Here, to modify that antibody for therapeutic use as an antiviral HuMAb, we aimed to diminish its enhancing activity. Constructed plasmids expressing antibody heavy chain (HC) and light chain (LC) genes and modified the Fc region of the HC constant domain 2 at position
76 77 78 79 80 81	the common B-cell epitopes that recognized by this cross-neutralizing anti-dengue human monoclonal antibody. Moreover, investigating the viral infection enhancing activity of this HuMAb clone B3B9 on Fc-gamma receptor (FcyR)-bearing cells revealed an increasing in DENV infection at subneutralizing concentrations, which limit its application as a therapeutic candidate (Sasaki et al., 2013). Here, to modify that antibody for therapeutic use as an antiviral HuMAb, we aimed to diminish its enhancing activity. Constructed plasmids expressing antibody heavy chain (HC)

86	the Fc-modified rIgG as a potential therapeutic candidate for dengue treatment, its NT and ADE
87	activity were determined in vitro and compared with those of wild type rIgO.
88	
89	Materials and Methods
90	Cell lines and DENV strains
91	HEK293T cells were maintained in Dulbecco's modified Eagle medium (Gibco, Grand
92	Island, New York, USA.) with 10% fetal bovine serum (FBS). For NT test, Vero cells were
93	cultured in minimal essential medium (MEM) (GE Healthcare UK Ltd., Buckinghamshire, UK)
94	with 10% fetal bovine serum. THP-1 and K562 cells, which were used in ADE assays, were
95	cultured in RPMI 1640 medium (Gibco) with 10% FBS. The DENV strains used in this study
96	were the Mochizuki strain of DENV1, the 16681 strain of DENV2, the H87 strain of DENV3,
97	and the H241 strain of DENV4. All DENVs were propagated in C6/36 cells, which were
98	maintained in Leibovitz's L-15 medium (Gibco) supplemented with 10% FBS and 0.3% of
99	BACTO Tryptose Phosphate Broth (TPB) (sigma-aldrich, Missouri, USA). CHO-K1 cens were
100	maintained in MEM medium supplemented with 10% FBS and 1% non-essential amino acid
101	(Gibco).
102	Human monoclonal antibody
103	Human monoclonal antibody clone B3B9 that show cross-neutralizing activity to 4 serotypes of
104	DENV was used in this study for mapping the epitope using random 7 and 12 amino acid peptide
105	phage display libraries.
106	Epitope mapping by phage display of random peptide abraries
107	Phage affinity selection (Biopanning)

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

Purified B3B9 HuMAb was used in phage display panning experiment to characterize their binding epitopes. Panning was performed by using Ph.D.-12 and Ph.D.-C7C Phage Display Peptide Library Kit (New England Bio Labs Inc., UK) as previously described, with some modifications (Tewawong et al., 2012). Briefly, 50 µl of protein A/G magnetic beads were blocked with BSA by incubated at room temperature for 1 hr. and washed Phages (5×10¹⁰) plaque forming units (PFU)) were incubated at room temperature for 30 minutes with purified B3B9 HuMAb to a final volume of 200 µl with Tris Buffered Saline with Tween (TBST). Phage - HuMAb mixture was transferred to the tube containing the washed magnetic beads and incubated for 20 minutes at room temperature. After incubation, nonbinding phages that unable to be captured on magnetic beads, were washed with washing buffer (0.05\% TBST). The bound phages were eluted with 1 ml glycine elution buffer (0.2 M Glycine-HCl, 1 mg/ml BSA, pH 2.2). Then, the bound phages were amplified by direct infection to *Escherichia coli* (*E. coli*) ER2738. The amplified phages were purified by precipitation with 20% PEG 8000/2.5 M NaCl and used in the next cycle. Three rounds of selection were performed. Specificity of selected phage clones were confirmed by phage ELISA. Briefly, 96-well microtiter plates were coated with 100 µl of HuMAb, 2 wells for each sample, at 4°C for overnight. Then, the wells were washed for 2 times with 0.05% Phosphate Buffered Saline with Tween (PBST). After that, wells that coated with HuMAb including well for BSA control were filled with blocking buffer. Amplified phages of each clone were also being coated at this step in another well for phage expression control. After incubation, plates were washed as above for 5 times. At this step, E.coli lysate of control M13 phages (no fusion peptide) amplification were added to one of HuMAb-coated well and amplified phages (with fusion peptide) were added to the other HuMAb-coated well as well as BSA control well. The wells of phage expression control were blocked during this step. The

131	plates were incubated and washed as above. Consequently, anti-M13 antibody-HRP conjugated;
132	dilute 1:5,000 in blocking buffer were added. All incubations were performed in humidity
133	chamber at 37°C, for 1 hr. After washing, the reaction were developed using 3,3′,5,5′-
134	Tetramethylbenzidine (TMB) substrate (Sigma-aldrich), and terminated the reaction by adding
135	$100~\mu l$ of $2.0~M~H_2SO_4$. The absorbance was measured at $450~nm$ using ELISA reader (TECAN).
136	Plasmids that isolated from positive clone of ELISA were sequenced with -96 gIII sequencing
137	primer 5'-TGA GCG GAT AAC AAT TTC AC-3'. The inserted random 7 and 12 amino acids were identified and analysed. The matched peptides with dengue viral genome were analyzed by
138	were identified and analysed. The matched peptides with dengue viral genome were analyzed by
139	using BioEdit program.

Phage affinity binding by inhibition ELISA

After sequences analysis, the candidate phage from each type of consensus peptide specifically bind to B3B9 HuMAb was further confirmed their binding activity with target antibody by phage inhibition ELISA. Firstly, 2-fold serial dilutions of phage were prepared and bind to the HuMAb by ELISA to determine the reciprocal phage dilution of each clone of amplified phages. The bound phage was detected using anti-M13 polyclonal antibody, and developed signal with TMB substrate. For inhibition ELISA, B3B9 HuMAb was prepared with 2-fold serial dilution started at 20 µg/ml. Then, the diluted antibody was incubated with equal volume of phage at specified dilution at room temperature for 1 hr. After incubation, the mixtures were transferred to HuMAb pre-coated plate, and incubated for another 1 hr. The plate was then washed. Free phages, left from binding in solution phase, that bind to coated HuMAb on the plate were detected by anti-M13-HRP, and signal was developed with TMB substrate. The absorbance values were measured at 450 nm using an ELISA reader (TECAN). Absorbance

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

values of each concentration (A) of antibody in solution phase were divided by absorbance values of no antibody (control) (A0), resulting in normalized values (A/A0).

Generation of aglycosylated human monoclonal antibody clone B3B9

Plasmids for rIgG production

Variable HC and LC sequences of B3B9 HuMAb were previously isolated from hybridoma cells. HC and LC expression plasmids containing variable and constant regions were constructed as previously described (Pitaksajjakul et al., 2014). The HC plasmid was used as a template for site-directed mutagenesis with the In-Fusion Cloning System (In-Fusion® HD Cloning Plus; Clontech Laboratories Inc., Shiga, Japan). Primers were designed ording to the manufacturer's instructions to mutate the amino acid at position 297 from asparagine to glutamine. This system combines the action of the In-Fusion HD enzyme with inverse polymerase chain reaction (PCR), which generates linearized DNA from a plasmid template. The PCR reaction was composed of the CloneAmp Hifi PCR premix, 300 nM each of forward and reverse primer, 5 ng of plasmid, and distilled water to final volume of 25 ul. The amplification was performed with 35 cycles of 98 °C for 10 s, 55 °C for 15 s, and 72 °C for 5 s. The inverse PCR products were gel-purified using a PureLink® Quick Gel Extraction Kit (Invitrogen, California, USA) following the manufacturer's protocol. The linearized plasmids obtained from inverse PCR were then fused by the In-Fusion enzyme, by following the manufacturer's instructions. The reaction was performed at 50 °C for 15 mins. The in-fusion reaction was chemically transformed into Stella chemical competent cells supplied by the kit. Individual clones were randomly selected for DNA sequencing.

175

174

1/6	DNA sequencing and plasmid preparation
177	The sequences of the mutated HC plasmids were confirmed by DNA sequencing.
178	Plasmids that contained the target mutation were amplified in E. coli and isolated using a
179	Purelink TM plasmid Midiprep kit (Invitrogen) from 100 ml culture for further transfection in
180	mammalian cells.
181	
182	Transient expression of N297Q-B3B9 rIgG in HEK293T cells
183	Plasmids expressing N297Q-B3B9 HC and LC were transfected to HEK293T cells to
184	produce whole rIgG with the N297Q mutation as previously described (Pitaksajjakul et al.,
185	2014). The culture medium containing secreted N297Q-B3B9 rIgG was collected and used in
186	immunofluorescence assays (IFAs) to determine DENV-binding activity. The N297Q-B3B9
187	rIgG was purified using a protein A affinity column. The purity of purified antibody was
188	determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis.
189	
190	IFA for DENV-binding activity
191	IFAs were used to determine the binding and specificity of N297Q-B3B9 rIgG for all
192	four DENV serotypes. IFA plates were prepared by infecting Vero cells with DENV at a
193	multiplicity of infection of 0.01. The plates were incubated for 3 days before being fixed and
194	permeabilized with 3.7% paraformaldehyde and 0.1% Triton X-100, respectively. Culture fluid
195	from transfected cells was added, and the plates were incubated at 37 °C for 1 h. AlexaFluor
196	488-conjugated anti-human IgG (1:1,000 dilution) (Invitrogen) was added as secondary
197	antibody. The result was observed under fluorescence microscope (IX71, Olympus). For this
198	assay. PBS was used as a negative control.

1	9	9

HuMAb isotyping

The IgG isotype of the N297Q-B3B9 rIgG was determined by PCR as previously described (Omokoko et al., 2014) using complementary DNA isolated from HuMAb clone B3B9 hybridoma as a template. The gene-specific primers used to amplify IgG1, -2, -3, and -4 are listed in Supplementary Table 1. IgG1 and IgG3 were amplified using the same forward primer. An identical reverse primer was used to amplify all IgG isotypes. These primers were amplified at the hinge region between the Fab and Fc parts that produce differ ized PCR products. The expected sizes of the PCR products were 211, 207, 346, and 210 bp for IgG1, IgG2, IgG3, and IgG4, respectively. The PCR reaction was composed of 0.5 µg of cDNA, 1 mM Tris-HCl (pH 8.0), 5 mM KCl, 1.25 mM deoxyribonucleotide triphosphate (dNTP), 1.25 units of ExTaq DNA polymerase (TAKARA, Shiga, Japan), and 5 mM of each primer, with distilled water to a final volume of 25 µl. The amplification of each primer pairs was performed in separate reaction with 35 cycles of 94 °C for 30 s, 65 °C for 30 s, and 72 °C for 30 s. The PCR products were separated by agarose gel electrophoresis and visualized by staining with SYBR Safe DNA Gel stain (Invitrogen).

Foci reduction neutralization test (FRNT)

FRNT assay was performed as previously described (Pitaksajjakul et al., 2014). DENV were mixed with different concentrations of purified HuMAbs (B3B9 or N297Q-B3B9 rIgG) and incubated at 37 °C for 1 h. Each mixture was added to Vero cells in 96-well cell culture plates and incubated for 2 h. Then, the plates were overlayed with 2% carboxymethyl cellulose (CMC) in MEM medium with 2% FBS and incubated for 2 days for DENV4 and for 3 days for DENV1,

2, and 3. After that, the plates were fixed with 3.7% paraformaldehyde/PBS and 0.1% Triton X-
100/PBS. Immunostaining was performed by an incubation with anti-DENV human antibodies,
followed by Alexa-conjugated anti-human IgG (H+L) (1:1,000 dilution). Foci numbers were
counted under a fluorescence microscope (IX71, Olympus). The percent reduction was
calculated by comparing the foci number for each antibody concentration with the number of
foci obtained from a virus-PBS mixture (negative control).

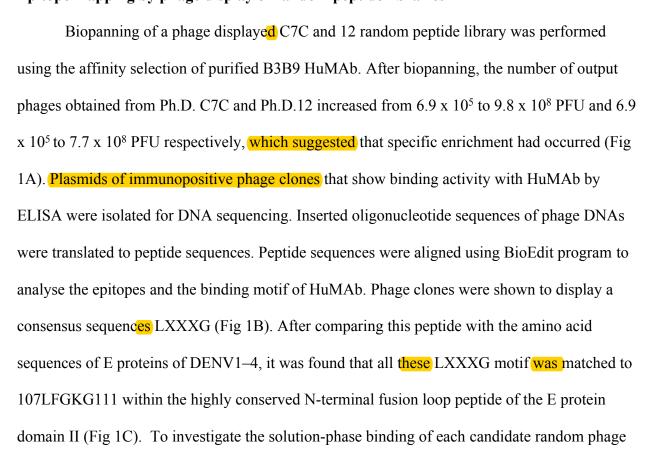
Antibody dependent enhancement (ADE) assay on K562 cells

The ADE activity of the N297Q-B3B9 rIgG was also assessed on FcγRIIa-bearing K562 cells (Konishi et al, 2010). Antibodies at serial four-fold dilutions and viruses were mixed in 10% FBS RPMI medium in 96-well poly-L-lysine-coated plates (Corning Inc., New York, USA) and incubated at 37 °C. After 2 h, 50 μl of 2 ×106 cells/ml K562 cells were added. The cell—HuMAb–virus mixture was co-cultured at 37 °C under 5% CO₂ for 2 days. The cells were then fixed with an acetone/methanol fixing solution at –20 °C. Immunostaining was performed by adding an anti-DENV monoclonal antibody and incubating at 4 °C overnight. Then, horseradish peroxidase-conjugated anti-human IgG (H+L) diluted in 0.05% Tween and 1% FBS in PBS was added, and the samples were incubated at 37 °C for 1 h. The signal was developed with a DAB substrate solution (KPL, Maryland, USA), and the infected cells were counted. The balancing of neutralizing and enhancing activity was determined based on the number of DENV-infected cells obtained from the well without antibody.

Antibody dependent enhancement (ADE) assay on THP-1 cells

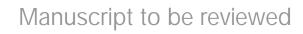
DENV at a multiplicity of infection of 0.1 was incubated with serially diluted antibodies in serum-free RPMI medium at 37 °C for 1 h. Then, 150 μl of 5×10⁵ cells/ml THP-1 cells, which express both FcγRI and II on their surfaces, was added, and the samples were incubated at 37 °C under 5% CO₂. After 2 h, RPMI medium with 4% FBS was added. The cell–HuMAb–DENV solution was incubated for 3 days, after which RNA was extracted from the infected cells using TRIzol® reagent (Invitrogen). The viral RNA was quantified by a one-step Realtime PCR using glyceraldehyde 3-phosphate dehydrogenase (GADPH) as an internal control (Sasaki et al., 2013). The result is presented as the fold enhancement of virus copies compared with the virus–PBS mixture (control).

Generation of stable, antibody-secreting CHO-K1 cells


The HC-expressing constructed plasmid (pQCXIP-CH) contained a puromycin-resistant gene and the LC-expressing constructed plasmid (pQCXIH-CL) contained a hygromycin-resistant gene. After determining the optimal concentrations of the corresponding two antibiotics, stable antibody-secreting CHO-K1 cells were selected using puromycin and hygromycin at 8 µg/ml and 800 µg/ml, respectively. For stable cell generation, briefly, CHO-K1 cells were seeded in a 6-well cell culture plate at the day before transfection to obtain a cell density of 90–95% on the next day. The medium was replaced with Opti-MEM I reduced serum medium. Plasmid DNA was mixed with transfection reagent (Lipofectamine 2000) and added to the cells, which were then incubated for 5 h. After that, the medium was replaced with culture medium (10% FBS, 1% NEAA MEM). The cells were incubated at 37 °C with 5% CO₂ for 24 h. After that, the medium was replaced with culture medium containing two antibiotics at the concentrations specified above. The medium was changed every 3–4 days until 60% of live cells

were observed. The transfected cells were used for cell cloning by limiting dilution on 96 well-cell culture plates and incubated for 10–14 ways. The positive clones that were able to secrete the target anti-DENV rIgG were selected by IFA using the culture supernatant of each well containing a single stable clone. The cells were scaled up for further characterization. The level of IgG contained in the culture fluid of each positive clone was roughly determined by an IgG quantitation enzyme-linked immunosorbent assay (Bethyl Laboratories, Inc., Texas, USA.). The functionalities of the purified N297Q rIgG secreted from the stable cells were confirmed by IFAs, NT and ADE assays.

Results


Epitope mapping by phage display of random peptide libraries

290	peptide with target B3B9 HuMAb, eight candidates phage clones which matched to the motif of
291	107LXXXG111 were selected for this study (Fig 1B, Table 1). The adjusted concentration of
292	phage lysates was From phage inhibition ELISA, it was found that the binding of all phage
293	clones were inhibited by HuMAb with dose-dependent manner, as shown in Fig 1D.
294	
295	Generation of agylcosylated HuMAb clone B3B9
296	
297	Plasmid construction and expression
298	The substitution of amino acid at position 297 from Asparagine to glutamine was
299	successfully created. After transfection those HC and LC plasmid to HEK293T cell, the
300	successful production of wild type and mutant (N297Q) rIgG was verified by the optimal binding
801	activity observed via IFA. The N297Q-B3B9 rIgG displayed cross-reactivity to all four DENV
802	serotypes similarly to the wild type rIgG (Fig. 2).
303	
804	IgG isotyping
805	Reverse transcription PCR was performed to determine the N297Q-B3B9 rIgG isotype.
806	Using B3B9 hybridoma complementary DNA as template, the PCR product with approximately
807	211 bp of IgG1 was observed (data not shown)
808	
809	Neutralizing activity by FRNT
310	To determine the function rIgG, we assessed the NT of N297Q-B3B9 rIgG and B3B9
311	rIgG in Vero cells. N297Q-B3B9 rIgG displayed almost the same level of NT as the B3B9 rIgG
312	for all DENV serotypes. The NT levels of various concentrations of these two antibodies against

313	all four DENV serotypes are shown in Fig. 3A. Among these four serotypes, B3B9 and N297Q-
314	B3B9 rIgG showed identical NT50s to DENV-2, 3, and 4 (0.125 μ g/ml for DENV2 and 2 μ g/ml
315	for both DENV3 and DENV4). However, the NT50 concentration against DENV1 of N297Q-
316	B3B9 rIgG was slightly higher than that of B3B9 rIg Fig.3B).
317	
318	Antibody dependence enhancement 562 cell
319	To study the balancing of NT and ADE in Fc receptor bearing K562 cell, our B3B9 rIgG
320	could neutralized DENV2 3, but not DENV1 and 4. Moreover, this antibody induced a virus
321	enhancement at concentrations 400-0.0015 $\mu g/ml,0.39-0.006$ $\mu g/ml,100-0.0015$ $\mu g/ml,$ and
322	400-0.00038 μg/ml for DENV1, 2, 3, and 4, restrively (Fig. 4A). In contrary, N297Q-B3B9
323	rIgG showed NT for all four DENV serotypes and showed no enhancing activity in any of the
324	tested antibody concentrations.
325	
326	Antibody dependence enhancement FHP-1 cell
327	In THP-1 cells, mutant IgG (N297Q-B3B9) that cannot bind to Fc γ R showed a complete
328	reduction of ADE activity in all tested antibody concentrations. In contrast, wild type rIgG
329	induced a 9541-, 43-, 3061-, and 2020-fold enhancement in the virus v number compared
330	with the control for DENV1, 2, 3, and 4, respectively (Fig. 4B).
331	
332	Generation and characterization of CHO-K1 stable cell lines producing N297Q-B3B9 rIgG
333	From 125 stable clones that we screened, one showed the highest IgG secretion level
334	(9,587 μg/ml). This clone was continually cultured to collect culture fluid for purification.
335	Preliminary study against DENV2 snowed that all tested concentrations of the modified rIgG

secreted from the stable cell line showed similar viral NT (Fig. 5A) and no ADE activity (Fig.

337 5B)

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

336

Discussion

Due to the complexity of DENV infection and pathogenesis (Marasco and Sui, 2007), the ideal therapeutic antibodies should be fully human-derived and capable of inhibiting all four serotypes to reduce the risk of ADE causing more severe symptoms (Chan et al., 2013). We previously generated cross-neutralizing HuMAb B3B9 (Setthapramote et al., 2012). The identification of B cell epitope of this antibody is crucial to understand the antibody/epitope interaction at a molecular level. Recently, several epitope mapping of MAb (murine and human) specific to dengue virus have been studied (Shrestha et al., 2010; Sukupolvi Petty S et al., 2010, Schieffelin et al., 2010; Beltramello et al., 2010; de Alwis et al., 2012). It was found that MAbs generated from mice are mostly serotype-specific that targeted to DIII of envelope protein (Shrestha et al., 2010). However, most of the HuMAbs were targeted to DI-II of envelope proteins which is more cross-reactive (Beltramello et al., 2010; de Alwis et al., 2012). Correlated with our previous studies, the selected cross-neutralizing HuMAb B3B9 also targeted to DII of envelope proteins residue 52-132, analyzed by western blot using truncated E protein (Sasaki et al., 2013). However, the detail of epitope residue needs to be clarified. To determine the critical residue using phage display random peptide library, we mapped the epitopes of our HuMAb to LXXXG which correspond to 107LFGKG111 located in the conserved N-terminal fusion loop of EDII. This is a major target epitope of human antibodies for NT and ADE activity. Ithough this HuMAb showed strong NT to all DENV serotypes, at sub-

358	neutralizing concentrations, it promoted ADE (Sasaki et al., 2013). To overcome that problem,
359	here, we then generated rIgG with an engineered Fc.
360	The Fc N-linked carbohydrate (Asn-297) is the oligosaccharide attachment residue in the
361	CH2 domain. This site is important for maintaining antibody structure, and its modification can
362	change the binding affinity between the Fc region and the FcyR that are present on B-cells,
363	natural killer cells, granulocytes, and monocytes (Subedi and Barb, 2015). First, we evaluate the
364	generated N297Q-B3B9 rIgG for its activity in Vero cell and found that the engineering antibody
365	showed proper neutralizing activity comparable to B3B9 rIgG, except DENV1, with lower NT
366	activity of N297Q-B3B9 comparing with B3B9 rIgG. This might occurred from its low
367	efficiency of B3B9 rIgG to neutralize DENV1 (Sasaki et al., 2013), and may effect to the varied
368	NT50 concentration between B3B9 and N297Q-B3B9 rIgG.
369	Next, since Vero cell is used only for evaluated neutralizing activity (Setthapramote et
370	al., 2012; Sasaki et al., 2013), because it is absent of FcyR. Therefore, using K562 cells that
370 371	al., 2012; Sasaki et al., 2013), because it is absent of FcyR. Therefore, using K562 cells that express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified
371	express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified
371 372	express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified ADE assay, the virus infection enhancement is represented as the number of infected cells from
371 372 373	express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified ADE assay, the virus infection enhancement is represented as the number of infected cells from each antibody concentration compared with those from a control performed in the absence of
371372373374	express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified ADE assay, the virus infection enhancement is represented as the number of infected cells from each antibody concentration compared with those from a control performed in the absence of antibody. In this cell type, we found that B3B9 rIgG that showed cross-neutralizing activity to 4
371372373374375	express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified ADE assay, the virus infection enhancement is represented as the number of infected cells from each antibody concentration compared with those from a control performed in the absence of antibody. In this cell type, we found that B3B9 rIgG that showed cross-neutralizing activity to 4 DENV serotypes in Vero cell, only neutralized DENV 2 and 3, but not DENV1 and 4. In
371 372 373 374 375 376	express FcyR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified ADE assay, the virus infection enhancement is represented as the number of infected cells from each antibody concentration compared with those from a control performed in the absence of antibody. In this cell type, we found that B3B9 rIgG that showed cross-neutralizing activity to 4 DENV serotypes in Vero cell, only neutralized DENV 2 and 3, but not DENV1 and 4. In contrary, N297Q-B3B9 rIgG showed cross-neutralizing activity to 4 serotypes of DENV. This is
371 372 373 374 375 376 377	express FcγR can assesses the balancing of NT and ADE (Konishi et al., 2010). In this simplified ADE assay, the virus infection enhancement is represented as the number of infected cells from each antibody concentration compared with those from a control performed in the absence of antibody. In this cell type, we found that B3B9 rIgG that showed cross-neutralizing activity to 4 DENV serotypes in Vero cell, only neutralized DENV 2 and 3, but not DENV1 and 4. In contrary, N297Q-B3B9 rIgG showed cross-neutralizing activity to 4 serotypes of DENV. This is the advantage of using FcγR bearing cell for NT study, that can be used to preliminary determine

381	cell, our N29/Q-B3B9 rigG showed clearly reduction of viral enhancement activity in THP-1
382	cel
383	Different from study of Ramadhany et al., 2016, eventhough N297A HuMAb maintained
384	the same NT activity as the parental HuMAb, unfortunately, this HuMAb still induced low levels
385	of virus infection enhancement (xamadhany et al., 2015). One reason might be resulted from the
386	type of mutated amino acid. The substitution of Asparagine with Glutamine (conservative)
387	mutation) reduces the effects of functional properties because the side chains of these two amino
388	acids differ by only one methylene group (Tao and Morrison, 1989).
389	Balsitis et al., 2010 reported that a N297Q mutation of mouse and chimeric human-
390	mouse IgG that efficiency reduced ADE in vitro could decreased the mortality of DENV-
391	infected mice (Balsitis et al., 2010). Moreover, Williams et al., 2013 described the ability of
392	mouse MAb targeted to fusion loop at EDII which showed neutralizing efficiency as therapeutic
393	activity in antibody enhancing lethal disease. Moreover, N297Q mouse MAb can competed
394	enhancing antibody in polyvalent serum in <i>in vitro</i> study (Williams et al., 2013). These reasons
395	support the possibility of N297Q-B3B9 rIgG, which target to fusion loop of EDII, to be use as
396	therapeutic antibody in the future.
397	For further characterization of N297Q-B3B9 rIgG as a dengue therapeutic candidate,
398	large quantities will be required, so we used an antibiotic system to generate a CHO-K1 cell line
399	that stably expresses N297Q-B3B9 rIgG. The development of stable and high-producing cell
400	lines for therapeutic protein production can be further applied biopharmaceutically.
401	Together, our results suggest that N297Q-B3B9 rIgG is a human monoclonal antibody
402	that can neutralize all four serotypes of DENV without viral enhancing activity. As a fully
403	human-derived monoclonal antibody, it avoids the problem of a human anti-mouse antibody

404	response and after a thorough characterization, this mutant B3B9 rIgG should be considered as						
405	an option for dengue therapeutic treatment.						
406	Since N-glycan asparagine residue (N297) position effect to half-life of antibody (Chan et						
407	al., 2013) and other antibody-mediated effector immune functions, like antibody-dependent						
408	cellular cytotoxicity and the complement pathway for protective activity (Hayes et al., 2016).						
409	Hence, thoroughly characterization of the modified N297Q rIgG were further required to						
410	elucidate its humeral and cellular immune response. Thus, future studies should consider these						
411	effects of N297Q-B3B9 rIgG and protectivity of our N297Q-B3B9 HuMAb in animal model as						
412	dengue therapeutic candidate.						
413							
414	Acknowledgements						
415	The authors would like to thank Dr. Atsushi Yamanaka for his continuous advisement						
416	and encouragement.						
417							
418	Funding						
419	This work was supported by the Faculty of Tropical Medicine, Mahidol University and						
420	the National Research Council of Thailand. We also thanks The Deutscher Akademischer						
421	Austauschdienst (DAAD, German Academic Exchange Service) fund for the student scholar.						
422							
423	References						
424	Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, Mehlhop E, Johnson S, Diamond MS,						
425	Beatty PR, Harris E. 2010. Lethal antibody enhancement of dengue disease in mice is prevented						
426	by Fc modification. PLoS. Pathogen 6: e1000790.						

- 427 Beltramello M, Williams KL, Simmons CP, Macagno A, Simonelli L, Quyen NT, Sukupolvi-
- Petty S, Navarro-Sanchez E, Young PR, de Silva AM, Rey FA, Varani L, Whitehead SS,
- Diamond MS, Harris E, Lanzavecchia A, Sallusto F. 2010. The human immune response to
- 430 Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and
- enhancing activity. *Cell Host Microbe* 8: 271-283.
- Chan KR, Ong EZ, Ooi EE. 2013. Therapeutic antibodies as a treatment option for dengue fever.
- 433 Expert Review of Anti-Infective Therapy 11: 1147–1157.
- De Alwis R, Smith SA, Olivarez NP, Messer WB, Huynh JP, Wahala WM, et al. 2012.
- Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions.
- 436 Proc Natl. Acad Sci U.S.A 109: 7439-7444.
- Hayes JM, Wormald MR, Rudd PM, Davey GP. 2016. Fc gamma receptors: glycobiology and
- 438 therapeutic prospects. *Journal of Inflammatory Research*. 9: 209-219.
- Konishi E, Tabuchi Y, Yamanaka A. 2010. A simple assay system for infection-enhancing and
- 440 neutralizing antibodies to dengue type 2 virus using layers of semi-adherent K562 cells. *Journal*
- 441 *of Virological Methods* 163: 360–367.
- Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay
- 443 S, Chipman PR, Strauss EG, Baker TS, Strauss JH. 2002. Structure of dengue virus: implications
- for flavivirus organization, maturation, and fusion. *Cell* 108:717–725.
- 445 Marasco WA, Sui J. 2007. The growth and potential of human antiviral monoclonal antibody
- therapeutics, Nat. *Biotechnology* 25: 1421–1434.
- Natasha Evelyn AM, Mikkel BQ, Annelies WS. 2013. Epidemiology of dengue: past, present
- and future prospects. Clinical Epidemiology 5:299–309.

- Omokoko MD, Pambudi S, Phanthanawiboon S, Masrinoul P, Setthapramote C, Sasaki T,
- 450 Kuhara M, Ramasoota P, Yamashita A, Hirai I, Ikuta K, Kurosu T. 2014. A highly conserved
- region between amino acids 221 and 266 of dengue virus non-structural protein 1 is a major
- epitope region in infected patients, Am. J. Trop. Med. Hyg 91:146–155.
- 453 Pitaksajjakul P, Benjathummarak S, Pipattanaboon C, Wongwit W, Okabayashi T, Kuhara M,
- 454 Misaki R, Fujiyama K, Ramasoota P. 2014. Antibody germline characterization of cross-
- neutralizing human IgGs against 4 serotypes of dengue virus, *Biochemical Biophysical Research*
- 456 *Communication* 446: 475–480.
- Ramadhany R, Hirai I, Sasaki T, Ono K, Ramasoota P, Ikuta K, Kurosu T. 2015. Antibody with
- an engineered Fc region as a therapeutic agent against dengue virus infection. *Antiviral Research*
- 459 124: 61–68.
- Sasaki T, Setthapramote C, Kurosu T, Nishimura M, Asai A, Omokoko MD, Pipattanaboon C,
- Pitaksajjakul P, Limkittikul K, Subchareon A, Chaichana P, Okabayashi T, Hirai I,
- 462 Leaungwutiwong P, Misaki R, Fujiyama K, Ono K, Okuno Y, Ramasoota P, Ikuta K. 2013.
- Dengue virus neutralization and antibody-dependent enhancement activities of human
- 464 monoclonal antibodies derived from dengue patients at acute phase of secondary infection,
- 465 *Antiviral Research* 98: 423–431.
- 466 Schieffelin JS, Costin JM, Nicholson CO, Oregeron NM, Fontaine KA, Isern S, et al. 2010.
- Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived
- 468 from a naturally infected patients. Virol J 7:28.
- 469 Schmidt AC. 2010. Response to dengue fever the good, the bad, and the ugly? New England
- 470 *Journal of Medicine* 363: 484–487.

- 471 Setthapramote C, Sasaki T, Puiprom O, Limkittikul K, Pitaksajjakul P, Pipattanaboon C,
- Sasayama M, Leungwutiwong P, Phumratanaprapin W, Chamnachanan S, Kusolsuk T,
- Jittmittraphap A, Asai A, Arias JF, Hirai I, Kuhara M, Okuno Y, Kurosu T, Ramasoota P, Ikuta
- 474 K. 2012. Human monoclonal antibodies to neutralize all dengue virus serotypes using
- 475 lymphocytes from patients at acute phase of the secondary infection, *Biochemical Biophysical*
- 476 Research Communication 423: 867–872.
- Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, et al. 2010. The
- 478 development of the apeutic antibodies that neutralize homologous and heterologous genotypes of
- 479 dengue virus type 1. *PLoS Pathog* 6: e1000823.
- Subedi GP, Barb AW. 2015. The structural role of antibody N-glycosylation in receptor
- 481 interactions. *Structure* 23: 1573–1583.
- Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, et al. 2010.
- Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2.
- 484 J Virol 84(18): 9227-9239.
- Tao MH, Morrison SL. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of
- carbohydrate in the structure and effector functions mediated by the human IgG constant region,
- 487 *Journal of Immunology* 143: 1595–1601.
- 488 Tewawong N, Pitaksajikul P, Dekumyoy P, Ekpo P, Ramasoota P. 2012. Mimotope
- 489 identification using phage displayed random peptide libraries against monoclonal antibodies
- 490 specific to house dust mite. Southeast Asian J Trop Med Public Health 43(3): 614-623.
- Williams KL, Sukupolvi-Petty S, Beltramello M, Johnson S, Sallusto F, Lanzavecchia A. 2013.
- 492 Therapeutic efficacy of antibodies lacking Fcy receptor binding against lethal dengue virus

e1003157. 494 495 **Figure Legend** 496 **Figure 1.** Epitope mapping by phage display of random peptide libraries. (A) Affinity selection 497 498 of phage-display. Ph.D.-12 and Ph.D.-C7C Phage Display Peptide Libraries were used in biopanning step. The constant units of phage $(5x10^{10} PFU)$ was used for three rounds of 499 biopanning. Increasing of percent yields of output phages represents the specific enrichment. (B) 500 Alignment of phage-displayed peptide sequences selected by HuMAbs. Phage clones were 501 shown to display a consensus sequences LXXXG (show in the box) (C) Comparison of the 502 amino acid sequences of E proteins DENV1-4. In the box, DENV1-4 shared the same amino 503 acids at positions 107 (L), 108 (F), 109 (G), 110 (K), and 111 (G). (D) Phage inhibition ELISA 504 of 8 phage clones which matched he motif of 107LXXXG111. Phage lysate of selected 505 506 clones bound with HuMAb in solution phase and the free phage clones were detected by ELISA. The absorbance values were measured at 450 nm using an ELISA reader (TECAN). Absorbance 507 values of each concentration (A) were divided by absorbance values of no antibody (control) 508 509 (A_0) , resulting in normalized values (A/A0). Figure 2. Immunofluorescence assay of B3B9 and N297Q-B3B9 rIgG against four DENV 510 serotypes. Vero cells were infected with DENV 3, or 4. The ability of the HuMAbs 511 512 (B3B9 and N297Q-B3B9 rIgG) in the culture fluids of HEK293T cells transiently expressing these antibodies to bind to different serotypes of DENV (DENV1-4) was assessed by performing 513 IFAs. PBS was used as a negative control (Control). Representative images a hown. 514

infection is due to neutralizing potency and blocking of enhancing antibodies. *PLoS Pathog* 9(2):

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

Figure 3. Neutralizing activity of N297Q-B3B9 and B3B9 rIgG antibody against four DENV serotypes. (A) NT levels of N297Q-B3B9 rIgG and B3B9 rIgG in Vero cells were assessed by foci reduction neutralization tests. The foci of infected cells were counted and compared with the no antibody control, and the results were calculated as the percent reduction in focus forming units. The number of foci was calculated as the average of triplicate experiments. (The error bars show standard deviation of the experiments). (B) NT50 concentration of N297Q-B3B9 and B3B9 rIgG antibody against DENV serotypes. Figure 4. ADE assays in THP-1 and K562 cells. (A) ADE assay on THP-1 cells. The antibody concentrations were serially diluted ten-fold and are represented on the X-axis. The fold enhancement in the virus copy number of the sample with each antibody was compared with that of the no antibody control and is represented on the Y-axis. The plotted values were obtained from the average of duplicates from two repeated experiments. (B) Enhancement activity of the four DENV serotypes in FcyRII-bearing K562 cells. The number of infected cells (log₁₀) from each antibody concentration compared with that of the control without antibody is shown. At 20× magnification, the numbers of infected cells were derived from the average of the counted infected cells from three frames, in duplicate, multiplied by a surface area amplification factor to obtain the total number of cells in each well. Dotted lines indicate cut-or values for differentiating neutralizing and enhancing activity from baseline of no antibody control. (The error bars show standard deviation of the repeated experiments). Figure 5. The NT and ADE activity against DENV2 of N297Q-B3B9 rIgG derived from a stable and transient CHO-K1 cell line. A line of CHO-K1 cells stably expressing N297Q-B3B9 rIgG was established. (A) The NT of N297Q-B3B9 rIgG against DENV2. The X-axis represents the concentration of antibodies, and the Y-axis represents the percent reduction in focus-forming

538	units compared with the foci number of the control sample that lacked antibody. The number of
539	foci was calculated as the average of triplicate experiments. (B) An ADE assay of N297Q-B3B9
540	rIgG against DENV2 was performed in K562 cells. The infected cells were counted at each
541	antibody concentration and compared with the control (DENV2-infected cells without antibody)
542	(The error bars show standard deviation of the repeated experiments)
543	Table 1. The consensus peptide sequences of eight selected phage clones. These clones matched
544	to the motif 107LXXXG111 of DENV genome.
545	
546	
547	

Figure 1. Epitope mapping by phage display of random peptide libraries.

(A) Affinity selection of phage-display. Ph.D.-12 and Ph.D.-C7C Phage Display Peptide
Libraries were used in biopanning step. The constant units of phage (5x1010 PFU) was used
for three rounds of biopanning. Increasing of percent yields of output phages represents the
specific enrichment. (B) Alignment of phage-displayed peptide sequences selected by
HuMAbs. Phage clones were shown to display a consensus sequences LXXXG (show in the
box) (C) Comparison of the amino acid sequences of E proteins DENV1-4. In the box,
DENV1-4 shared the same amino acids at positions 107 (L), 108 (F), 109 (G), 110 (K), and
111 (G). (D) Phage inhibition ELISA of 8 phage clones which matched to the motif of
107LXXXG111. Phage lysate of selected clones bound with HuMAb in solution phase and the
free phage clones were detected by ELISA. The absorbance values were measured at 450 nm
using an ELISA reader (TECAN). Absorbance values of each concentration (A) were divided by
absorbance values of no antibody (control) (A0), resulting in normalized values (A/A0).

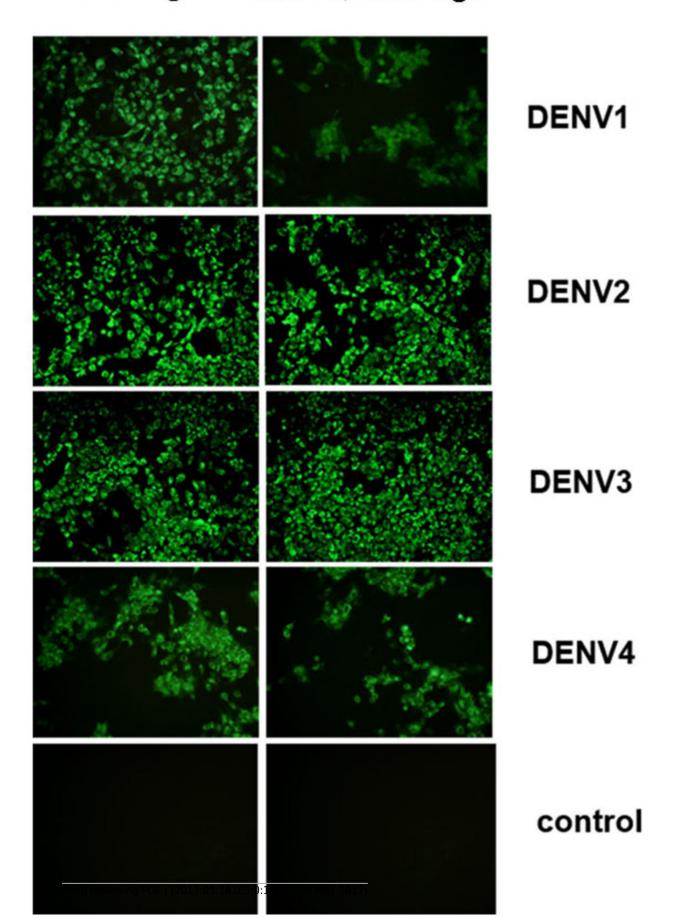
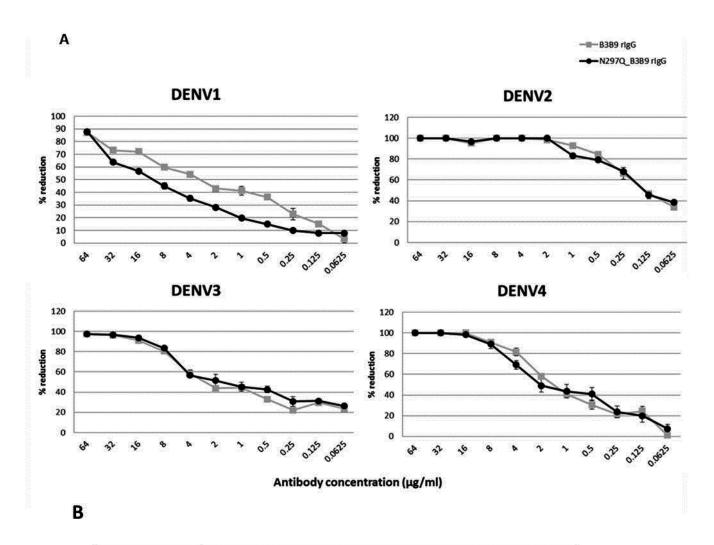

Α						:	107 111
For Ph.D. C7C	Input phage (PF	U)	0	Output phage (PFU)	Yield (%)	1 01468 IEAKISNTTTDSRCPTQGEATLVEEQD	ANFVCRRTFVDRGWGNGCGLFGKGSLITCAKFK
Round 1	5x10 ¹⁰			6.9x10 ⁵	0.0014	2 02226LTEPS.K	
Round 2	5x10 ¹⁰			1.01x10 ⁸	0.202	3 01322GT.IP	
Round 3	5x10 ¹⁰			9.8x10 ⁸	1.96	00679SIATPY.K	
For Ph.D. 12	3.000			1-10-200-1-1			××11
Round 1	5x10 ¹⁰		1	6.9x10 ⁵	0.0014		
Round 2	5x10 ¹⁰		-	2.4x10 ⁸	0.48		
Round 3	5x10 ¹⁰	_	_	7.7x10 ⁸	1.54		
B C7C_2-2 C7C_3-6 C7C_3-1 C7C_3-7 PhD12_Ph	6 H 1 H 2 H 7 H 7 H 2-1 2-3 2-4 3-4 3-10 2-2 2-7 3-1 3-6 3-7 S 3-9 3-12 2-5 V 2-9 W 2-11 V 3-5 W	S I	F Y Y S S S S S S S S S S S S S S S S S	D L E C G D L E C G D L E C G D L E C G W L Q S Y W L Q S Y W L Q S Y W L Q S Y W L Q S Y F L S A Y G F L G A Y G	G W T G W L G W W G L D	1.2 1 1 1 0.8 1 0.8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-clone 1 -clone 2 -clone 3 -clone 4 -clone 5 -clone 6 -clone 7 -clone 8 -clone 8

Figure 2. Immunofluorescence assay of B3B9 and N297Q-B3B9 rlgG against four DENV serotypes.

Vero cells were infected with DENV1, 2, 3, or 4. The ability of the HuMAbs (B3B9 and N297Q-B3B9 rlgG) in the culture fluids of HEK293T cells transiently expressing these antibodies to bind to different serotypes of DENV (DENV1-4) was assessed by performing IFAs. PBS was used as a negative control (Control). Representative images are shown.

B3B9 rlgG N297Q-B 9 rlgG



Neutralizing activity of N297Q-B3B9 and B3B9 rlgG antibody against four DENV serotypes.

(A) NT levels of N297Q-B3B9 rlgG and B3B9 rlgG in Vero cells were assessed by foci reduction neutralization tests. The foci of infected cells were counted and compared with the no antibody control, and the results were calculated as the percent reduction in focus forming units. The number of foci was calculated as the average of triplicate experiments. (The error bars show standard deviation of the experiments). (B) NT50 concentration of N297Q-B3B9 and B3B9 rlgG antibody against DENV serotypes.

Antibody	Neutralizing activity (NT50) (μg/ml)							
	DENV1	DENV2	DENV3	DENV4				
rlgG	3	0.125	2	2				
N297Q rlgG	12	0.125	2	2				

Figure 4. ADE assays in THP-1 and K562 cells. (A) ADE assay on THP-1 cells.

(A) ADE assay on THP-1 cells. The antibody concentrations were serially diluted ten-fold and are represented on the X-axis. The fold enhancement in the virus copy number of the sample with each antibody was compared with that of the no antibody control and is represented on the Y-axis. The plotted values were obtained from the average of duplicates from two repeated experiments. (B) Enhancement activity of the four DENV serotypes in FcγRII-bearing K562 cells. The number of infected cells (log10) from each antibody concentration compared with that of the control without antibody is shown. At 201 magnification, the numbers of infected cells were derived from the average of the counted infected cells from three frames, in duplicate, multiplied by a surface area amplification factor to obtain the total number of cells in each well. Dotted lines indicate cut-off values for differentiating neutralizing and enhancing activity from baseline of no antibody control. (The error bars show standard deviation of the repeated experiments).

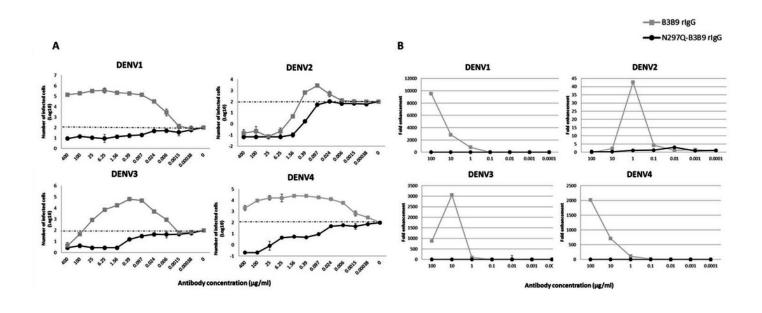
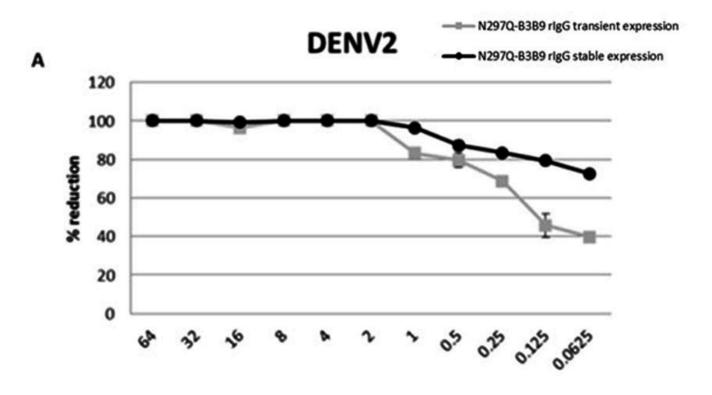
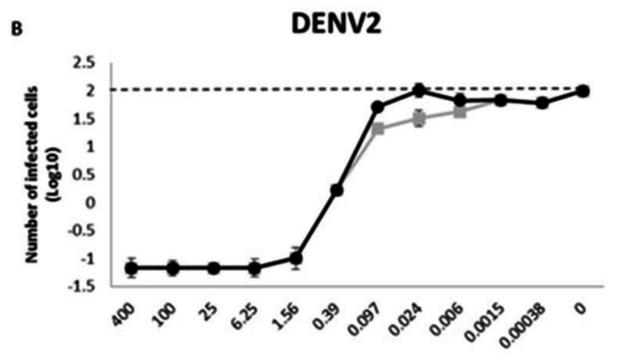




Figure 5. The NT and ADE activity against DENV2 of N297Q-B3B9 rlgG derived from a stable and transient CHO-K1 cell line.

(A) The NT of N297Q-B3B9 rlgG against DENV2. The X-axis represents the concentration of antibodies, and the Y-axis represents the percent reduction in focus-forming units compared with the foci number of the control sample that lacked antibody. The number of foci was calculated as the average of triplicate experiments. (B) An ADE assay of N297Q-B3B9 rlgG against DENV2 was performed in K562 cells. The infected cells were counted at each antibody concentration and compared with the control (DENV2-infected cells without antibody). (The error bars show standard deviation of the repeated experiments)

Antibody concentration (µg/ml)

Table 1(on next page)

Table 1. The consensus peptide sequences of eight selected phage clones.

These clones matched to the motif 107LXXXG111 of DENV genome.

Clone number	Consensus Sequences
1	LECGG
2	LQSYG
3	LSAYG
4	LTSYG
5	LGAYG
6	LASYG
7	LDAYG
8	LERYG

Table 2(on next page)

Primers used for IgG isotype identification

Primers used for IgG isotype identification

Supplementary Table 1. Primers used for IgG isotype identification

Primers	Sequences
Human IgG1&3 Fw	5' GTGACAAAACTCACACATG 3'
Human IgG2 Fw	5' CAAATGTTGTGTCGAGTGC 3'
Human IgG4 Fw	5' CAAATATGGTCCCCCATGC 3'
Human IgG Rv	5' TTTGTCTTGGCATTATGCAC 3'

FW is forward primer, Rv is reverse primer