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ABSTRACT
Hands motor imagery (MI) has been reported to alter synchronization patterns
amongst neurons, yielding variations in the mu and beta bands’ power spectral density
(PSD) of the electroencephalography (EEG) signal. These alterations have been used in
the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks
to commands of such a system. Recent studies have highlighted that information may
be missing if knowledge about brain functional connectivity is not considered. In this
work, we modeled the brain as a graph in which each EEG electrode represents a node.
Our goal was to understand if there exists any linear correlation between variations in
the synchronization patterns—that is, variations in the PSD of mu and beta bands—
induced by MI and alterations in the corresponding functional networks. Moreover,
we (1) explored the feasibility of using functional connectivity parameters as features
for a classifier in the context of an MI-BCI; (2) investigated three different types of
feature selection (FS) techniques; and (3) compared our approach to a more traditional
method using the signal PSD as classifier inputs. Ten healthy subjects participated
in this study. We observed significant correlations (p < 0.05) with values ranging
from 0.4 to 0.9 between PSD variations and functional network alterations for some
electrodes, prominently in the beta band. The PSD method performed better for data
classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta
band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph
method. Moreover, the number of features for the graph method was considerably
larger. However, results for both methods were relatively close, and even overlapped
when the uncertainties of the accuracy rates were considered. Further investigation
regarding a careful exploration of other graph metrics may provide better alternatives.
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INTRODUCTION
Motor imagery (MI) has been investigated as a tool for aiding in specific situations, such
as motor rehabilitation (Vries & Mulder, 2007; Mulder, 2007; Stevens & Stoykov, 2003),
in particular, of hand movements after a stroke (Kaiser et al., 2011; Buch et al., 2012);
improving athletic performance in sports (Mizuguchi et al., 2012); and complementing
musical practice (Lotze, 2013; Brown & Palmer, 2013). In particular, hands-MI has been
a well-exploited strategy in the brain-computer interface (BCI) community (Sivakami &
Devi, 2015; Cheng et al., 2004; Neuper et al., 2005; Pfurtscheller & Neuper, 2001; Halder et
al., 2011; Obermaier et al., 2001).

BCIs are systems that aim to control an external device using the brain as a direct
communication channel. To do so, a BCI must be capable of recording the brain signals
through some technique, processing them and classifying them according to the user’s
intent. Electroencephalography (EEG) signals are the most used for BCI applications,
although other techniques, such as functionalmagnetic resonance imaging (fMRI) (Berman
et al., 2011; Hermes et al., 2011; Halder et al., 2013), near-infrared spectroscopy (NIRS)
(Sitaram et al., 2007; Kanoh et al., 2009) and magnetoencephalography (MEG) (Mellinger
et al., 2007; Lin et al., 2013) may be used.

MI has been reported to alter synchronization patterns amongst neurons, resulting
in variations on the EEG signal regarding its power spectral density (PSD) in specific
frequency bands (Pfurtscheller & Neuper, 1997). More specifically, MI induces event-related
synchronizations (ERSs; and, thus, the PSD increases) in the γ frequency range (above
30 Hz) in the ipsilateral (to the MI) hemisphere and event-related desynchronizations
(ERDs; and, thus, the PSD decreases) in the µ(7–13 Hz) and β (13–30 Hz) bands
in the contralateral hemisphere (Al-ani & Trad, 2011; Pfurtscheller & Aranibar, 1977;
Pfurtscheller, 1999; Neuper & Pfurtscheller, 1999). Therefore, a relatively well-established
approachwhen studyingMI-based EEG-BCIs has been to use the signals’ PSD as features for
discriminating between MI tasks (Sivakami & Devi, 2015; Cincotti et al., 2001; Pfurtscheller
& Neuper, 2001; Cheng et al., 2004).

Although features from spectral and temporal domains of the EEG signal have been
successfully used in assessing MI data classification, recent studies have indicated that
understanding the relationships between the recorded signals and their spatial locations
in the form of functional brain connectivity may assist to improve the existing techniques
(Hamedi, 2016). This understanding may also aid in overcoming limitations of the more
traditional MI-BCIs, such as the inconsistency of MI responsive frequency bands across
subjects (Kam, Suk & Lee, 2013) and the non-uniformity of ERDs and ERSs occurrences
due to MI, which can vary their location depending on the subject (and even for the same
subject, between distinct sections) (Asensio-Cubero, Gan & Palaniappan, 2013). These
factors impose great challenges regarding the stability of features for classification of MI
tasks and, thus, it becomes necessary to study other strategies that may be less sensitive to
these variations.

In the present work, our goal was to understand if there exists any linear relationship
(according to Pearson’s correlation) between PSD variations induced by MI and variations
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in functional connectivitymeasures.Moreover, we explored the feasibility of using elements
from a functional connectivity matrix as features for a classifier, aiming to distinguish
between left and right hands’ MI. In addition, we explored three different types of feature
selection (FS) techniques, to analyze how these procedures can affect the classification
outcome in the BCI scheme. Finally, we also compared our approach to a more traditional
method by using the signal PSD as input for data classification.

MATERIALS AND METHODS
Dataset and number of subjects
Data of left and right hands MI from a 64 channel EEG were obtained from the Physionet’s
open database (Goldberger et al., 2000; Schalk et al., 2004), from which acquisitions from
10 subjects were analyzed in this study.

Data were acquired at a 160 Hz sampling rate. Experimental protocol consisted of
randomly alternating blocks of task (right or left hand MI) or rest periods. Each block
lasted approximately 4 s (for further details of the acquisition protocol, please refer to
Schalk et al., 2004). Three runs were recorded for each subject, and each run contained
between seven and eight blocks of each MI tasks, depending on the recording. To increase
the quantity of available samples for our classifier, we analyzed them all as an ensemble,
with each sample consisting of the whole 4 s block. For each subject, a total of 24 samples
were available for training and testing the classifier.

Data pre-processing
Data were filtered in the two frequency bands of interest most prominent in MI studies:
µ(7–13 Hz) and β (13–30 Hz), using the standard FIR (finite impulse response) filter
(Rabiner & Gold, 1975) of EEGLab (Delorme & Makeig, 2004), a MATLAB suite. This
filtering operation would not have been necessary if we were to focus our analyses only
on the signals PSD. However, since the signal time domain was considered to build the
graphs, its component frequencies could influence calculations of the corresponding
adjacency matrices. Thus, the filtering process enabled us to build specific graphs for each
frequency band.

To attenuate common artifacts arising at all channels at the same time, data were spatially
filtered using a CAR (common average removal) filter (Ludwig et al., 2009). Our reason for
choosing this specific filter was three-folded: (1) CAR has been related to decreasing volume
conduction effects, which is of particular interest for scalp EEG functional connectivity
studies (Thakor & Tong, 2009; Yuksel & Olmez, 2016; Brunner et al., 2016). (2) Although
more complex spatial filters have also been suggested (Thakor & Tong, 2009; Yuksel &
Olmez, 2016; Brunner et al., 2016), a previous work has shown that the CAR filter provided
similar MI classification results to more sophisticated techniques under specific feature
selection situations (Uribe et al., 2016). Since in this work we were also interested in this
issue, using the CAR filterin as a first approach was suggested by this finding. (3) Studies
of the electrode referencing effect on the functional connectivity outcome have shown
that using the average of the electrodes’ signal is one of the least distortive approaches
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Figure 1 Motifs’ synchronization labeling. (A) Labels corresponding to possible variations of three data
points. (B) Example of an original EEG time series (blue curve with the red points representing sampled
data points) translated into a motifs series (labels). Two segments within the rectangular boxes are dis-
played as examples of motifs labels #1 and #3. On the top of the figure, the complete motif series for this
sample signal is showed.

Full-size DOI: 10.7717/peerj.3983/fig-1

when compared to other strategies, such as using the Cz electrode or the mastoids (Chella
et al., 2016) (note that applying the CAR filter re-references the electrodes’ signals to their
average).

Graphs construction
Graphs connectivity matrices were calculated using the motifs’ synchronization method
(Rosario et al., 2015). The general principle is to divide the original time-series into smaller
ensembles of data points (here we used three data points, as suggested by (Rosario et al.,
2015)) and to label these new patterns according to Fig. 1A. This translates the original
recorded EEG series into a new, labeled one—the motifs series (Fig. 1B). See, for example,
the sample signal of Fig. 1B (blue curve with red dots corresponding to the sampled data
points). The time-series is analyzed within a three-points sliding window, and the segment
in this window is labeled accordingly. This process is performed for the time series of
all electrodes. Due to the highly noisy nature of the EEG signal, we did not consider the
possibility of two adjacent signal samples having the same value (see Fig. 1A).

The next step is to define a similarity coefficient between electrodes i and j (sij) (i.e.,
between their time series). We calculated this by counting the number of coincidences (N )
amongst their motif series’ elements and normalizing the result by the series’ length (L);
that is:

sij =
N
L

. (1)

Under this scheme, sij is normalized within the range [0,1]. To avoid losing important
information by arbitrarily thresholding our graph’s edges for binarizing them, we chose to
work with weighted graphs.

In summary, sij represents the i, j-th element of the functional connectivity matrix
(FCM) related to the electrophysiological brain activity measured by EEG.

The motifs’ synchronization method should partially compensate for the volume
conduction problem, since only the direction of change of the signal is considered, not
contemplating effects that directly influence the signal’s magnitude. Moreover, since the
construction of the functional networks was performed after the CAR filter was applied,
the volume conduction issue should already have been at least partially accounted for.
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Features extraction, selection and data classification
Features of two distinct methods were tested, obtained either from the signal PSD or the
connectivity approach, represented by the FCM.

The PSDs were estimated viaWelch’s transform (Welch, 1967), and values frommultiple
frequencies were gathered for each electrode for further use by the classifier algorithm.
More specifically, all frequencies of each band’s range were contemplated, collecting PSD
values at unity steps. Therefore, each electrode yielded 7 and 18 frequencies (features) in
the mu and beta band, respectively. In the case of the FCM, each one of its elements ( sij)
could be selected as a feature.

To study the effect of FS methods on the outcome classification results, we analyzed
three approaches: (1) we designed a wrapper that should find the optimal set of electrodes,
which wouldmaximize the classifier’s outcome response. The wrapper’s search ended when
no improvement occurred after four consecutive iterations. The other two FS strategies
consisted of using a Pearson’s (2) or a Fisher’s (3) filter (Duch, 2006), combined with the
wrapper described in (1). The basic idea of these filters is to rank the best attributes to be
selected for classification according to a specific criterion. Pearson’s filter estimates how
strongly a feature and its labeled-class are correlated by using Pearson’s linear correlation
(Campbell & Swinscow, 1996). On the other hand, Fisher’s filter ranks attributes based on
the criterion of the Fisher’s discriminant (McLachlan, 2004); that is, on the ratio between
the difference of means and variances across data classes for that specific feature.

A least squares-based linear discriminant analysis (LDA) was used for MI data
classification. This method was chosen due to its simplicity and robustness. Moreover, it
has been commonly employed in BCI research, with results as good as those of other more
complex classifiers (see, e.g., Carvalho et al., 2015).

All classification tests were performed using the leave-one-out scheme.

Correlations between PSD and FCM
To investigate if any linear relationship between ERDs due to the hands MI tasks and
variations on the FCM (when compared to the rest condition) could be observed, we
performed analyses using Pearson’s correlation (Campbell & Swinscow, 1996).

Relative variations (either as ERDs or ERSs) of the signal’s PSD at a given frequency f
on electrode i at a specific task block t (1PSD(f )i,t ) were estimated as:

1PSD(f )i,t =
PSD(f )i,r−PSD(f )i,t

PSD(f )i,r
. (2)

In Eq. (2), PSD(f )i,r represents the PSD value for electrode i and frequency f during an
average of rest blocks. Note that a positive value for 1PSD(f )i,t indicates an ERD occured,
whereas a negative one expresses an ERS.

Since each one of the 64 graph nodes contained information about other 63 connections,
analyzing the sij values directly would require an elevated computational cost. Therefore,
our correlation analyses were estimated indirectly by studying how the weighted degree
of each node varied according to the 1PSD magnitude, rather than the sij themselves. In
doing so, we hypothesized that alterations in the functional networks (represented by sij)
should yield variations in the weighted degree for the graph nodes.
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For a weighted graph, such as the ones built here, the weighted degree for a node i (Wi)
can be calculated as (Zhang et al., 2012):

Wi=
∑
j

sij . (3)

Variations relative to rest periods were then estimated for the weighted degree similarly to
Eq. (2):

1Wi,t =
Wi,r−Wi,t

Wi,r
. (4)

In Eq. (4), indices t and r refer to a task block and the average of rest blocks, respectively.
Therefore, our correlation analyses considered the values of 1PSD and 1W for all trials

of each electrode.

RESULTS
Figure 2 displays the number of times each node presented a significant correlation
(p< 0.05) between 1PSD and 1W . This result is shown as a colormap over the electrodes
disposition, with colors closer to red indicating a larger value. Analyses were performed
individually for each subject. Results in Fig. 2 show the sum of occurrences for all subjects;
thus, they can be seen as frequency maps.

Figure 3 displays bar plots of the absolute value for the Pearson correlation coefficient
(r) for each subject, between 1PSD and 1W , during each MI task and for both frequency
bands.

Table 1 displays classification accuracy rates for both bands. Each FS scheme is also
shown, labeled according to the ‘Materials and Methods’ section: (1) wrapper only, (2)
Pearson filter + wrapper, (3) Fisher filter + wrapper. All results are shown individually
for each subject and averaged across all individuals with the respective standard deviation
(std).

Figure 4 shows a scatter plot for the classification accuracy vs. number of features to
achieve that rate. Crosses and exes refer to PSD and FCM inputs, respectively. The three FS
strategies are displayed: use only of the wrapper (blue), Pearson filter + wrapper (red) and
Fisher filter + wrapper (green). Marks inmagenta are shown when an overlap between both
methods occurred. From these plots, it can be seen that the best performance scenarios
were obtained for the PSD method, which also provided a lesser number of features.

DISCUSSION
The aim of this work was two-folded: on the one hand, we wanted to find out if there
was a linear relationship between ERDs and ERSs (represented by the variable 1PSD) and
variations in functional connectivity measures (1W ). On the other hand, we wanted to
verify the feasibility of using the elements of the functional connectivity matrix (sij) as
features for a classifier, to distinguish between left and right hands’ MI, exploring three
different types of feature selection (FS) techniques.
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Figure 2 Number of times each electrode showed a significant correlation (p< 0.05) between the ERD
relative to rest blocks (1PSD) and the degree variation on the respective node (1W ). Both µ(upper
row) and β (lower row) bands are present, as well as both MI tasks. (A) Left hand MI, mu band; (B) Right
hand MI, mu band. (C) Left hand MI, beta band; (D) Right hand MI, beta band. Maximum numbers of
occurrences on the same node were five (mu band) and seven (beta band).

Full-size DOI: 10.7717/peerj.3983/fig-2

Regarding the relationship between ERDs/ERSs and functional connectivity, we found
that there is, indeed, a large number of correlations between the corresponding probed
quantities (i.e., 1PSD and 1W ), mainly for the beta band, for most electrodes, which is
clearly represented by the spread of the red color for bothMI tasks in Fig. 2. As a matter of a
fact, for the beta band during left handMI, some nodes achived a significant correlation for
70% of the subjects. This indicates that there is, at least to a certain extent, a reproducibility
regarding which nodes best correlate to the 1PSD s of MI. The number of subjects,
however, is still small to doubtlessly make this claim. Therefore, further investigation on
this matter would be necessary for that. The node degree is a measure of similaritiy between
the recorded time series of that node and all others in the network. Hence, the fact that we
were able to observe the correlations displayed in Fig. 2 suggests that MI, indeed, yielded
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Figure 3 Average correlation coefficient (r) absolute values between1PSD(f )i,t and1Wi,t , during
handsMI for mu (Fig. 3A) and beta (Fig. 3B) bands. Blue: right hand MI; green: left hand MI. Lack of er-
ror bars represents situations where only one correlation was observed.

Full-size DOI: 10.7717/peerj.3983/fig-3

significant alterations in the functional networks. Moreover, even though the mu band
presented a much smaller number of significant correlations for all electrodes (Fig. 2),
classifiction rates of both bands have very similar values (Table 1).

Although Fig. 2 locates where and how often the correlations were observed, it does not
contain any information regarding how strong the relationship between the quantitities
under consideration is. Thus, we computed the absolute values of the correlation for each

Stefano Filho et al. (2017), PeerJ, DOI 10.7717/peerj.3983 8/15

https://peerj.com
https://doi.org/10.7717/peerj.3983/fig-3
http://dx.doi.org/10.7717/peerj.3983


Table 1 Accuracy rates (%) for the different feature types tested. Results are shown individually and averaged across all subjects. (1) Wrapper
only, (2) Pearson filter+ wrapper, (3) Fisher filter+ wrapper. Highest accuracy rates for a given subject and feature type are bold marked.

Accuracy rates (%)

Frequency band Subject Feature

1PSD sij

(1) (2) (3) (1) (2) (3)

S1 100 77 80 80 82 77
S2 100 70 70 93 75 82
S3 89 68 70 86 70 73
S4 93 77 82 73 84 80
S5 83 67 69 93 79 71
S6 76 74 79 76 81 76
S7 98 98 86 91 86 82
S8 91 77 68 80 77 75
S9 82 73 75 73 80 75
S10 86 81 83 86 81 83

µ(7–13 Hz)

Mean± std 90± 8 76± 9 76± 7 83± 8 80± 5 77± 4

Subject Feature

1PSD 1W

(1) (2) (3) (1) (2) (3)

S1 82 80 82 82 80 82
S2 98 77 82 89 84 84
S3 82 75 75 93 84 82
S4 91 77 80 86 80 80
S5 86 71 60 79 74 76
S6 79 69 71 81 76 69
S7 95 68 61 91 75 77
S8 91 77 68 80 89 73
S9 82 80 70 75 73 73

β (13–30 Hz)

S10 83 69 81 71 79 83
Mean± std 87± 7 74± 5 73± 8 83± 7 79± 5 78± 5

subject (Fig. 3). We see from Fig. 3 that these values were mostly around 0.5, with the
smallest being above 0.4 and the highest being above 0.9, showing a reasonable amount
of correlation among ERDs and functional connectivity. In general, it can be noted
that correlation strength was higher for the beta band. Also, some subjects displayed
considerably larger values in this band when compared to the others (for example, subjects
5 and 7 during right hand MI; and subjects 6 and 7, during left hand MI).

From Table 1, we could observe that the sij parameters achieved a close performance
to the PSD method; particularly for the beta band ((83 ± 8)% for FCM vs. (90 ± 8)% for
PSD for the mu band, and (83 ± 7) for FCM vs. (87 ± 7) for PSD for the beta band). For
some subjects, this even outperformed PSD features (subjects 5 and 6 for the mu band,
and subjects 3 and 6 for the beta band).
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Figure 4 Scatter plot for classification accuracy rates vs. number of features to achieve such rates. Both
frequency bands are displayed: mu (A) and beta (B). Crosses and exes indicate PSD and FCM inputs, re-
spectively. Colors indicate the FS approach: wrapper only (blue); Pearson and wrapper combination (red);
and Fisher and wrapper combination (green); overlap between Pearson and wrapper and Fisher and wrap-
per (magenta).

Full-size DOI: 10.7717/peerj.3983/fig-4

Regarding the type of FS used, on average, the wrapper-only approach produced better
accuracy rates for both PSD and the graphmethod (Table 1). In particular, for PSD features
this was true with only one exception, subject 6 in the mu band, for which the wrapper +
Fisher filter combination produced the best result. On the other hand, for FCM features
in the mu band, there were four subjects (40%) for which the wrapper + Pearson filter
combination provided the best accuracies. The influence of the chosen FS technique can
be clearly observed. By simply chosing a different FS approach, average accuracy rates can
vary up to 10%.

Finally, we also analyzed how many features were necessary for obtaining the average
classification rates of Table 1 (Fig. 4). For both bands, accuracy rates were slightly better
using FCM elements as features for the FS approaches (2) and (3) (i.e., using the wrapper
combined with the Pearson and Fisher filters respectively), and with approximately the
same number of features for these twomethods. Nonetheless, there is a significant difference
when approach (1) was performed. In addition to the accuracy rates being lower for the
FCMmethod, it uses a considerable higher number of features; roughly twice the necessary
amount for the PSD in some cases (Fig. 4A).

CONCLUSION
To study the influence of the neuronal desynchronizations due to MI on the functional
networks, we chose to work with the degree measure for each node, as it is a simple metric
that can be easily interpreted. We hypothesized that local variations in the FCM should be
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accompained by modifications on the node’s degree. Thus, we quantified changes on the
signal PSD due to MI when compared to rest periods (Eq. (2)) and correlated them to the
corresponding variation in that node’s degree (Eq. (4)).

We found that these correlations occurred more often for the beta band, even though
there is no indication of this being a decisive factor for better data classification. In fact,
the obtained accuracy rates were about the same for both frequency bands.

Regarding the comparison between the connectivity method and the more traditional
PSD approach, we found that, at least when analyzing purely the FCM elements, features
from the PSD performed better for distinguishing hands’ MI tasks.

Although our findings indicate that MI can, in fact, alter functional networks related to
this task, our strategy of using directly the sij values for data classification did not achieved
the same performance as the PSD method. Therefore, we believe a further screening of
relevant measures of graph topology may aid in identifying possible candidates for this
task. Also, the combination of PSD and graph features should be explored in order to assess
if this could bring any improvement to the classification problem.
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