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ABSTRACT
This paper describes the development and application of a suite of tools, called
PBxplore, to analyze the dynamics and deformability of protein structures using
Protein Blocks (PBs). Proteins are highly dynamic macromolecules, and a classical
way to analyze their inherent flexibility is to perform molecular dynamics simulations.
The advantage of using small structural prototypes such as PBs is to give a good
approximation of the local structure of the protein backbone. More importantly, by
reducing the conformational complexity of protein structures, PBs allow analysis of
local protein deformability which cannot be done with other methods and had been
used efficiently in different applications. PBxplore is able to process large amounts
of data such as those produced by molecular dynamics simulations. It produces
frequencies, entropy and information logo outputs as text and graphics. PBxplore
is available at https://github.com/pierrepo/PBxplore and is released under the open-
source MIT license.

Subjects Bioinformatics, Computational Biology, Molecular Biology
Keywords Protein blocks, Deformability, Python, Protein, Structure, Structural alphabet

INTRODUCTION
Proteins are highly dynamic macromolecules (Frauenfelder, Sligar & Wolynes, 1991; Bu &
Callaway, 2011). To analyze their inherent flexibility, computational biologists often use
molecular dynamics (MD) simulations. The quantification of protein flexibility is based
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Figure 1 (A) The 16 protein blocks (PBs) represented in balls with carbon atoms in gray, oxygen atoms
in red and nitrogen atoms in purple (hydrogen atoms are not represented). (B) The barstar protein (PDB
ID 1AY7 (Sevcík et al., 1998)) represented in cartoon with alpha-helices in blue, beta-strands in red and
coil in pink. These representations were generated using PyMOL software (DeLano, 2002) (C) PBs se-
quence obtained from PBs assignment. Z is a dummy PB, meaning that no PB can be assigned to this posi-
tion.

Full-size DOI: 10.7717/peerj.4013/fig-1

on various methods such as Root Mean Square Fluctuations (RMSF) that rely on multiple
MD snapshots or Normal Mode Analysis (NMA) that rely on a single structure and focus
on quantifying large movements.

Alternative in silico approaches assess protein motions through the protein residue
network (Atilgan, Turgut & Atilgan, 2007) or dynamical correlations from MD
simulations (Ghosh & Vishveshwara, 2007; Dixit & Verkhivker, 2011). Another noticeable
development is the MOdular NETwork Analysis (MONETA), which localizes the pertur-
bations propagation throughout a protein structure (Laine, Auclair & Tchertanov, 2012).

Here we use an alternative yet powerful approach based on small prototypes or
‘‘structural alphabets’’ (SAs). SAs approximate conformations of protein backbones
and code the local structures of proteins as one-dimensional sequences (Offmann, Tyagi &
De Brevern, 2007). Protein Blocks (PBs) (De Brevern, Etchebest & Hazout, 2000) are one of
these SAs (De Brevern, 2005; Etchebest et al., 2005; Joseph et al., 2010).

PBs are composed of 16 blocks designed through an unsupervised training performed
on a representative non-redundant databank of protein structures (De Brevern, Etchebest
& Hazout, 2000). PBs are defined from a set of dihedral angles describing the protein
backbone. This property makes PBs interesting conformational prototypes of the local
protein structure. PBs are labeled from a to p (see Fig. 1A). PBsm and d are prototypes for
central α-helix and central β-strand, respectively. PBs a to c primarily represent β-strand
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N-caps and PBs e and f, β-strand C-caps; PBs g to j are specific to coils, PBs k and l are
specific to α-helix N-caps, and PBs n to p to α-helix C-caps (De Brevern, 2005). Figure 1
illustrates how a PB sequence is assigned from a protein structure. Starting from the 3D
coordinates of the barstar protein (Fig. 1B), the local structure of each amino acid is
compared to the 16 PB definitions (Fig. 1A). The most similar protein block is assigned
to the residue under consideration (the similarity metric is explained latter in this article).
Eventually, assignment leads to the PB sequence represented in Fig. 1C.

By reducing the complexity of protein structure, PBs have been shown to be efficient
and relevant in a wide spectrum of applications. To name a few, PBs have been used to
analyze protein contacts (Faure, Bornot & De Brevern, 2008), to propose a structural model
of a transmembrane protein (De Brevern, 2005), to reconstruct globular protein structures
(Dong, Wang & Lin, 2007), to design peptides (Thomas et al., 2006), to define binding site
signatures (Dudev & Lim, 2007), to perform local protein conformation predictions (Li,
Zhou & Liu, 2009; Rangwala, Kauffman & Karypis, 2009; Suresh, Ganesan & Parthasarathy,
2013; Suresh & Parthasarathy, 2014; Zimmermann & Hansmann, 2008), to predict β-turns
(Nguyen et al., 2014) and to understand local conformational changes due to mutations of
the αIIb β3 human integrin (Jallu et al., 2012; Jallu et al., 2013; Jallu et al., 2014).

PBs are also useful to compare and superimpose protein structures with pairwise
and multiple approaches (Joseph, Srinivasan & De Brevern, 2011; Joseph, Srinivasan &
De Brevern, 2012), namely iPBA (Gelly et al., 2011) and mulPBA (Léonard et al., 2014),
both currently showing the best results compared to other superimposition methods.
Eventually, PBs lead to interesting results at predicting protein structures from their
sequences (Ghouzam et al., 2015; Ghouzam et al., 2016) and at predicting protein flexibility
(Bornot, Etchebest & de Brevern, 2011; De Brevern et al., 2012).

Applying PB-based approaches to biological systems such as the DARC protein (De
Brevern et al., 2005), the human αIIb β3 integrin (Jallu et al., 2012; Jallu et al., 2013; Jallu et
al., 2014) and the KISSR1 protein (Chevrier et al., 2013) highlighted the usefulness of PBs
in understanding local deformations of large protein structures. Specifically, these analyzes
have shown that a region considered as highly flexible through RMSF quantifications
can be seen using PBs as locally highly rigid. This unexpected behavior is explained by a
local rigidity surrounded by deformable regions (Craveur et al., 2015). To go further, we
recently used PBs to analyze long-range allosteric interactions in the Calf-1 domain of αIIb
integrin (Goguet et al., 2017). To our knowledge, the only other related approach based on
SA to assess local deformation is GSATools (Pandini et al., 2013); it is specialized in the
analysis of functional correlations between local and global motions, and the mechanisms
of allosteric communication.

Despite the versatility of PBs and the large spectrum of their applications, PBs lack a
uniform and easy-to-use toolkit to assign PB sequences from 3D structures, and to analyze
these sequences. The only known implementation is a an old C program not publicly
available and not maintained anymore. Such a tool not being available limits the usability
of the PBs for studies where they would be meaningful.

We thus propose PBxplore, a tool to analyze local protein structure and
deformability using PBs. It is available at https://github.com/pierrepo/PBxplore. PBxplore
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can read PDB structure files (Bernstein et al., 1977), PDBx/mmCIF structure files
(Bourne et al., 1997), and MD trajectory formats from most MD engines, including
Gromacs MD topology and trajectory files (Lindahl, Hess & Van der Spoel, 2001; Van der
Spoel et al., 2005). Starting from 3D protein structures, PBxplore assigns PBs sequences; it
computes a local measurement of entropy, a density map of PBs along the protein sequence
and a WebLogo-like representation of PBs.

In this paper, we first present the principle of PBxplore, then its different tools, and
finally a step-by-step user-case with the β3 subunit of the human platelet integrin αIIb β3.

DESIGN AND IMPLEMENTATION
PBxplore is written in Python (Van Rossum, 1995; Python Software Foundation, 2010;
Bassi, 2007). It is compatible with Python 2.7, and with Python 3.4 or greater. It requires
the Numpy Python library for array manipulation (Ascher et al., 1999), the matplotlib
library for graphical representations, and the MDAnalysis library for molecular dynamics
simulation files input (Michaud-Agrawal et al., 2011; Gowers et al., 2016). Optionally,
PBxplore functionalities can be enhanced by the installation and the use of WebLogo
(Crooks et al., 2004) to create sequence logos.

PBxplore is available as a set of command-line tools and as a Python module. The
command-line tools allow easy integration of PBxplore in existing analysis pipelines.
These programs can be linked up together to carry out the most common analyses on
PB sequences to provide insights on protein flexibility. In addition, the PBxplore Python
library provides an API to access its core functionalities which allows the integration of
PBxplore in Python programs and workflows, and the extension of the method to suit new
needs.

PBxplore is released under the open-source MIT license (https://opensource.
org/licenses/MIT). It is available on the software development platform GitHub at
https://github.com/pierrepo/PBxplore.

The package contains unit and regression tests and is continuously tested using Travis
CI (https:// travis-ci.org/). An extensive documentation is available on Read the Docs
(Holscher, Leifer & Grace, 2010) at https://pbxplore.readthedocs.io.

Installation
The easiest way to install PBxplore is through the Python Package Index (PyPI):

pip install --user pbxplore

It will ensure all required dependencies are installed correctly.

Command-line tools
A schematic description of PBxplore command line interface is provided in Fig. 2. The
interface is composed of three different programs: PBassign to assign PBs, PBcount to
compute PBs frequency on multiple conformations, and PBstat to perform statistical
analyses and visualization. These programs can be linked up together to make a structure
analysis pipeline to study protein flexibility.
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Figure 2 PBxplore is based on 3 programs that can be chained to build a structure analysis pipeline.
Main input file types (.pdb, MD trajectory, MD topology), output files (.fasta, .png, .Neq, .pdf) and pa-
rameters (beginning with a single or double dash) are indicated.

Full-size DOI: 10.7717/peerj.4013/fig-2

PBassign
The very first task is to assign PBs from the protein structure(s). A PB is associated to each
pentapeptide in the protein chain. To assign a PB to the residue n, five residues are required
(residues n−2, n−1, n, n+1 and n+2). From the backbone conformation of these five
residues, eight dihedral angles (ψ and φ) are computed, going from the ψ angle of residue
n−2 to the φ angle of residue n+2 (De Brevern, 2005). This set of eight dihedral angles is
then compared to the reference angles set for the 16 PBs (De Brevern, Etchebest & Hazout,
2000) using the Root Mean Square Deviation Angle (RMSDA) measure, i.e., an Euclidean
distance on angles. PB with the smallest RMSDA is assigned to residue n. A dummy PB Z
is assigned to residues for which all eight angles cannot be computed. Hence, the first two
N-terminal and the last two C-terminal residues are always assigned to PB Z.

The program PBassign reads one or several protein 3D structures and performs PBs
assignment as one PBs sequence per input structure. PBassign can process multiple
structures at once, either provided as individual structure files or as a directory containing
many structure files or as topology and trajectory files obtained from MD simulations.
Note that PBxplore is able to read any trajectory file format handled by the MDAnalysis
library, yet our tests focused on Gromacs trajectories. Output PBs sequences are bundled
in a single file in FASTA format.

PBcount
During the course of a MD simulation, the local protein conformations can change. It is
then interesting to analyze them through PB description. Indeed, as each PB describes a
local conformation, the variability of the PB assigned to a given residue throughout the
trajectory indicates some local deformation of the protein structure. Thus, once PBs are
assigned, PBs frequencies per residue can be computed.
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The program PBcount reads PBs sequences for different conformations of the same
protein from a file in FASTA format (as outputted by PBassign). Many input files can be
provided at once. The output data is a 2D matrix of x rows by y columns, where x is the
length of the protein sequence and y is the 16 distinct PBs. A matrix element is the count
of a given PB at a given position in the protein sequence.

PBstat
The number of possible conformational states covered by PBs is higher than the classical
secondary structure description (16 states instead of 3). As a consequence, the amount of
information produced by PBcount can be complex to handle. Hence, we propose three
simple ways to visualize the variation of PBs which occur during a MD simulation.

The program PBstat reads PBs frequencies as computed by PBcount. It can produce
three types of outputs based on the input argument(s). The first two use the matplotlib
library and the last one requires the installation of the third-party tool Weblogo (Crooks
et al., 2004). PBstat also offers two options (--residue-min and --residue-max) to
define a residue frame allowing the user to quickly look at segments of interest. The three
graphical representations proposed are:

• Distribution of PBs. This feature plots the frequency of each PB along the protein
sequence. The output file could be in format .png, .jpg or .pdf. A dedicated colorblind
safe color range (Brewer et al., 2013) allows visualizing the distribution of PBs. For a
given position in the protein sequence, blue corresponds to a null frequency when the
particular PB is never sampled at this position and red corresponds to a frequency of 1
when the particular PB is always found at this position. This representation is produced
with the --map argument.
• Equivalent number of PBs (Neq). The Neq is a statistical measurement similar to entropy
(Offmann, Tyagi & De Brevern, 2007). It represents the average number of PBs sampled
by a given residue. Neq is calculated as follows:

Neq= exp

(
−

16∑
i=1

fx lnfx

)
where fx is the probability (or frequency) of the PB x . ANeq value of 1 indicates that only
a single type of PB is observed, while a value of 16 is equivalent to a random distribution,
i.e., all PBs are observed with the same frequency 1/16. For example, a Neq value around
5 means that, across all the PBs observed at the position of interest, 5 different PBs
are mainly observed. If the Neq exactly equals to 5, this means that 5 different PBs are
observed in equal proportions (i.e., 1/5).
A high Neq value can be associated with a local deformability of the structure whereas
a Neq value close to 1 means a rigid structure. In the context of structures issued from
MD simulations, the concept of deformability / rigidity is independent to the one of
mobility. The Neq representation is produced with the --neq argument.
• Logo representation of PBs frequency. This is a WebLogo-like representation (Crooks et
al., 2004) of PBs sequences. The size of each PB is proportional to its frequency at a given
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position in the sequence. This type of representation is useful to pinpoint PBs patterns.
This WebLogo-like representation is produced with the --logo argument.

Python module
PBxplore is also a Python module that more advanced users can embed in their own
Python script. Here is a Python 3 example that assigns PBs from the structure of the barstar
ribonuclease inhibitor (Lubienski et al., 1994):

import urllib.request

import pbxplore as pbx

# Download the pdb file

urllib.request.urlretrieve (’https://files.rcsb.org/view/1BTA.pdb’,

’1BTA.pdb’)

# The function pbx.chain_from_files () reads a list of files

# and for each one returns the chain and its name.

for chain_name, chain in pbx.chains_from_files ([’1BTA.pdb’]):

# Compute phi and psi angles

dihedrals = chain.get_phi_psi_angles ()

# Assign PBss

pb_seq = pbx.assign(dihedrals)

print (’PBs sequence for chain {}:\n {}’.format (chain_name,

pb_seq))

The documentation contains complete and executable Jupyter notebooks explaining
how to use the module. It goes from the PBs assignments to the visualization of the protein
deformability using the analysis functions. This allows the user to quickly understand the
architecture of the module.

RESULTS
This section aims at giving the reader a quick tour of PBxplore features on a real-life
example. We will focus on the β3 subunit of the human platelet integrin αIIbβ3 that plays
a central role in hemostasis and thrombosis. The β3 subunit has also been reported in cases
of alloimmune thrombocytopenia (Kaplan, 2006; Kaplan & Freedman, 2007). We studied
this protein by MD simulations (for more details, see references (Jallu et al., 2012; Jallu et
al., 2013; Jallu et al., 2014)).

Theβ3 integrin subunit structure (Poulain & De Brevern, 2012) comes from the structure
of the integrin complex (PDB 3FCS (Zhu et al., 2008)). Final structure has 690 residues and
was used for MD simulations. All files mentioned below are available in the demo_paper
directory from the GitHub repository (https://github.com/pierrepo/PBxplore/tree/master/
demo_paper).
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Protein blocks assignment
The initial file beta3.pdb contains 225 structures issued from a single 50 nsMD simulation
of the β3 integrin.

PBassign -p beta3.pdb -o beta3

This instruction generates the file beta3.PB.fasta. It contains as many PB sequences
as there are structures in the input beta3.pdb file.

Protein Blocks assignment is the slowest step. In this example, it took roughly 80 s on a
laptop with a quad-core-1.6-GHz processor.

Protein blocks frequency
PBcount -f beta3.PB.fasta -o beta3

The above command line produces the file beta3.PB.count that contains a 2D-matrix
with 16 columns (as many as different PBs) and 690 rows (one per residue) plus one
supplementary column for residue number and one supplementary row for PBs labels.

Statistical analysis
Distribution of PBs
PBstat -f beta3.PB.count -o beta3 --map

Figure 3 shows the distribution of PBs for the β3 integrin. The color scale ranges from
blue (the PB is not found at this position) to red (the PB is always found at this position).
The β3 protein counts 690 residues. This leads to a cluttered figure and prevents getting
any details on a specific residue (Fig. 3A). However, it exhibits some interesting patterns
colored in red that correspond to series of neighboring residues exhibiting a fixed PB
during the entire MD simulation. See for instance patterns associated to PBs d and m that
reveal β-sheets and α-helices secondary structures (De Brevern, 2005).

With a large protein such as this one, it is better to look at limited segments. A focus on
the PSI domain (residue 1 to 56) (Jallu et al., 2012; Zhu et al., 2008) of the β3 integrin was
achieved with the command:

PBstat -f beta3.PB.count -o beta3 --map --residue-min 1 --residue-max 56

Figure 3B shows the PSI domain dynamics in terms of PBs. Interestingly, residue
33 is the site of the human platelet antigen (HPA)-1 alloimmune system. It is the first
cause of alloimmune thrombocytopenia in Caucasian populations and a risk factor for
thrombosis (Kaplan, 2006; Kaplan & Freedman, 2007). In Fig. 3B, this residue occupies a
stable conformation with PB h. Residues 33 to 35 define a stable core composed of PBs
h-i-a. This core is found in all of the 255 conformations extracted from the MD simulation
and then is considered as highly rigid. On the opposite, residue 52 is flexible as it is found
associated to PBs i, j, k and l corresponding to coil and α-helix conformations.

Equivalent number of PBs
The Neq is a statistical measurement similar to entropy and is related to the flexibility of a
given residue. The higher is the value, the more flexible is the backbone. The Neq for the
PSI domain (residue 1 to 56) was obtained from the command line:

Barnoud et al. (2017), PeerJ, DOI 10.7717/peerj.4013 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.4013


Figure 3 Distribution of PBs for the β3 integrin along the protein sequence. On the x-axis are found
the 690 position residues and on the y-axis the 16 consecutive PBs from a to p (the two first and two last
positions associated to ‘‘Z’’ have no assignment): (A) for the entire protein; (B) for the PSI domain only
(residues 1 to 56). The dashed zone pinpoints residue 33 to 35.

Full-size DOI: 10.7717/peerj.4013/fig-3

PBstat -f beta3.PB.count -o beta3 --neq --residue-min 1 --residue-max 56

The output file beta3.PB.Neq.1-56 contains two columns, corresponding to the
residue numbers and the Neq values. Figure 4A represents the Neq along with the PBs
sequence of the PSI domain, as generated by PBstat. The rigid region 33–35 and the
flexible residue 52 are easily spotted, with low Neq values for the former and a high Neq

value for the latter.
An interesting point, seen in our previous studies, is that the region delimited by residues

33 to 35 was shown to be highly mobile by the RMSF analysis we performed in Jallu et
al. (2012). RMSF was calculated on C-α atoms on the whole protein, for more details,
see ‘Materials and Methods’ section in Jallu et al. (2012). For comparison, RMSF and Neq

are represented on the same graph on Fig. 4B. This high mobility was correlated with
the location of this region in a loop, which globally moved a lot in our MD simulations.
Here, we observe that the region 33–35 is rigid. The high values of RMSF we observed
in our previous work were due to flexible residues in the vicinity of the region 33–35,
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Figure 4 (A)Neq versus residue number for the PSI domain (residues 1 to 56); (B) comparison between
RMSF andNeq.

Full-size DOI: 10.7717/peerj.4013/fig-4

probably acting as hinges (residues 32 and 36–37). Those hinges, due to their flexibility,
induced the mobility of the whole loop: the region 33–35 fluctuated but did not deform.
Understanding the flexibility of residues 33 to 35 is important since this region defines the
HPA-1 alloantigenic system involved in severe cases of alloimmune thrombocytopenia.
PBxplore allows discriminating between flexible and rigid residues. The Neq is a metric of
deformability and flexibility whereas RMSF quantifies mobility.

Logo representation of PBs frequency
While the Neq analysis focuses on the flexibility of amino acids, the WebLogo-like
representation (Crooks et al., 2004) aims at identifying the diversity of PBs and their
frequencies at a given position in the protein sequence. With a focus on the PSI domain,
the following command line was used:

PBstat -f beta3.PB.count -o beta3 --logo --residue-min 1 --residue-max 56
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Figure 5 WebLogo-like representation of PBs for the PSI domain of the β3 integrin. PBs in red
roughly correspond to α-helices, PBs in blue to β-sheets and PBs in green to coil.

Full-size DOI: 10.7717/peerj.4013/fig-5

Figure 5 represents PBs found at a given position. The rigid region 33–35 is composed of
a succession of PBs h-i-a while the flexible residue 52 is associated to PBs i, j, k and l. This
third representation summarized pertinent information, as shown in Jallu et al. (2013).

CONCLUSION
From our previous works (Jallu et al., 2012; Jallu et al., 2013; Jallu et al., 2014; Chevrier et
al., 2013), we have seen the usefulness of a tool dedicated to the analysis of local protein
structures and deformability with PBs. We also showed the relevance of studying molecular
deformability in the scope of structures issued fromMD simulations. In a very recent study
(Goguet et al., 2017), long independent MD simulations were performed for seven variants
and one reference structure of the Calf-1 domain of the αIIb human integrin. Simulations
were analyzed with PBxplore. Common and flexible regions as well as deformable zones
were observed in all the structures. The highest B-factor region of Calf-1, usually considered
as most flexible, is in fact a rather rigid region encompassed into two deformable zones.
Each mutated structure barely showed any modifications at the mutation sites while distant
conformational changes were detected by PBxplore. These results highlight the relevance
of MD simulations in the study of both short and long range effects on protein structures,
and demonstrate how PBs can bring insight from such simulations. In this context, we
propose PBxplore, freely available at https://github.com/pierrepo/PBxplore. It is written in
a modular fashion that allows embedding in any PBs related Python application.

SOFTWARE AVAILABILITY
PBxplore is released under the open-source MIT license (https://opensource.org/licenses/
MIT). Its source code can be freely downloaded from the GitHub repository of the project:
https://github.com/pierrepo/PBxplore. In addition, the present version of PBxplore (1.3.8)
is also archived in the digital repository Zenodo (Barnoud et al., 2017).
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