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ABSTRACT
Background. The evolution of exaggerated vocal signals in anuran species is an
important topic. Males and females have both evolved the ability to discriminate
communication sounds. However, the nature of sexual dimorphism in cognition and
sensory discrimination and in the evolution and limitation of sexual signal exaggeration
remain relatively unexplored.
Methods. In the present study, we used male calls of varied complexity in the serrate-
legged small treefrog, Kurixalus odontotarsus, as probes to investigate how both sexes
respond to variations in call complexity and how sex differences in signal discrimination
play a role in the evolution of sexual signal exaggeration. The compound calls of male
K. odontotarsus consist of a series of one or more harmonic notes (A notes) which may
be followed by one or more short broadband notes (B notes).
Results. Male playback experiments and female phonotaxis tests showed that increasing
the number of A notes in stimulus calls elicits increased numbers of response calls by
males and increases the attractiveness of the stimulus calls to females. The addition of
B notes, however, reduces male calling responses. Moreover, call stimuli which contain
only B notes suppress spontaneous male calling responses. Phonotaxis experiments
show that females prefer calls with greater numbers of A notes and calls containing
both A notes and B notes, but do not prefer calls with only B notes.
Discussion. Male-male competition and female choice appear to have played different
roles in the evolution and limitation of signal complexity in K. odontotarsus. These
results provide new insights into how exaggerated compound signals evolve and how
signal complexity may be limited in anurans.
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INTRODUCTION
In some anuran species, males produce a single type of sexual signal, while in others
highly complex and graded sexual signals have evolved which enable males to attract
females and compete with rivals (Narins & Capranica, 1978; Greer & Wells, 1980; Rand &
Ryan, 1981; Schwartz & Wells, 1984; Schwartz & Wells, 1985; Berglund, Bisazza & Pilastro,
1996; Zhu et al., 2016a; Zhu et al., 2016b). For example, males in two Panamanian species,
Dendropsophus ebraccatus and D. microcephalus, which exhibit graded variation in both
advertisement and aggressive calls, can adjust the relative aggressiveness and attractiveness
of their calls in a graded fashion, depending on the proximity of their opponents (Wells &
Schwartz, 1984; Wells & Bard, 1987; Wells, 1989). The evolution of such exaggerated vocal
signals is believed to result from sexual selection (Andersson, 1994). In addition, predation
pressure, working memory capacity, perceptual biases and choosier cognitive biases have
also been found to foster the evolution of signal exaggeration (Stoddard, 1999; Akre &
Ryan, 2010; Cui et al., 2016). In contrast, predation and parasitism pressures, as well as
limitations in female cognitive processes can limit the evolution of sexual signal elaboration
(Ryan, Tuttle & Rand, 1982; Bernal & Ryan, 2006; Akre et al., 2011).

Sexual selection differs in its form and consequences with regard to males and females.
Although males and females have both evolved the ability to discriminate communication
sounds, females generally exhibit greater selectivity than males (Forstmeier et al., 2014;
Zhu et al., 2016a). However, the nature of sexual dimorphism in cognition and sensory
discrimination and in the evolution and limitation of sexual signal exaggeration remain
relatively unexplored.

The present study investigated the role of the acoustics of male calls in male-male
competition and female choice in a tropical anuran species, the serrate-legged small treefrog,
Kurixalus odontotarsus (Frost, 2017). Male K. odontotarsus produce several different call
types with graded complexity to communicate with intraspecific individuals during the
breeding season (Zhu et al., 2016a). However, the functions of these complex calls are
not fully understood and, in particular, it is not known if each component of the male’s
compound call affects males and females differently. This species also offers an opportunity
to investigate how exaggerated characteristics relevant to mating can evolve.

In the present study, we used the serrate-legged small treefrog K. odontotarsus to
investigate (1) how both sexes respond to variation in call complexity, (2) the role of
sex differences in sensory discrimination in the evolution and limitation of sexual signal
exaggeration. Female phonotaxis tests and male evoked vocal response experiments using
calls of different complexity were used in these experiments. Male calls are composed of
two different note types whose numbers vary between calls in K. odontotarsus.

MATERIALS & METHODS
Vocalization recordings
The recordings were conducted in the Mt. Diaoluo National Nature Reserve in Hainan,
China (18.44◦N, 109.52◦E, elevation of 933 m a.s.l.) from April to May, 2014. Each male
was recorded for 3 min, using a directional microphone (ME66 with K6 power module,
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Sennheiser, Germany) connected to a digital recorder (PMD 660, 16 bit, 44.1 kHz,Marantz,
Japan), from 20:00 to 24:00 h (Temperature: 20.4 ± 0.52 ◦C, Relative Humidity: 94.9 ±
3.96%). The calls of 62 males were recorded in their original habitat in order to provide
a large sample of communication sounds for acoustic analysis. Prior to being returned to
the habitat, each male was given a unique toe-clip number to prevent repeated recording.

Acoustic stimuli
In a previous study, we found that most of the complex calls of K. odontotarsus consist
of two types of notes, note A and note B, with differing note numbers per call. Note A is
a harmonic sound spanning a wide frequency band while note B is a shorter broadband
sound. Note B is much shorter in duration than note A and does not exhibit the distinctive
pulsed structure of note A (Zhu et al., 2016a; Köhler et al., 2017). Males typically produce
three kinds of calls: A-note calls, B-note calls and compound calls containing both kinds
of notes (Fig. 1, also see Zhu et al., 2016a). Of interest is whether these call types serve
different behavioral functions. In order to evaluate the behavioral functions and likely
selection pressures acting on the evolution of these call types, three classes of stimuli were
constructed: (1) A calls consisting of 1, 3 or 5 notes (1A, 3A, 5A), (2) B calls consisting of
1, 3 or 5 notes (1B, 3B, 5B), (3) compound calls consisting of 5 notes A and 2 or 5 notes B
(5A2B, 5A5B). All stimulus types used in the experiments were constructed using natural
calls and are listed in Table 1.

To minimize pseudoreplication effects, five exemplars of each call type, derived from
five different calling males were used. Each test stimulus combination was labeled with
a numerical code of the form ‘‘Xy’’ in which ‘‘X’’ represented the stimulation types
(i.e., number of A and B notes in the call pair used in the test) and ‘‘y’’ represented the
male number. For example, the number ‘‘85’’ in the female phonotaxis tests stands for
the stimulus pair ‘‘5A2B’’ versus ‘‘5A5B’’ (see Table 1), derived from the calls of the fifth
calling male. To control for potential order effects, all test stimuli were randomly broadcast.
Randomized call orders were generated using the Randbetween function in Excel. The test
stimuli were broadcast with a 5-s interstimulus intervals (approximately equal to the
mean intercall intervals in the chorus). To minimize bias, observers were blind to the
experimental conditions in use during recording and analysis of all female phonotaxis and
male response data. Prior to returning the frogs to their original habitat, the subjects were
given a unique toe-clip number to avoid being retested.

Female phonotaxis experiments
Female phonotaxis tests were conducted in the Mt. Diaoluo National Nature Reserve
in Hainan, China (18.44◦N, 109.52◦E, elevation of 933 m a.s.l.) from April to June,
2014. A total of 65 gravid females were utilized in the phonotaxis tests. We performed
standard two-speaker phonotaxis tests offering females a choice involving eight stimuli
pairs (Table 1), which were presented to females between 20:00 h to 23:00 h (Temperature:
21.3 ± 0.35 ◦C, Relative Humidity: 93.5 ± 3.12%). To avoid experimental fatigue, each
female on average was allowed a 3-minute break between consecutive tests.

Each female was placed in the center of a sound-attenuating chamber (inside dimensions,
L ×W × H : 250 × 150 × 150 cm). We broadcast the stimulus pairs using two portable
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Figure 1 Amplitude-modulated waveforms (A) and spectrograms (B) of male compound call ‘‘5A5B’’.
The FFT (fast Fourier transform) frame is 1,024.

Full-size DOI: 10.7717/peerj.3980/fig-1

field speakers (SME-AFS, Saul Mineroff Electronics, Elmont, NY, USA) placed equidistant
from the opposite sides of the chamber. The distance between the two speakers was 220 cm.
To control for potential side bias, we broadcast the test stimuli antiphonally such that the
‘‘fast’’ root-mean-square amplitude of each test call was 80 dB SPL (re 20 µPa, A-weighted,
the approximate SPL of a natural call at the same distance) and alternated the presentation
of each stimulus pair between the right and left loudspeaker after each test. The sound
pressure levels (SPLs) of each test call were measured with a sound level meter (AWA 6291,
Hangzhou Aihua Instruments Co., Zhejiang, China) at the release location of the subject.
We scored a choice when the female approached within 10 cm of either speaker without
simply following the wall. If a female spent more than 10 min roaming the arena without
approaching a speaker, she was given a second chance at the end of the tests after a 10 min
break. If the female still failed to approach a speaker, no choice was recorded. We observed
the behavior of the females on a monitor using a wide-angle lens video system with an
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Table 1 The acoustic stimuli used in the female phonotaxis tests andmale playback experiments.

Female phonotaxis test

Test number Alternative 1
stimulus

Alternative 2
stimulus

Male playback
tests stimulus

1 5A1,2,3,4,5 Silence 5A1,2,3,4,5

2 5B1,2,3,4,5 Silence 5B1,2,3,4,5

3 5A1,2,3,4,5 5B1,2,3,4,5 3A1,2,3,4,5

4 2A1,2,3,4,5 5A1,2,3,4,5 3B1,2,3,4,5

5 2B1,2,3,4,5 5B1,2,3,4,5 1A1,2,3,4,5

6 5A1,2,3,4,5 5A2B1,2,3,4,5 1B1,2,3,4,5

7 5A1,2,3,4,5 5A5B1,2,3,4,5 5A2B1,2,3,4,5

8 5A2B1,2,3,4,5 5A5B1,2,3,4,5 5A5B1,2,3,4,5

Notes.
5A, call containing five A notes; 5B, call containing five B notes; 5A2B, call containing five A notes followed by two B notes.
Other abbreviations are labeled accordingly.
The superscript numbers (1, 2, 3, 4, 5) of each stimulus represent the calling male from which each stimulus was derived from
five different calling males.

infrared light source (also see Zhu et al., 2016b). The frogs were returned that night to their
original habitat after the tests were completed. Prior to being returned to their original
habitat, the subjects were given a unique toe-clip number to avoid being retested.

Male evoked vocal response experiments
Male evoked vocal response experiments were recorded at the same study site, from April
to July, 2014. A total of 60 males were utilized in the playback tests. We found that male
serrate-legged small treefrogs do not respond to playbacks in a sound-attenuating chamber.
For this reason calling males were captured at breeding sites and brought to a field test
site with an environment similar to the breeding sites where no nearby males were calling.
Males used in the evoked vocal response experiments were tested with eight stimuli (Table
1), which were presented tomales between 21:00 h to 24:00 h (Temperature: 20.9± 0.72 ◦C,
Relative Humidity: 97.4 ± 3.58%). Each male subject was placed on the shrubbery. The
playback stimuli were broadcast from a portable field speaker (SME-AFS, Saul Mineroff
Electronics, Elmont, NY, USA) placed 1 m from the shrubbery (the approximate distance
of two nearby males in their natural environment). Each stimulus was played for three
minutes. The response calls of males before, during and after playback were recorded for
three minutes respectively, using an Aigo R5518 recorder with an internal microphone
(AigoDigital Technology Co. Ltd., Beijing, China). The ‘‘fast’’ root-mean-square amplitude
of the broadcast test stimuli at the release position was 80 dB SPL (re 20 µPa, A-weighted,
the approximate SPL of a natural call at the same distance). The sound pressure levels
(SPLs) of each test call were measured with a sound level meter (AWA 6291, Hangzhou
Aihua Instruments Co.). The frogs were returned that night to their original habitat after
the tests were completed. Prior to being returned to their original habitat, the subjects were
given a unique toe-clip number to avoid being retested.
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Analysis and statistics
The sonograms of calls were generated using free PRAAT software (Boersma, 2002). Data
were statistically analyzed and graphs created using Sigmaplot 11.0 software (Systat Software
Inc., Chicago, USA). The Chi-square test was used to evaluate the female phonotaxis results.
The effects of stimulus type and playback time (before, during and after playback) on male
evoked vocal responses were analyzed using Two Way Repeated Measures ANOVA (Two
Factor Repetition). If a statistically significant difference was found, a multiple comparison
procedure (Holm-Sidak method) was used to evaluate the differences among groups.
All data were expressed as Mean ± SD, and p< 0.05 was considered to be statistically
significant.

Ethics note
All applicable international, national, and/or institutional guidelines for the care and use
of animals were followed. All procedures performed in studies involving animals were
approved by the Animal Care and Use Committee of Chengdu Institute of Biology, CAS
(CIB2014031008). This work was conducted with the permission of the Management
Office of the Mt. Diaoluo Nature Reserve.

RESULTS
Analysis of call complexity
Through long-term field observations, we have found that contests in this species generally
begin with an exchange of note A calls, then involve exchanges of note B calls and, in
some cases, physical combat. Male serrate-legged small treefrogs produce calls of varied
complexity. Males can produce a compound call, which consists of a series of multi-
harmonic A notes with one or several B notes (Fig. 1). Males, usually, can add one to five B
notes to several A notes. We referred to the measure of signal complexity in túngara frogs
(Bernal et al., 2009; Akre et al., 2011) and described the call complexity of K. odontotarsus.
The complexity of vocal signals is thus manifest at two levels: the number of notes and note
types. Typically, calls contain 3.8± 0.9 (mean± sd.) A notes. Calls with 3–5 notes are more
complex than those containing only one or two notes (i.e., 5A vs. 2A). The compound
calls containing two note types (such as the call shown in Fig. 1 with five A notes followed
by five B notes, labeled 5A5B) may be regarded as more complex than those containing
only one note type (i.e., 5A2B vs. 5A). In the field, more than half of the calls we recorded
contained A notes followed by B notes. In all compound calls (n= 96), 85.6% have one or
two B notes, while more than 96.7% have 1–3 B notes. In summary, male serrate-legged
small treefrogs can produce calls of varying complexity consisting of varying numbers of A
notes and B notes in response to potential rivals and to attract mates.

Female phonotaxis responses
The results are shown in Fig. 2. Some females did not behaviorally indicate a choice
(5 females). When ‘‘5A’’ and silence were played back alternately, 75% of the females
preferred ‘‘5A’’ (χ2

= 25.000, p< 0.001, n= 60); when ‘‘5A’’ and ‘‘5B’’ were played back
alternately, 63.3% of the females preferred ‘‘5A’’ (χ2

= 6.760,p= 0.009,n= 60). These
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Figure 2 Results of female phonotaxis tests forK. odontotarsus. The different playback stimuli are la-
beled according to the numbers of each note type contained in each stimulus and include: 5A, 5B, 3A, 3B,
1A, 1B, 5A2B, 5A5B. The dashed line indicates the proportion of females choosing one of the other alter-
natives based on chance (50%). Bars are 95% confidence intervals. ∗p< 0.05, ∗∗p< 0.01, Chi-square test.

Full-size DOI: 10.7717/peerj.3980/fig-2

results demonstrate that note A is a more attractive sexual signal to females than note B.
When the more complex ‘‘5A’’ and simpler ‘‘2A’’ were played back, 61.7% of the females
preferred ‘‘5A’’ (χ2

= 5.760, p= 0.016, n= 60). There was no significant difference between
female responsiveness to ‘‘5B’’ and ‘‘silence’’ (χ2

= 1.000, p= 0.317, n= 60) as well as to
‘‘5B’’ and ‘‘2B’’ (χ2

= 0.360, p= 0.549, n= 60) consistent with the idea that females are not
responsive to note B alone. In contrast 60% of the females preferred compound call ‘‘5A2B’’
to ‘‘5A’’ (χ2

= 4.000, p= 0.046, n= 60). However, there were no significant differences
between female responses to call ‘‘5A2B’’ and call ‘‘5A5B’’ (χ2

= 0.160, p= 0.689, n= 60,
Fig. 2).

Male evoked vocal responses
A total of 4,320 min of calling was recorded. We analyzed the total number of notes,
notes/call, maximum number of A notes and the number of compound calls in male
evoked vocal responses. There are significant differences in male evoked vocal responses
between stimuli (Notes: F7,59 = 10.923, p< 0.001; Maximum number of notes A:
F7,59 = 6.650, p< 0.001; Two Way Repeated Measures ANOVA) and playback time
(Notes: F2,59= 41.238, p< 0.001; Maximum number of notes A: F2,59= 21.878, p< 0.001;
Two Way Repeated Measures ANOVA). There is also a statistically significant interaction
effect between playback time and stimuli (Playback time× Sound interaction effect, Notes:
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Figure 3 MaleK. odontotarsus evoked vocal responses: the total number of notes produced in
response to the stimuli. The different playback stimuli are labeled according to the numbers of each
note type contained in each stimulus and include: 5A, 5B, 3A, 3B, 1A, 1B, 5A2B, 5A5B. We only show the
statistical relationships between the period ‘‘during’’ which the stimuli were played back and ‘‘before’’
the stimuli were played back in the figure. The ∗ symbol represents a significant difference, Two Way
Repeated Measures ANOVA and Holm-Sidak method.

Full-size DOI: 10.7717/peerj.3980/fig-3

F2,7= 11.005, p< 0.001; Maximum number of notes A: F2,7= 8.020, p< 0.001; Two Way
Repeated Measures ANOVA).

The stimuli containing note A (5A, 3A, 1A, 5A2B, 5A5B) elicited more responses during
the period the stimuli were played back than before the stimuli were played back. The
total note number respectively increased by 151.7% with 5A, 87.5% with 3A, 26.9% with
1A, 85.0% with 5A2B, and 129.6% with 5A5B (Fig. 3). Interestingly, stimuli containing
only note B (5B, 3B, 1B) suppressed male calling responses during the period the stimuli
were played, such that the number of notes produced decreased by 46.0% with 5B, 54.5%
with 3B, and 39.0% with 1B (Fig. 3). More statistical details are shown in Table 2. For
all stimuli, male calling responses ‘‘before’’ playbacks were similar and not significantly
different from those produced ‘‘after’’ (p= 0.4, Holm-Sidak method, Fig. 3). Responses
to ‘‘5A’’ were greater than to ‘‘3A’’ (p= 0.001) during the playback, and stimulation
using ‘‘3A’’ stimulation resulted in more responses than ‘‘1A’’ (p= 0.013) during the
playback. Responses to ‘‘5A’’ were greater than to ‘‘5A2B’’ (p= 0.015) during the playback,
and ‘‘5A5B’’ stimulation resulted in more responses than ‘‘5A2B’’ (p= 0.031) during the
playback (Holm-Sidakmethod, Fig. 3, Table 3). Stimuli containing only note B (5B, 3B, 1B)
which differed in the number of B notes did not yield statistically significant differences
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Table 2 The statistical results of male call responses during period the stimuli were played back compared to the period before the stimuli were
played back.

5A 5B 3A 3B 1A 1B 5A2B 5A5B

Notes <0.001 0.005 <0.001 0.001 0.023 0.029 <0.001 <0.001
Notes/call 0.001 0.064 0.002 0.178 0.034 <0.001 0.002 <0.001Total

Max. number of note A <0.001 0.005 <0.001 <0.001 0.014 0.009 <0.001 <0.001
A note notes 0.619 <0.001 0.427 <0.001 0.943 0.006 0.905 0.76
B note notes <0.001 0.785 <0.001 0.935 0.018 0.508 <0.001 <0.001

Notes.
5A, call containing five A notes; 5B, call containing five B notes; 5A2B, call containing five A notes followed by two B notes.
Other abbreviations are labeled accordingly. The numbers in each row are P values.

Table 3 The statistical differences betweenmale call responses evoked by eight stimuli produced dur-
ing the period the stimuli were played back.

5B 3A 3B 1A 1B 5A2B 5A5B

5A <0.001 0.001 <0.001 <0.001 <0.001 0.015 0.415
5B – <0.001 0.54 <0.001 0.628 <0.001 <0.001
3A – <0.001 0.013 <0.001 0.387 0.013
3B – <0.001 0.899 <0.001 <0.001
1A – <0.001 0.003 <0.001
1B – <0.001 <0.001

Total notes

5A2B – 0.031
5A 0.014 0.528 0.004 0.784 <0.001 0.653 0.453
5B – 0.002 0.639 0.007 0.341 0.004 0.089
3A – <0.001 0.722 <0.001 0.856 0.167
3B – 0.001 0.629 <0.001 0.03
1A – <0.001 0.861 0.306
1B – <0.001 0.008

Note A

5A2B – 0.23
5A <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.746
5B – <0.001 0.716 0.026 0.656 <0.001 <0.001
3A – <0.001 0.003 <0.001 0.124 <0.001
3B – 0.01 0.419 <0.001 <0.001
1A – 0.076 <0.001 <0.001
1B – <0.001 <0.001

Note B

5A2B – <0.001

Notes.
5A, call containing five A notes; 5B, call containing five B notes; 5A2B, call containing five A notes followed by two B notes.
Other abbreviations are labeled accordingly. The numbers in each row are P values.

during the playback (1B vs. 3B: p= 0.899; 3B vs. 5B: p= 0.540; 1B vs. 5B: p= 0.628;
Holm-Sidak method; Fig. 3; Table 3).

The results show that the maximum number of notes A produced by males in response
to all eight stimuli were similar as was the total note number. Male calling responses
‘‘during’’ playbacks differed significantly from those produced ‘‘before’’ (p< 0.001, Holm-
Sidak method, Fig. 4). The stimuli containing note A elicited more complex calls during

Zhu et al. (2017), PeerJ, DOI 10.7717/peerj.3980 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.3980


Figure 4 MaleK. odontotarsus evoked vocal responses: the maximum number of note A produced in
response to the stimuli. The * symbol represents a significant difference, Two Way Repeated Measures
ANOVA and Holm-Sidak method.

Full-size DOI: 10.7717/peerj.3980/fig-4

the period the stimuli were played back than before the stimuli were played back (5A:
p< 0.001; 3A: p< 0.001; 1A: p= 0.014; 5A2B: p< 0.001; 5A5B: p< 0.001; Holm-Sidak
method; Fig. 4; Table 2). However, stimuli containing only note B elicited fewer complex
calls during the period the stimuli were played back than before the stimuli were played
back (5B: p= 0.005; 3B: p< 0.001; 1B: p= 0.009; Holm-Sidak method; Fig. 4; Table 2).

Despite the fact that the number of notes/call which were evoked differed between
stimuli (F7,59= 2.561, p= 0.013, Two Way Repeated Measures ANOVA), the only stimuli
containing note A yielding statistically significant differences during playback were ‘‘5A5B’’
and ‘‘1A’’, and the only note B containing stimuli yielding significant differences during
playback were ‘‘1B’’ and ‘‘3B’’ (5A5B vs. 1A: p< 0.001; 1B vs. 3B: p= 0.002; Holm-Sidak
method; Fig. 5). The number of notes/call differed among playback periods (F2,59= 36.307,
p< 0.001, Two Way Repeated Measures ANOVA). Male calling responses ‘‘during’’
playbacks were significantly different from those produced ‘‘before’’ (p< 0.001) except
for the stimulus ‘‘5B’’ (p= 0.064) and the stimulus ‘‘3B’’ (p= 0.178, Holm-Sidak method,
Fig. 5, Table 2). For all stimuli, male calling responses ‘‘before’’ playbacks were similar
and not significantly different from those produced ‘‘after’’ (p= 0.4, Holm-Sidak method,
Fig. 5).

Twenty six (26) males (43.3%) emitted 96 compound calls which consisted of 4.33 ±
0.96 (mean ± sd.) A notes and 1.66 ± 0.93 (mean ± sd.) B notes. Males emitted more
compound calls during the periods the stimuli containing note A (i.e., 5A, 3A, 1A, 5A2B,
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Figure 5 MaleK. odontotarsus evoked vocal responses: the ratio of notes/call in response to the stim-
uli. The ∗ symbol represents a significant difference, Two Way Repeated Measures ANOVA and Holm-
Sidak method.

Full-size DOI: 10.7717/peerj.3980/fig-5

5A5B) were played back (n= 84) than during the period before the stimuli were played
back (n= 2). Notably males produced no compound calls or fewer compound calls during
the period stimuli containing only note B (i.e., 5B, 3B, 1B) were played back (n= 1)
compared to the period before these stimuli were played back (n= 6) (Fig. 6). In other
words, playback stimuli containing note A but not stimuli only containing note B elicited
increased numbers of compound calls.

In order to further investigate male call response patterns elicited by different playback
stimuli, we counted the total number of notes A and notes B produced in all response calls.
As can be seen in Figs. 7 and 8, total numbers of note A in calls produced and total numbers
of note B in calls produced differed between stimuli (Note A: F7,59 = 2.484, p= 0.016;
Note B: F7,59= 19.540, p< 0.001; Two Way Repeated Measures ANOVA) and playback
time (Note A: F2,59 = 11.564, p< 0.001; Note B: F2,59 = 108.358, p< 0.001; Two Way
Repeated Measures ANOVA). We also found a statistically significant interaction effect
between playback time and stimuli (Playback time × Sound interaction effect, Note A:
F2,7 = 2.323, p= 0.004; Note B: F2,7 = 12.591, p< 0.001; Two Way Repeated Measures
ANOVA). Stimuli containing only note B elicited fewer male calls containing note A during
the period the stimuli were played back than before the stimuli were played back, such that
the total numbers of note A produced decreased by 54.3% with 5B, 59.7% with 3B, and
56.0% with 1B (Holm-Sidak method, Fig. 7, Table 2). For all stimuli containing note A,
male calls containing note A ‘‘before’’ playbacks were not significantly different from those
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Figure 6 The total number of compound calls produced by males in response to each kind of playback
stimulus. ‘‘Before’’, ‘‘During’’ and ‘‘After’’ represent before, during and after the playback stimulus pre-
sentation period, respectively.

Full-size DOI: 10.7717/peerj.3980/fig-6

produced ‘‘during’’ (5A: p= 0.619; 3A: p= 0.427; 1A: p= 0.943; 5A2B: p= 0.905; 5A5B:
p= 0.760; Holm-Sidak method; Fig. 7; Table 2).

Stimuli containing A notes and stimuli containing only B notes did not yield statistically
significant differences in the total numbers of note A produced during the playback
(Fig. 7; Table 3). Furthermore, stimuli containing note A elicitedmoremale calls containing
note B during the period the stimuli were played back than before the stimuli were played
back, such that the total number of B notes increased by 856.6% with 5A, 758.0% with
3A, 225.4% with 1A, 732.6% with 5A2B, and 753.7% with 5A5B (Holm-Sidak method,
Fig. 8, Table 2). For all stimuli containing only note B, the numbers of male calls produced
containing note B ‘‘before’’ playbacks were not significantly different from those produced
‘‘during’’ (5B: p= 0.78textit; 3B: p= 0.935; 1B: p= 0.508; Holm-Sidak method; Fig. 8;
Table 2). As shown in Fig. 8, responses to ‘‘5A’’ were greater than to ‘‘3A’’ (p< 0.001)
during the playback, and stimulation using ‘‘3A’’ resulted in more responses than ‘‘1A’’
(p= 0.003) during the playback (Table 3). Responses to ‘‘5A’’ were greater than to ‘‘5A2B’’
(p< 0.001) during the playback, and ‘‘5A5B’’ stimulation resulted in more responses than
‘‘5A2B’’ (p< 0.001) during the playback (Holm-Sidak method, Fig. 8, Table 3). Stimuli
containing only note B did not yield statistically significant differences in the total numbers
of note B produced during the playback (1B vs. 3B: p= 0.419; 3B vs. 5B:p= 0.716; 1B vs.
5B: p= 0.656; Holm-Sidak method ; Fig. 8; Table 3).
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Figure 7 MaleK. odontotarsus evoked vocal responses: the total number of notes A produced in re-
sponse to the stimuli. The ∗ symbol represents a significant difference, Two Way Repeated Measures
ANOVA and Holm-Sidak method.

Full-size DOI: 10.7717/peerj.3980/fig-7

During the 6 min periods ‘‘before’’ and ‘‘after’’ the playback stimuli, male serrate-legged
small treefrogs produced 15.60± 2.97 (mean± sd.) calls containing note A, but produced
2.38 ± 1.30 (mean ± sd.) calls containing note B (Figs. 7 and 8).

DISCUSSION
The results of the phonotaxis experiments show that K. odontotarsus females preferred
calls containing more A notes, indicating that note A is an attractive signal to females.
Consistent with these female preferences, males produced more response calls when the
playback stimuli included note A than were produced spontaneously before playback.
These results indicate that note A as an advertisement call is the primary call type for
female attraction, but also serves a role in male-male competition. While B notes were not
particularly effective versus silence, 30–40% of the females chose B-note calls when pitted
directly against A-note calls, suggesting that B notes are also attractive to females. The
results of male evoked vocal response experiments show that K. odontotarsusmales emitted
more B notes during playbacks of stimuli which included note A than were produced
before the playbacks, and emitted fewer notes A during the playbacks of stimuli which
contained only note B than before the playbacks. These results imply that note B of male
K. odontotarsus calls functions as a suppressor of competitors’ advertisement calls. Except
for the test of A versus silence, the preferences demonstrated here are weak relative to those
in the context of female choice in many studies of other frog species (Akre et al., 2011;

Zhu et al. (2017), PeerJ, DOI 10.7717/peerj.3980 13/19

https://peerj.com
https://doi.org/10.7717/peerj.3980/fig-7
http://dx.doi.org/10.7717/peerj.3980


Figure 8 MaleK. odontotarsus evoked vocal responses: the total number of notes B produced in re-
sponse to the stimuli. The ∗ symbol represents a significant difference, Two Way Repeated Measures
ANOVA and Holm-Sidak method.

Full-size DOI: 10.7717/peerj.3980/fig-8

Cui et al., 2016). However, failures to show preferences (or to selectively respond) do not
necessarily reflect limitations of the auditory system.

When subjects perform in more than one test there is a possibility of carryover effects
(Brooks, 2012). Each female in these experiments was provided only one opportunity to
choose in a given test. Without test repetition, we can not directly detect whether an
individual experiences carryover effects. For this reason we mitigated potential carryover
effects by using a randomized sequence for broadcasting the stimulus tests and by providing
each female a 3-minute break between consecutive tests.

Compound calls (several A notes + one or more B notes) function as advertisement calls,
insofar as these calls both attract females and foster male-male competition. The addition
of one or more B notes as an appendage inmale compound calls increases the attractiveness
of the call to females (i.e., 5A vs. 5A2B). Formales, compound calls containing a few B notes
tend to reduce vocal competition compared with calls containing only A notes (i.e., 5A vs.
5A2B). Notably such compound calls do not serve a suppression function insofar as male
calling is not reduced compared to calling before the stimulus. These results suggest that
compound calls in K. odontotarsus may have evolved as a form of transition call enabling
advertisement calls to reduce competition as well as attract females. Moreover, the addition
of suppression notes in compound calls provides females with information about both the
male’s ability to attract mates and the potential suppressing effects of the male’s calls in
male-male competition.
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Female serrate-legged small treefrogs prefer male calls which include greater numbers
of notes A and/or more note types (i.e., 2A vs. 5A, 5A vs. 5A2B). The stimuli containing
more notes A (i.e. 1A, 3A, 5A) elicited more notes and more complex calls during the
playback periods than were produced spontaneously before the stimuli were played back.
Thus both female choice and male-male competition likely promoted the evolution of
signal complexity in K. odontotarsus.

Sexual selection often favors the evolution of the more elaborate trait (Basolo, 1990;
Ord, Blumstein & Evans, 2001; Elias, Hebets & Hoy, 2006; Akre & Ryan, 2011; Chen et al.,
2012; Seddon et al., 2013), but continued trait elaboration can be inhibited if the cost
entailed is high enough (Tuttle & Ryan, 1981; Endler, 1983; Bradbury & Vehrencamp, 1998;
Zuk, Rotenberry & Tinghitella, 2006; Page & Ryan, 2008; Safran et al., 2008; Halfwerk et al.,
2014). Thus despite the fact that female K. odontotarsus significantly prefer the compound
call to simpler calls with only notes A (i.e., 5A vs. 5A2B), female preference does not increase
when the number of B notes in compound calls is increased from two to five (i.e., 5A2B
vs. 5A5B). This finding is similar to those reported in túngara frogs (Bernal et al., 2009),
which suggests that female cognition limits the evolution of signal elaboration. Consistent
with this idea it is unusual for males to produce five B notes in a compound call and 85.6%
of all compound calls produced in natural contexts contain only one or two B notes.

Given that exaggerated and costly compound signals, such as ‘‘5A5B’’, are not more
attractive to females than less complex compound signals such as ‘‘5A2B’’, it is important
to ask why such calls would be produced at all by males. Akre and Ryan showed that
the working memory of female túngara frogs favor the evolution of increasing signal
complexity despite the fact that the male túngara compound call (single note whine + one
or more notes chuck) production has diminishing effectiveness for both males and females
beyond a single chuck (Akre & Ryan, 2010). Our results indicate that male K. odontotarsus
produce more calls when ‘‘5A5B’’ was played back compared with ‘‘5A2B’’, despite the
fact that females do not prefer the longer call. The existence of differences in the male
vocal responses evoked by playbacks of ‘‘5A2B’’ and ‘‘5A5B’’ is likely the reason why
such exaggerated compound calls exist in natural contexts, and suggests that male-male
competition may play an important role in the evolution of exaggerated sexual signals
independently from the selective pressures imposed by female choice in K. odontotarsus.
Our results therefore provide an alternative explanation for the evolution of exaggerated
compound signals in anurans.

CONCLUSIONS
To summarize, our results demonstrate thatmale-male competition and female choice have
played different roles in the evolution and limitation of signal complexity inK. odontotarsus
and show that sex differences in compound signal discrimination can serve to maintain
and promote the evolution of compound signal structure. Taken together these results
provide new insights into how exaggerated signals evolve and are limited in anurans.
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