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ABSTRACT
Anthropogenicwater sources (AWS) are developedwater sources used as amanagement
tool for desert wildlife species. Studies documenting the effects of AWS are often focused
on game species; whereas, the effects on non-target wildlife are less understood.Weused
live trapping techniques to investigate rodent abundance, biomass, and diversitymetrics
near AWS and paired control sites; we sampled vegetation to determine rodent-habitat
associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370
individual mammals representing three genera and eight species were captured in 4,800
trap nights from winter 2011 to spring 2012. A multi-response permutation procedure
was used to identify differences in small mammal community abundance and biomass
by season and treatment. Rodent abundance, biomass, and richnesswere greater at AWS
compared to control sites. Patterns of abundance and biomass were driven by the desert
pocket mouse (Chaetodipus penicillatus) which was the most common capture and
two times more numerous at AWS compared to controls. Vegetation characteristics,
explored using principal components analysis, were similar between AWS and controls.
Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi) and
white-throated woodrat (Neotoma albigula), had greater abundances and biomass near
AWS and were associated with habitat having high cactus density. Although small
mammals do not drink free-water, perhaps higher abundances of some species of desert
rodents at AWS could be related to artificial structure associated with construction or
other resources. Compared to the 30-year average of precipitation for the area, the
period of our study occurred during a dry winter. During dry periods, perhaps AWS
provide resources to rodents related to moisture.

Subjects Conservation Biology, Ecology, Zoology, Natural Resource Management
Keywords Habitat structure, Developed waters, Plants, Wildlife waters, Military lands, Rodent,
Arid ecosystems, Rodentia, Arizona, Species-habitat models

INTRODUCTION
Water is seen as a limiting resource for the distribution of many animal species in arid
environments (Roberts, 1977; Broyles, 1997; Rosenstock, Ballard & Devos, 1999). Within
western North America, supplemental water has been used as a management tool
for game species and livestock (Broyles, 1997) and for mitigating the loss of natural
water sources from increased aridity, human use, and urbanization (Dolan, 2006;
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Longshore, Lowery & Thompson, 2009). Natural resource managers commonly use
anthropogenic water sources (AWS, e.g., guzzlers, stock tanks, earthen ponds, and other
constructed water sources) to supplement or enhance existing natural sources of water in
arid environments (Krausman, Rosenstock & Cain, 2006).

Despite the frequency of AWS construction in arid ecosystems, little is known about
how AWS influence wildlife (Broyles, 1995; Kluever, Gese & Dempsey, 2017). Studies have
investigated the population dynamics of game species in ranges with and without AWS
(Broyles & Cutler, 1999 showing no effect of AWS) and species interactions among preda-
tors visiting AWS (DeStefano, Schmidt & DeVos, 2000;Atwood, Fry & Lelane, 2011;Brawata
& Neeman, 2011; Hall et al., 2013). Researchers have questioned whether free water from
AWS is beneficial or harmful to species adapted to arid systems (Burkett & Thompson,
1994; Cain III et al., 2008; Griffis-Kyle, Kovatch & Bradatan, 2014). However, the effects
of AWS on non-game species (Simpson, Stewart & Bleich, 2011) are understudied.

Research focused on nongame species’ use of AWS has found similar abundances and
richness of small mammals at AWS compared to non-AWS (Cutler & Morrison, 1998). In
contrast, Burkett & Thompson (1994) documented higher abundances of small mammals
at AWS but concluded there was no biological linkage to the presence of water and greater
mammal abundances were related to ground disturbance and construction debris in the
vicinity of AWS. Because AWS can include constructedmaterials (e.g., wood piles, concrete,
and sheet metal) and clearing vegetation, there is justification to investigate how vegetation
structure surrounding AWS has been modified and might influence the abundance of
non-target species such as rodents.

Desert rodents are one of the most studied animal communities in the American
Southwest (Heske, Brown & Mistry, 1994; Valone & Brown, 1995; Valone & Saunter,
2005; Thibault et al., 2010). Rodent communities are affected by many processes
(e.g., disturbance, predation) and are sensitive to changes in habitat structure (Whitford,
1997; Valone & Saunter, 2005). In the southwestern US, some species of rodents are
associated with sandy soils and creosote bush (Larrea tridentata; Bailey, 1931; Price, 1984)
and rodents such as woodrats (Neotoma sp.) prefer areas with high density of cacti
(Spencer & Spencer, 1941) and human-modified habitats (Chamblin, Wood & Edwards,
2004). Burrowing rodents are considered ecosystem engineers because they affect vertebrate
and plant composition (Davidson & Lightfoot, 2006;Davidson, Lightfoot & McIntyre, 2008).
Because of their abundance, well-documented ecology, and ecological importance in arid
environments, small mammal communities may be used as a model to better understand
the indirect effects of AWS on non-game species in arid lands.

The goal of this studywas to investigate the effects of AWSon desert rodent communities.
Our research objectives were to compare AWS sites and non-AWS control sites to determine
(1) how sites varied in rodent species abundance, biomass, richness, and diversity, (2) how
vegetation and habitat structure varied, and (3) which vegetation characteristics predicted
small mammal species’ occurrence.
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METHODS
Study area
We conducted this study within the Sauceda Mountains on the Barry M. Goldwater
Range (BMGR-East), a 424,919 ha military training area 39 kilometers south of Gila
Bend, in Arizona, USA. Multiple AWS were constructed to support desert bighorn sheep
(Ovis canadensis nelsoni) populations and draw federally endangered Sonoran pronghorn
(Antilocapra americana sonoriensis) away frommilitary testing ranges. The presence of AWS
and relatively undisturbed Sonoran Desert make BMGR-East an ideal site to investigate
effects of AWSon vegetative structure and rodent communities. Study site elevations ranged
from 425 to 730 m. Topography was characterized by large hills, valleys, and ephemeral
washes with vegetation characteristic of Arizona Upland and Lower Colorado subdivisions
of the Sonoran Desert scrub community (Brown & Lowe, 1980). Study sites within these
two subdivisions and ephemeral washes supported plant species including, creosote bush
(Larrea tridentata), triangular bursage (Ambrosia deltoidea), yellow paloverde (Parkinsonia
microphylla), saguaro cactus (Carnegiea gigantean), cholla (Cylindroptunia spp.), Acacia
spp, and ocotillo (Fouquieria splendens). Additional species present in xeroriparian areas
were thornbush (Lycium spp.), velvetmesquite (Prosopis velutina), desert ironwood (Olneya
testoa), and desert honeysuckle (Anisacanthus thuberi). Special use permit #2012-01 was
issued for access onto the BMGR-East by the 56th Range Management Office of Luke Air
Force Base, Arizona.

Mammal trapping
To determine differences in mammal abundance, biomass, richness, and diversity at AWS
and non-AWS control sites, we live-trapped rodents during winter 2011 (October–January)
and during spring 2012 (February–May). Because maximum daily temperatures exceed
41 ◦C during the summer (30-year average, NOAA weather station USC00023393 at
Gila Bend, AZ), we trapped during cooler periods to reduce heat-stress on animals. We
trapped rodents during four sessions (two sessions per season), with three trap-nights per
session. Rodents were trapped at five AWS including four human-constructed sites and one
modified natural site (tinaja—depression formed in bedrock carved by rainfall or seepage).
Rodents were trapped at five control sites from the surrounding desert. Trapping sessions
1 and 2 during winter averaged 54 days apart; trapping sessions 3 and 4 during spring
averaged 48 days apart. Trapping sessions between seasons (sessions 2 and 3) averaged 94
days apart. We trapped along 135 m transects with 10 traps per line. We used Sherman live
traps (five traps of 8× 9× 23 cm and five traps of 8× 9× 33 cm) and alternated trap type
along the transect (sensu Burkett & Thompson, 1994; Pearson & Ruggerio, 2003; Hopkins
& Kennedy, 2004). Each site (AWS and CS) had four trapping transects placed randomly
using ESRI ArcMAP 10 software (Environmental Systems Research Institute, Redlands,
CA, USA). For example at AWS, we generated four random points within 50 m of the tank
or tinaja and transects radiated away on random bearings (1–360) that did not intersect
with other transects around the AWS (Fig. A1). Control sites were selected by generating
random points using ArcMAP that occurred between 500 and 700 m from each AWS
(Fig. A1). The orientation of control transects were also selected by choosing a random
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bearing. Transects were not revisited and new transects were established during each
trapping session. Therefore, the sample size to estimate mammal abundance, biomass,
richness, and diversity was n= 80 transects during winter and n= 80 transects during
spring (i.e., 5 sites × 4 transects × 2 treatments × 2 sessions = 80).

Traps were placed before sundown and baited with apple wafer pellets (Manna Pro; St.
Louis, MO, USA). Traps were checked starting 1.5 h before sunrise each day unless stormy
weather and rain warranted checking traps earlier. Polyester or cotton batting was placed
in each trap during winter trap sessions to reduce exposure and minimize trap mortality.
Captured animals were identified to species (Hoffmeister, 1986), aged (e.g., juvenile or
adult), sexed, and weighed. Animals were individually marked with self-piercing metal tags
applied to ear pinnae using an applicator (National Band and Tag Company, New Port,
KY, USA) in the left ear. We also marked ears with permanent ink marks, with individually
unique patterns of our own design, in case tags tore from pinnae. Animals were released
at their site of capture. Animals were handled and processed following Arizona State
University Institutional Animal Care and Use Committee (IACUC) protocol #09-1051R.

Vegetation sampling
To assess how vegetation differed between AWS and CS and to relate vegetation to rodent
occurrence, we measured plant species richness, density, and cover. To quantify plant
density and species richness (Epple & Epple, 1995), we collected data during the spring
season in two 4 × 25 m (0.01 ha) macro-plots randomly located along each trapping
transect (Carpenter, 1999; Fig. 1). We recorded shrub cover along the midline of macro-
plots using line intercept sampling techniques (Canfield, 1941). We placed (Daubenmire,
1959) frames (20× 50 mm) at 5 m intervals along the line intercept to measure herbaceous
cover. Grasses and forbs were estimated visually and placed into 12 cover classes (<1, 1–5,
6–15, 16–25, 26–35, 36–45, 46–55, 56–65, 66–75, 76–85, 86–95, >95%).

Data analyses
We calculated relative rodent abundance (hereafter, abundance) as the number of unique
individuals captured per 100 trap nights. Analyses were done at the level of the transect.
We determined transects to be independent because transects did not overlap in space
or time and we did not recapture marked animals across transects. Species richness was
the average number of species captured per transects per treatment. Mammal biomass
was calculated using the mean mass for each individual (if an individual was encountered
more than once during a three-night trap session, mass was averaged) and then summing
the mass for each species on each transect. Simpson’s diversity index (Simpson, 1949) was
calculated to examine rodent diversity between treatments. Occurrence was determined
as presence/absence of each species per transect. Where data did not meet assumptions of
normality, we utilized a non-parametricmultivariate analysis, called non-parametricmulti-
response permutation procedures (MRPP; Biondini, Mielke & Berry, 1988), to investigate
differences in rodent community attributes (i.e., abundance, biomass, and species richness)
between the two treatments (AWS and CS). A Sidak correction was utilized to adjust for
type I error across multiple MRPP tests (Abdi, 2007).
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Figure 1 Habitat sampling diagram depicting placement of twomacro-plots randomly located
along trapping transects. Shrub and tree cover estimates were performed along the midline of 25 m
long macro-plots using line intercept methods. Herbaceous cover was recorded in six Daubenmire
frames placed every 5 m along the midline of macro-plot. Plant richness and density estimates were
performed inside the macro-plot. Plants with bases ≥50 percent inside macro-plots were considered in the
macro-plot (numbers 1–3 in diagram). Plants with bases <50 percent inside plots were considered outside
the macro-plot (number 4 in diagram).

Full-size DOI: 10.7717/peerj.4003/fig-1

We summarized variation in vegetation between treatments using a principal component
analysis (PCA), using IBM SPSS version 20 (IBM Corp, Armonk, NY, USA). PCA is a
multivariate technique to reduce many correlated independent variables into a set of
uncorrelated axes called principal components (Legendre & Legendre, 1998). To interpret
each component of the PCA,we considered vegetation variables that loadedhigh (>0.500) in
the component matrix. We used eigenvalues and scree plots, which are explained variances,
to discriminate the relative importance of each component. Principal component scores
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and vegetation variables were compared between treatments using a Mann–Whitney rank
sum test.

To explain species-habitat relationships, we used species’ occurrences as the response
variables because species were not ubiquitous in the study area. We correlated occurrence
with principal component scores (predictor variables) using logistic regression (Legendre
& Legendre, 1998). Because vegetation was only measured during the spring (and not
during the winter) and we wanted to relate mammals captured along transects to where
vegetation was sampled, we only used mammal capture data from the spring in habitat
models (n= 80).

RESULTS
Small mammals
During our study, we captured 370 individuals representing three genera and eight species of
rodents across 4,800 total trap nights. Themost common species encounteredwas the desert
pocket mouse (Chaetodipus penicillatus, 198 captures). Other species encountered included
the rock pocket mouse (C. intermedius, 67 captures), Bailey’s pocket mouse (C. baileyi,
42 captures), Merriam’s kangaroo rat (Dipodomys merriami, 28 captures), white-throated
woodrat (Neotoma albigula, 22 captures), cactus mouse (Peromyscus eremicus, 11 captures),
Arizona pocket mouse (Perognathus amplus, 1 capture), and Harris’s antelope squirrel
(Ammospermophilus harrisii, 1 capture; Table A1). Cactus mouse, Arizona pocket mouse,
and Harris’s antelope squirrel were excluded from species-habitat analyses due to their
limited number of captures. The remaining five species represented more than 90 percent
of captures and were included in analyses.

We did not detect seasonal (winter vs spring) differences in rodent community attributes
(standard errors in parentheses, n = 160). Rodent abundance was 8.9 individuals per 100
trap nights (±1.0) in winter and 6.4 individuals per 100 trap nights (±0.8) in spring
(MRPP, P = 0.054). Rodent biomass was 63.9 g (±7.8) in winter and 62.4 g (±11.1)
in spring (MRPP, P = 0.306). Richness was 1.3 species (±0.1) in winter and 1.2 species
(±0.1) in spring (MRPP, P = 0.567). However rodent community abundance and biomass
differed between treatments (MRPP, P < 0.001 for both metrics); with abundance almost
twice as high at AWS compared to CS (Table 1). Rodent diversity was similar between
treatments with Simpson diversity indices of AWS and CS equal to 2.859 and 2.971,
respectively. Similar species were encountered at both treatments; however, richness per
trapping transect was greater at AWS compared to CS (MRPP, P < 0.001; Table 1). Nearly
40% of CS transects encountered either no animals or only a single species (Fig. 2).

Only two rodent species showed differences in abundance and biomass between AWS
and CS. Desert pocket mouse abundance was greater at AWS (Table 2) and biomass at
AWS was nearly twice that of CS (Fig. 3). Biomass of white-throated woodrat was over five
times greater at AWS (Fig. 3).

Vegetation characteristics
We reduced 11 vegetation variables into five principal components which accounted for
91.1% of variation at the AWS and CS sites (Table A2). Variables associated with the
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Figure 2 The frequency of the number of species of rodents that occurred at anthropogenic water
sources (AWS) and control sites during winter 2011 and spring 2012 on the Barry M. Goldwater Range
inMaricopa County, Arizona, USA.

Full-size DOI: 10.7717/peerj.4003/fig-2

Table 1 Mean (±SE) rodent community variables during winter 2011 and spring 2012 at
anthropogenic water source (AWS) sites and control sites (CS) on Barry M. Goldwater Range in
Maricopa County, Arizona, USA. Abundance is the number of individuals captured per 100 trap nights.
Biomass measured in grams is the sum of all individuals captured per species averaged per transect.
Species richness is the average number of species captured per transects per treatment. Test statistics
reported are for multi-response permutation procedure (MRPP); n= 160; α= 0.05.

Variable AWS CS Statistic P

Abundance 10.1 (0.6) 5.3 (0.7) −9.5 <0.001
Biomass 89.6 (7.8) 40.4 (5.2) −10.2 <0.001
Species richness 1.6 (0.1) 0.9 (0.1) −8.0 <0.001

presence of water (i.e., distance to AWS or distance to wash) did not explain a large
percentage of variation and were not included in the final PCA. We interpreted principal
component 1 as ground cover; principal component 2 as shrub cover; principal component
3 as tree overstory; principal component 4 as cactus density; and principal component
5 as shrub density (Table A2). Overall, AWS and CS were very similar in vegetation
characteristics in terms of cover and vegetation density (Table 3).

Of the five species of rodents included in species-habitat analyses, three showed
significant relationships with principal components (Table 4). Bailey’s pocket mouse
occurrence was positively related to areas with higher cactus density (PC4). Merriam’s
kangaroo rat occurrence was negatively related to areas with high tree and shrub density
(PC5) and high tree cover (PC3). Rock pocket mouse occurrence was negatively influenced
by greater herbaceous ground cover (PC1).
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Figure 3 Mean (±SE) of rodent biomass (grams) at anthropogenic water sources (AWS) and control
sites during winter 2011 and spring 2012 (during 4,800 trap nights, n= 16) on the Barry M. Goldwater
Range inMaricopa County, Arizona, USA.

Full-size DOI: 10.7717/peerj.4003/fig-3

Table 2 Mean (±SE) number of individuals captured per 100 trap nights during winter 2011 and
spring 2012 at anthropogenic water source (AWS) sites and control sites (CS) on Barry M. Goldwater
Range inMaricopa County, Arizona, USA. Test statistics reported are for Multi-response Permutation
Procedure (MRPP), n= 160 (5 tests, α= 0.05, Sidak correction= 0.010).

Family AWS CS Statistic P
Species

Heteromyidae
Chaetodipus penicillatus 5.5 (0.8) 2.8 (0.5) −4.1 0.007
Chaetodipus baileyi 1.0 (0.2) 0.6 (0.2) −2.9 0.023
Chaetodipus intermedius 1.9 (0.4) 1.0 (0.5) −1.2 0.106
Dipodomys merriami 0.6 (0.2) 0.5 (0.2) 0.3 0.490

Cricetidae
Neotoma albigula 0.7 (0.2) 0.2 (0.1) −2.9 0.022

DISCUSSION
The effects of AWS on non-game species are not well studied, but our results suggest that
rodent abundance and biomass were greater at AWS compared to CS in southern Arizona.
The rodent community was dominated by habitat generalist species, such as the desert
pocket mouse. Because of their large number of captures and body mass, desert pocket
mouse and white-throated woodrat had the greatest influence on these parameters of total
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Table 3 Mean (±SE) of vegetation variables and principal component (PC) values at anthropogenic
water sources (AWS) and control sites (CS) during spring 2012 on Barry M. Goldwater Range inMari-
copa County, Arizona, USA. Test statistics reported Mann–Whitney Rank Sum Test (U ), n = 80. PCA
correlation matrix reported in Table A2.

AWS CS Statistic (U ) P

Habitat variables
Bare ground (% cover) 93.0 (0.5) 93.0 (0.7) 764.0 0.733
Herbaceous (% cover) 7.4 (0.4) 7.5 (0.6) 764.5 0.736
Forbs (% cover) 6.8 (0.5) 6.6 (0.7) 728.5 0.494
L. tridentata (% cover) 6.6 (1.1) 6.4 (0.8) 773.0 0.798
Shrub (% cover) 13.0 (1.1) 12.4 (1.0) 777.0 0.829
L. tridentate density/ha. 296.3 (34.7) 351.2 (41.7) 720.0 0.443
Tree density/ha. 190.0 (37.1) 142.5 (21.1) 761.0 0.708
Tree (% cover) 6.3 (1.2) 4.8 (0.8) 754.0 0.658
C. leptocaulis density/ha. 48.7 (15.6) 123.6 (44.8) 742.5 0.515
Cacti density/ha. 293.8 (34.0) 436.2 (71.7) 661.5 0.183
Shrub density/ha. 2025.0 (175.1) 2005.0 (184.6) 780.0 0.851
Principal components
(PC1) Ground cover −0.022 (0.13) 0.022 (0.18) 772.0 0.791
(PC2) Shrub cover −0.003 (0.17) 0.003 (0.14) 753.0 0.655
(PC3) Tree overstory 0.176 (0.02) −0.176 (0.11) 687.0 0.279
(PC4) Cactus density −0.215 (0.08) 0.215 (0.20) 619.0 0.082
(PC5) Shrub density 0.007 (0.15) −0.007 (0.16) 792.0 0.942

Table 4 Occurrence of rodent species predicted by vegetation characteristics (principal components,
PC) from Principal Component Analysis using logistic regression (n= 80). Direction of correlation in-
dicated by C for correlation. Test significance (P-values) and model fit (percent classification accuracy)
are reported. Rodents were captured at anthropogenic water sources and control sites during spring 2012
on the Barry M. Goldwater range, Maricopa County, Arizona, USA.

Species C Habitat Statistic P

Chaetodipus baileyi + Cactus density (PC4) 5.0 0.024 (82.5%)
Chaetodipus intermedius − Ground cover (PC1) 7.1 0.008 (66.3%)
Chaetodipus penicillatus + Cactus density (PC4) 2.0 0.154 (55.0%)
Dipodomys merriami − Tree overstory (PC3) 12.2 0.002 (91.3%)

− Shrub density (PC5)
Neotoma albigula + Cactus density (PC4) 1.6 0.201 (86.3%)

abundance and biomass. AWS had a similar species composition as CS but AWS had
greater species richness.

Generally, we documented similar vegetation and structural characteristics around
AWS and adjacent desert CS at BMGR-East. Some of differences in vegetation, such as
lower creosote bush (Larrea tridentata) and cactus (Cylindroptunia spp.) densities around
AWS, could be the result of vegetation clearing when an AWS was initially installed or
renovated. It is typical for shrubs and cacti to be cleared or trans-located prior to AWS
installation (Arizona Game and Fish Department, 2008). Although habitat models for the
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two most numerous species (in captures and in biomass) were not conclusive, we did find
that three species of rodents were associated with elements of cover from cacti or avoided
area without cover, such as areas with high amounts of herbaceous and grass cover.

Species-habitat relationships from this study were consistent with findings from other
research. Merriam’s kangaroo rat occurrence was negatively related to high shrub and tree
density. Merriam’s kangaroo rat is associated with open areas with few shrubs and trees
(Rosenzweig & Winakur, 1969; Cutler & Morrison, 1998; Stevens & Tello, 2009) and found
in areas without dense riparian vegetation (Bateman & Ostoja, 2012). In our study, rock
pocket mouse occurrence was negatively associated with higher amounts of herbaceous
ground cover and low amounts of bare ground. This finding was consistent with other
descriptions of habitat use, with rock pocket mouse preferring rocky soils, bare ground, and
areas with limited herbaceous growth (Hoover, Whitford & Flavill, 1977). Bailey’s pocket
mouse and white-throated woodrat occurrence were positively related to higher densities
of cactus. Similarly, Brown and colleagues found that desert woodrat (Neotoma lepida)
density was dependent on the presence of teddy bear cholla (Cylindroptunia bigelovii)
(Brown, Lieberman & Dengler, 1972). However, only Bailey’s pocket mouse relationship
with cactus density was significant in our study. The desert pocket mouse is considered
a habitat generalist associated with sandy soils and creosote bush (Price, 1984). The
habitat models for this generalist species in our study were inconclusive. Implications for
understanding which species are associated with specific elements of vegetation structure
can help explain possible differences in abundance around AWS. For example, we found
that some rodent species were associated with vegetation structure and, although vegetation
characteristics did not vary between AWS and CS, perhaps structure might be substituted
for artificial debris around AWS.

Perhaps, other factors related to structure may have contributed to differences in
rodent communities between AWS and CS. Although not quantified during this study,
soil disturbance and greater amounts of artificial structure (i.e., construction debris, above
ground tanks, rain collectors) were observed at AWS compared to the surrounding desert.
These human-constructed elements may have effected rodent abundance by providing
structure preferred by some species. Burrowing species of rodents (i.e., Merriam’s kangaroo
rat) favor disturbed soils with better burrowing conditions (Schmidly, Williams & Derr,
1988). Breck & Jenkins (1997) suggested that Merriam’s kangaroo rat were associated with
sandy or loose soils because burrow and mound construction could have a lower energetic
cost in disturbed soil. Burkett & Thompson (1994) suggested that debris and structure in
the vicinity of AWS provided additional habitat for rodent species as a possible explanation
for higher abundances near AWS.

One possibility is that rodents may have benefitted from access to moist microhabitats.
Desert rodents, particularly the family Heteromyidae, have physiological adaptations
(e.g., specialized kidneys, concentrated urine) and behavioral adaptations (e.g., torpor,
burrowing and nocturnal activity) to minimize water loss and metabolize water from
food instead of drink free water (Kenagy, 1973; MacMillen & Hinds, 1983; Franks, 1988).
Merriam’s kangaroo rats can obtain water by caching seeds in humid burrows where
the dry seeds take up moisture (Nagy, 1994). White-throated woodrats are similarly well
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equipped for survival in arid habitats by adaptations such as nocturnal activity and feeding
on succulent fruits (i.e., cactus; Brown, Lieberman & Dengler, 1972). We determined that
the three months of winter rainfall (Dec–Jan–Feb) during our study was 12.4 mm which
was only 19% of 30-year average amounts of precipitation for the same time interval
(NOAA weather station USC00023393 at Gila Bend, AZ, USA). We sampled within 50
m of an AWS, including one natural water catchment (tinaja); therefore, we could have
encountered rodents that had access to areas near water. Perhaps, during this drier period,
some species may have benefit from moister microhabitats.

Desert rodent abundance near AWS could have been influenced by supplemental food
resources from tanks. Although the majority of species captured during our study were
granivorous (i.e., Heteromyidae), previous studies have observed that species commonly
accepted as granivorous do supplement their diet with succulent vegetation and insects
(Hope & Parmenter, 2007). In New Mexico, Orr and colleagues documented seasonal use
of arthropods in granivorous, heteromyid rodents from September to November and, to a
lesser extent, May and June (Orr, Newsome & Wolf, 2015). Although we did not investigate
the insect community, a study in southwestern Arizona by Griffis-Kyle and colleagues
documented dragonfly use of AWS and found that natural tinajas had 2–3 species present
(Griffis-Kyle, Kovatch & Bradatan, 2014). Perhaps insect resources around AWS might
provide one possible explanation for our observation that rodent abundance and biomass
was greater near AWS, particularly during a dry winter when forage species might be
reduced.

It is important to note that other studies investigating small mammal communities in
the vicinity of AWS documented mixed responses. Some researchers found that rodent
abundances were higher at AWS when compared to areas without waters (Burkett &
Thompson, 1994); whereas, Cutler & Morrison (1998) observed no difference in abundance
at AWS. Additional studies of wildlife populations, seasonal dietary selection, of species-
habitat relations before and after the installation of AWS could provide additional insight
into the direct and indirect effect of AWS on wildlife.

Management implications
The use of water as a management tool for endangered or game species is popular and has
increased in recent history. Even with debate about its effectiveness as a management tool
(Broyles, 1995) state, federal, and private agencies have allocated large sums of resources
to install and maintain AWS. Over a decade ago, Arizona was spending $750,000 annually
on AWS (Rosenstock, Ballard & Devos, 1999). The result of this study, even with a short
sampling period and focus on organisms that experience fluctuating populations (Krebs &
Myers, 1974), suggests that some species of wildlife may increase in abundance near AWS
because of changes to vegetation, utilization of human-modified structures, or perhaps
changes in food resources. Our trapping data may contribute to understanding patterns of
small mammal use of AWS during a dry winter, that will likely become more common as
the environment gets hotter and drier in the Southwest (Ye & Grimm, 2013). Combined
with past research on AWS, our results will help managers make informed decisions about
construction and maintenance of AWS as a management tool.
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APPENDIX

Figure A1 Configuration of randomly placed trapping transects around anthropogenic water sources
(AWS) and control sites (CS) to sample small mammal communities during winter 2011 and spring
2012 on Barry M. Goldwater Range inMaricopa County, Arizona, USA. Control sites originated from
random points generated in GIS and located 500–700 m from AWS. Transect starting locations were ran-
domized, as were the orientation or bearing of transects, and placed within 50 m of AWS or CS.

Full-size DOI: 10.7717/peerj.4003/fig-4
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Table A1 Mean (±SE) characteristics of rodent species captured in Sherman traps during winter 2011 and spring 2012 on Barry M. Goldwater
Range inMaricopa County, Arizona, USA. Some individuals were not measured for all morphometrics (number of individuals measured in each
category given by n).

Family n Bodymass
(g)

Body length
(mm)

Hind foot
length (mm)

Tail length
(mm)

Species

Heteromyidae
Dipodomys merriami 38/37/32/37 36.6 (0.9) 88.7 (1.1) 35.6 (0.3) 143.1 (1.2)
Chaetodipus penicillatus 101/102/89/102 22.5 (0.3) 73.6 (0.6) 24.5 (0.1) 109.7 (1.5)
C.intermedius 77/79/68/79 12.8 (0.2) 63.7 (0.8) 19.3 (0.2) 9.8 (1.6)
C.baileyi 39/39/36/38 31.5 (0.7) 81.2 (0.7) 26.7 (0.1) 117.0 (2.4)

Cricetidae
Peromyscus eremicus 9/10/10/10 18.0 (0.8) 71.6 (1.5) 19.0 (0.5) 102.0 (4.3)
Perognathus amplus 1/1/1/1 12.0 62.0 20.0 82.0
Neotoma albigula 18/21/20/21 146.9 (9.4) 144.8 (4.1) 30.8 (0.3) 146.6 (3.2)

Sciuridae
Ammospermophilus harrisii 1/1/1/1 99.0 120.0 36.0 80.0

Table A2 Rotated Principal Component Analysis (PCA) of habitat characteristics quantified along
mammal trapping transects located at anthropogenic water sources (AWS) and control sites (CS) on
Barry M. Goldwater Range inMaricopa County, Arizona, USA. Selections of initial vegetation variables
were selected for inclusion in the PCA by variable weight (>0.500). Interpretation of principal compo-
nents (PC) was based on variables having a high weight for contributing to explaining each component
(bolded values).

Habitat characteristics Component

PC1 PC2 PC3 PC4 PC5

Bare ground (% cover) −0.984 0.003 −0.090 −0.041 0.114
Herbaceous (% cover) 0.984 −0.001 0.089 0.040 −0.114
Forbs (% cover) 0.982 −0.017 0.094 −0.025 −0.043
L. tridentate (% cover) 0.003 0.912 −0.123 −0.106 −0.253
Shrub (% cover) −0.122 0.890 0.030 −0.091 0.318
L. tridentate density/ha. 0.196 0.613 −0.473 −0.224 −0.197
Tree density/ha. 0.155 −0.066 0.892 0.111 −0.055
Tree (% cover) 0.112 −0.093 0.883 0.045 0.108
C. leptocaulis density/ha. 0.003 −0.044 0.124 0.947 −0.175
Cacti density/ha. 0.053 −0.241 0.071 0.897 0.253
Shrub density/ha. −0.187 −0.035 0.064 0.027 0.958
Eigenvalue 3.03 2.07 1.86 1.79 1.26
% Variation explained 27.55 18.85 16.94 16.28 11.45
Cumulative % variation 27.55 46.40 63.34 79.62 91.07
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