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ABSTRACT
A matrix population model is a convenient tool for summarizing per capita survival
and reproduction rates (collectively vital rates) of a population and can be used for
calculating an asymptotic finite population growth rate (λ) and generation time. These
two pieces of information can be used for determining the status of a threatened species.
The use of stage-structured population models has increased in recent years, and the
vital rates in such models are often estimated using a life table analysis. However,
potential bias introduced when converting age-structured vital rates estimated from
a life table into parameters for a stage-structured population model has not been
assessed comprehensively. The objective of this studywas to investigate the performance
of methods for such conversions using simulated life histories of organisms. The
underlying models incorporate various types of life history and true population growth
rates of varying levels. The performance was measured by comparing differences in λ
and the generation time calculated using the Euler-Lotka equation, age-structured pop-
ulation matrices, and several stage-structured population matrices that were obtained
by applying different conversion methods. The results show that the discretization of
age introduces only small bias in λ or generation time. Similarly, assuming a fixed age
of maturation at the mean age of maturation does not introduce much bias. However,
aggregating age-specific survival rates into a stage-specific survival rate and estimating
a stage-transition rate can introduce substantial bias depending on the organism’s life
history type and the true values of λ. In order to aggregate survival rates, the use of
the weighted arithmetic mean was the most robust method for estimating λ. Here,
the weights are given by survivorship curve after discounting with λ. To estimate a
stage-transition rate, matching the proportion of individuals transitioning, with λ used
for discounting the rate, was the best approach. However, stage-structured models
performed poorly in estimating generation time, regardless of the methods used for
constructing the models. Based on the results, we recommend using an age-structured
matrix population model or the Euler-Lotka equation for calculating λ and generation
time when life table data are available. Then, these age-structured vital rates can be
converted into a stage-structured model for further analyses.
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INTRODUCTION
A matrix population model is a convenient tool for summarizing per capita survival and
reproduction rates (collectively vital rates) of a population, and is used for calculating an
asymptotic finite population growth rate (commonly denoted by λ) and generation
time. These two pieces of information can be used for determining the status of a
threatened species (IUCN, 2012). Matrix population models are broadly categorized
into age-structured (Leslie matrix; Leslie, 1945) and stage-structured (Lefkovitch matrix;
Lefkovitch, 1965) models. Age-structured matrix models group individuals based on age
whereas stage-structured matrix models group individuals based on other properties such
as developmental stage and size. Stage-structured matrix models are often favored when
a property of individuals besides age is a better indicator of survival and reproduction
(e.g., Caswell, 2001; Cochran & Ellner, 1992). Although both types of models are common,
the use of stage-structured population models has increased in recent years. Moreover,
in many studies, vital rates in stage-structured population models may be estimated
from age-structured vital rates through the grouping of age-classes together to form a
stage (e.g., Brault & Caswell, 1993; Caswell et al., 1998; Crouse, Crowder & Caswell, 1987;
Crowder et al., 1994). Typically a life table analysis is one of the main methods for obtaining
age-specific vital rates.

A life table is a list of age-specific population density and age-specific fecundity. From
life table data, survivorship (the proportion of age 0 that is alive at age x) is estimated,
and then age-specific survival rates (the proportion of individuals that survive from age x
to x+1) are estimated. Age-specific survival rates along with age-specific fecundity rates
can be entered into an age-structured matrix population model almost directly (see the
Age-Structured Matrix Population Models section), and λ and generation time can be
calculated from the matrix. Matrix population models are also used for sensitivity and
elasticity analyses (Caswell, 1978; De Kroon, Groenendael & Ehrlen, 2000). The inclusion of
a large number of age-classes for long-lived organisms can make the interpretation of the
sensitivity and elasticity analyses complicated because individuals in multiple age classes
are often practically identical but separated in an age-structured model. Consequently,
when long-lived organisms are studied, it is common to convert age-specific vital rates into
stage-specific vital rates, and to use stage-structured population matrices for calculating λ
and generation time.

In order to convert age-specific into stage-specific vital rates, the former vital rates
need to be aggregated for the various stages. Furthermore, a transition rate from one
stage to another needs to be estimated. Several approaches, or conversion methods, to
aggregate survival rates for calculating a transition rate exist. However, the performance
of the conversion methods has not been investigated comprehensively. Intuitively, the
performance should depend on how survivorship and reproductive schedule change with
age (life history) and whether a population is growing or declining in its abundance.
Therefore, it is critically important to investigate the performance of the conversion
methods for different life history and population growth scenarios.
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The objective of this study is to investigate the performance of the conversion methods
to estimate vital rates for stage-structured matrix population models from life tables.
The performance is measured by comparing λ’s and generation time calculated with the
Euler-Lotka equation (see Kot, 2001), age-structured population matrices, and several
stage-structured population matrices obtained using different conversion methods. The
asymptotic finite population growth rate (λ) and the generation time calculated with the
Euler-Lotka equation are considered the true values. Any discrepancies between the results
obtained from the Euler-Lotka equation and those from an age-structured population
matrix are considered to be due to bias introduced by discretizing age. In contrast,
discrepancies between results from an age structured population matrix and those from
stage-structured population matrices are considered to be due to bias introduced by
conversion methods.

The comparisons were carried out with the life table data of organisms with different
life history types. A wide range of life history types was incorporated into the analysis by
artificially creating them using a competing risk model (Siler, 1979) and three types of
fecundity functions. However, the analysis focuses on those with a prolonged duration in a
stage of interest. When the duration is short, stage structure is often embedded within age
structure, and it is not necessary to convert age-structured vital rates into stage-structured
rates. The comparisons were also repeated with life table data from populations that are
declining (λ< 1), maintaining the same population density (λ= 1), or increasing (λ> 1)
in population density in order to determine whether a stage-structured population matrix
can be used for determining a population growth rate correctly under different population
growth conditions.

This paper is structured as follows. First, the life history types of organisms considered
and the conversion methods to be compared are described. Then, methods for calculating
λ’s and generation time with the Euler-Lotka equation and matrix population models
are described followed by the description of the procedures specific to this study. Finally,
results are presented and discussed.

MODELS AND METHODS
Life history types
The types of life histories considered are broadly categorized into two groups: one with
a short juvenile stage (early maturation) and the other with a prolonged juvenile stage
(delayed maturation). The early maturation type was used for comparing methods for
converting age-specific survival rates and fecundity rates into a stage-specific adult survival
rate and a stage-specific fertility rate. The delayed maturation type was used for comparing
methods for converting age-specific survival rates into a stage-specific juvenile survival
rate and a stage transition rate. Throughout this study, the unit for time and age was set
to a year for convenience, but it can be scaled differently if both are changed in the same
way. Age is denoted by x , and organisms experience five major life events: birth at age 0,
beginning of the juvenile stage at age x0, age at which the first individual mature x1, the
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Table 1 Parameters for twelve different life history types.

Model α1 α2 β2 L∞ κ R−1λ=0.9 R−1λ=1.0 R−1λ=1.1 x0 x1 x2 x3

Early maturation type
Dimension τ−1 τ−1 τ−1 l τ−1 µ−1τ l3 µ−1τ µ−1τ τ τ τ τ

CH-IF .1535 0 – 10 .10 6,832 948 280 1.5 1.5 1.5 40.5
CH-CF .1535 0 – 10 – 16,371 5,163 2,768 1.5 1.5 1.5 40.5
CH-DF .1535 0 – 10 .10 6,262 3,134 1,975 1.5 1.5 1.5 40.5
IH-IF 0 .002 .205 10 .10 39,459 5,985 1,435 1.5 1.5 1.5 40.5
IH-CF 0 .002 .205 10 – 80,276 18,485 7,244 1.5 1.5 1.5 40.5
IH-DF 0 .002 .205 10 .10 22,872 8,100 4,176 1.5 1.5 1.5 40.5

Model α1 α3 β3 m1 m2 a R−1λ=0.9 R−1λ=1.0 R−1λ=1.1 x0 x1 x2 x3

Delayed maturation type
Dimension τ−1 τ−1 τ−1 gτ−1 τ−1 τ−1 µ−1τ l3 µ−1τ µ−1τ τ τ τ τ

DH-FM .1000 .400 .300 – – .20 3.000 0.497 0.124 1.5 10.5 10.5 40.5
CH-FM .2193 0 – – – .20 3.005 0.498 0.124 1.5 10.5 10.5 40.5
DH-CM .1000 .400 .300 .50 0 .20 2.958 0.502 0.131 1.5 8.5 10.5 40.5
CH-CM .2193 0 – .50 0 .20 3.082 0.538 0.143 1.5 8.5 10.5 40.5
DH-IM .1000 .400 .300 .10 1.01 .20 2.942 0.491 0.124 1.5 8.5 10.5 40.5
CH-IM .2193 0 – .10 1.01 .20 3.030 0.510 0.130 1.5 8.5 10.5 40.5

Notes.
CH, Constant hazard (risk) model (Eq. (1)); IH, Increasing hazard (risk) model (Eq. (2)); DH, Decreasing hazard (risk) model (Eq. (6)); IF, Increasing fecundity model (Eq.
(3)); CF, Constant fecundity model (Eq. (4)); DF, Declining fecundity model (Eq. (5)); FM, Fixed age of maturation at age x2; CM, Constant rate of maturation; IM, Expo-
nentially increasing rate of maturation; τ , age; l , length; µ, number of births per adult; g , number of individuals reaching maturity per juvenile.

mean age of maturation x2, and the last age of reproduction x3. Hereafter, the subscripts
for age x denotes life events. The parameters for all models to be described are listed in
Table 1.

Early maturation types
For the early maturation types, two types of survivorship and three types of fecundity
schedules were incorporated. For the first type of survivorship, individuals experience
a constant risk of mortality. This leads to an exponentially declining survivorship curve
(l (x)) with age:

l (x)= e−α1x , (1)

where α1 is the constant risk (i.e., hazard rate). For the second type of survivorship,
individuals experience an exponentially increasing risk of mortality with age:

l (x)= e
α2
β2
(1−eβ2x)

, (2)

where α2 and β2 are the parameters for the increasing risk. Under this model, the hazard
function is given by h(x)= α2eβ2x (Siler, 1979). This type of risk may be due to aging.
These two types of survivorship curves are shown in Fig. 1A.

Figure 1B shows the three types of fecundity schedules. The first type assumes the
fecundity b(x) is proportional to the cube of the body length of the individuals, which in
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Figure 1 Survivorship, fecundity, andmaturation schedule. (A) Survivorship of individuals under a
constant risk (solid line, Eq. (1)) and an exponentially increasing risk (dotted line, Eq. (2)). (B) Fecundity
as a function of age: increasing fecundity (solid line; Eq. (3)), constant fecundity (dotted line; Eq. (4)), and
exponentially declining fecundity (dash-dot; Eq. (5)). (C) Survivorship of individuals under a declining
risk (solid line; Eq. (6)) and a constant risk (dashed line; Eq. (1)). (D) Proportion of individuals mature
with the increasing rate of maturation (solid line), the fixed age of maturation (dotted line), and the con-
stant rate of maturation (dash dot).

Full-size DOI: 10.7717/peerj.3971/fig-1

turn increases according to von Bertalanffy growth equation:

b(x)=R1
[
L∞
(
1−e−κx

)]3
, (3)

where L∞ and κ are the parameters in the growth model (Von Bertalanffy, 1968). This
assumes reproduction is approximately proportional to the mass of individuals. The
second type assumes a constant fecundity with age

b(x)=R2. (4)

Finally, the third type assumes exponentially declining fecundity:

b(x)=R3e−γ x , (5)

where γ is the parameter determining how fast fecundity declines with age. Parameter Rm

(wherem= 1,2, or 3) are constants with different units depending on the type of fecundity,
and these constants were used for adjusting λ’s in this study (see ‘Analytical Procedure’).
For all of the early maturation types in this study, individuals are assumed to mature at age
1.5 (i.e., x1= x2= 1.5).

Delayed maturation types
For the delayed maturation types, two kinds of survivorship curves are incorporated into
a juvenile stage. One incorporates a constant risk of mortality (Eq. (1)), which results
in exponentially declining survivorship (dashed curve in Fig. 1C). The other assumes an
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exponentially declining risk of mortality in addition to a constant risk:

l (x)= e−α1xe
[
−
α3
β3
(1−e−β3x)

]
, (6)

where α3 and β3 are the parameters for the declining risk. In this model, the exponentially
declining hazard is given by h(x)= α3e−β3x (Siler, 1979). This causes initial fast descent
of survivorship (solid curve in Fig. 1C). This type of survivorship can be observed when
organisms grow out of a mortality risk such as predation as they age. Once individuals
mature, they reach a constant risk of mortality (Eq. (1)) and constant fecundity (Eq. (4))
under the delayed maturation types.

In addition, three types of maturation schedule are incorporated. The first type assumes
a fixed age of maturation at age 10.5 years (x1= x2= 10.5). The second type assumes a
constant rate of maturation, and the third type assumes an exponentially increasing rate of
maturation with age. In the latter two cases, maturation begins at age 8.5 years (x1= 8.5),
and the parameters are chosen so that the mean age of maturity is approximately 10.5 years
(x2= 10.5); however, the mean age varies slightly depending on the level of mortality rate
during the maturation period. Under the latter two types of maturation schedules, the
densities of individuals in immature (all stages prior to maturation) and adult stages are
described conveniently with a system of ordinary differential equations (ODEs):

dn1(x)
dx
=−m(x)n1(x)−h(x)n1(x)

dn2(x)
dx
=m(x)n1(x)−an2(x)

, (7)

where n1(x) and n2(x) are the densities of immature individuals and adults at age x ,
respectively, m(x) is a per-capita instantaneous maturation rate at age x , and h(x) is the
age-dependent hazard function of mortality. For the second type of maturation schedule,
m(x) is set at m1= 0.5 for x ≥ x1 and 0 otherwise. For the third type, m(x)=m1em2(x−x1)

for x ≥ x1, andm(x)= 0 otherwise. The proportion of individuals that aremature at a given
age for the three types of maturation schedule is shown in Fig. 1D. When the system of
ODEs is solved with the initial condition [n1(0) n2(0)] = [1 0] using a numerical ODE
solver, the survivorship is given by l (x)= n1(x)+n2(x). Note Eq. (7) does not include
reproduction, and the initial condition is 1 in the immature stage; therefore, l (x)≤ 1 for
all x ≥ 0.

Conversion methods
In order to convert age-structured vital rates into stage-structured vital rates, three types
of vital rates need to be calculated: a stage-specific survival rate for stage i (Si), a transition
rate from stage i to stage j conditional on their survival (Pj,i), and a fertility rate for stage i
(Fi). The methods for converting these vital rates are described in the following sections.

Stage-specific survival rate
All the methods for calculating a stage-specific survival rate from age-specific survival
rates investigated in this study assume that the beginning and ending ages of a stage are
given by the mean ages of transition into and from the stage, respectively, and that these
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ages are known. The former assumption can potentially produce bias when calculating
λ and generation time because stage transitions often do not occur at a fixed age (i.e.,
individuals gradually transition from one stage to another over a range of ages). Therefore,
the performance of conversion methods was also investigated when the age of stage-
transitions was not fixed (Eq. (7)). It is also possible that stage-transitions are completely
age-independent (e.g., as in some plant species). This situation is beyond the scope of the
current analysis, but it will be briefly discussed in the ‘Discussion’ section.

An age-specific survival rate from age x to x+1 is given by

sx =
l (x+1)
l (x)

. (8)

Hereafter, lower case s is used for denoting an age-specific survival rate whereas the upper
case S is used for denoting a stage-specific survival rate. Suppose the stage begins at age x(i)

and ends at x(j)−1 (i.e., age x(j) is the next stage), then the survival rate of individuals
in the stage is given by the mean survival rate over age classes within the stage. Note that
an index in the superscript within parentheses denote a stage. Here, nine different ways of
calculating the mean are compared. First, the mean is given by geometric mean, arithmetic
mean, or harmonic mean (Table 2). These are three common methods for obtaining a
stage-specific survival rate. However, the number of individuals in age classes are different,
and it is more appropriate to put weight based on the proportion of individuals in a given
age class, which is given by a survivorship curve. This leads to a weighted geometric mean,
weighted arithmetic mean, and weighted harmonic mean (Table 2). Although weighting
with survivorship is fine when a population is neither growing nor declining (i.e., λ= 1),
when a population is growing (or declining), there are more (or less) individuals in younger
age classes than predicted by a survivorship curve. Therefore, it is necessary to discount the
weight using λ. This leads to weightedmeans where the weight is given by both survivorship
and λ (Table 2). Hereafter, the latter weight is termed ‘‘a discounted weight.’’

Conditional transition rate
Transition rate from stage i to stage j conditional on their survival (pj,i) is calculated in
three ways (Table 3). The first method (T1) matches the expected duration in the stage
assuming exponentially declining time to transition into the following stage. The second
method (T2) matches the expected proportion of individuals making the transition into
the following stage assuming the survivorship curve gives the distribution of individuals
among age-classes. The third method (T3) is the same as the second method except that
the distribution is discounted by a population growth rate. These methods are described
in more detail in Caswell (2001).

Fertility rate
Fertility rates in matrix population models are different from fecundity in a life table. A
fertility rate gives the per capita rate of contribution from one stage to the next over one year
so that adults will have to survive to reproduce, and/or offspring must survive to appear
in the next stage. On the other hand, fecundity is the number of offspring produced.
The latter does not include any survival of adult or offspring. Consequently, there are
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Table 2 Nine ways of converting age-specific survival rates into a stage-specific survival rate.Note
lower-case s is used for an age-specific survival rate and upper-case S is used for a stage-specific survival
rate. xi is the first age class in the stage i, and xj is the first age class in stage j = i+1.

Type of mean Formula

Geometric
Si=

(∏xj−1
x=xi sx

) 1
(xj−xi)

Arithmetic Si= 1
xj−xi

∑xj−1
x=xi sx

Harmonic
Si=

(∑xj−1
x=xi s

−1
x

xj−xi

)−1
Weighted geometric

Si=
(∏xj−1

x=xi s
ω1,x
x

) 1∑xj−1
x=xi ω1,x where ω1,x = l (x)

Weighted arithmetic
Si=

∑xj−1
x=xiω1,x sx∑xj−1
x=xiω1,x

where w1,x = l (x)

Weighted harmonic
Si=

(∑xj−1
x=xiω1,x s

−1
x∑xj−1

x=xiω1,x

)−1
where ω1,x = l (x)

Discounted-weight geometric
Si=

(∏xj−1
x=xi s

ω2,x
x

) 1∑xj−1
x=xi ω2,x where ω2,x =

1
λx−xi

l (x)

Discounted-weight arithmetic
Si=

∑xj−1
x=xiω2,x sx∑xj−1
x=xiω2,x

where ω2,x =
1

λx−xi
l (x)

Discounted-weight harmonic
Si=

(∑xj−1
x=xiω2,x s

−1
x∑xj−1

x=xiω2,x

)−1
where ω2,x =

1
λx−xi

l (x)

Table 3 Three methods for the calculation of the conditional stage-transition rate Pj,i. xi is the first age
class in the stage i, and xj is the first age class in stage j = i+1.

MODEL Type of transition rate Formula

T1 Matching duration Pj,i= 1− 1
xj−xi

T2 Matching proportion transitioning
Pj,i=

l(xj−1)∑xj−1
x=xi l(x)

T3 Matching proportion transitioning with discount
Pj,i=

λ
−(xj−xi−1) l(xj−1)∑xj−1

x=xi λ
−(x−xi) l(x)

two steps in converting life table data into a stage-structured fertility rate: calculating
age-specific fertility rates and converting them into a stage-specific fertility rate. There are
many approaches for the first step depending on the reproductive schedules of organisms
within a year (see Caswell, 2001) or among years (e.g., Crowder et al., 1994). Evaluating
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them is beyond the scope of this study. Here, reproduction was assumed to occur at any
time of year (i.e., a birth flow model), and an age-specific fertility rate (fx) was estimated
as follows:

fx = l (0.5)
∫ x+0.5

z=x−0.5
b(z)

l (z)
l (x−0.5)

dz, (9)

where b(z) is the instantaneous per-capita fecundity rate at age x . In the equation,
l (z)/l (x−0.5) gives the survival rate of adults from age x−0.5 to age z (where z > x−0.5),
and the integral calculates the total number of offspring produced between ages x−0.5
and x+0.5 per adult that was alive at age x−0.5. Then, all births are attributed to the half
way point (i.e., age x) so that offspring will have to survive half a year on average to appear
in the first stage; this survival rate is given by l (0.5), which is the survival rate from age 0
to 0.5.

Once age-specific fertility rates are obtained, a stage-specific fertility rate Fi is calculated
in three different ways. First, an arithmetic mean is taken with equal weights on all age
classes,

Fi=
1

x3−x2

x3−0.5∑
x=x2+0.5

fx . (10)

The second approach is to take a weighted arithmetic mean,

Fi=
1∑x3−0.5

x=x2+0.5ω1,x

x3−0.5∑
x=x2+0.5

ω1,x fx , (11)

where ω1,x = l (x). The third method is to use a discounted weight by replacing ω1,x in
Eq. (11) with ω2,x =

1
λx−x0

l (x). In all calculations, the same weight (or no weight) is used
for calculating a stage-specific survival rate and a stage-specific fertility rate.

Asymptotic population growth rate and generation time
An asymptotic population growth rate (a finite per capita population growth rate λ) and
generation time are calculated using the Euler-Lotka equation, age-structured (Leslie)
matrices, and stage-structured (Lefkovitch) matrices. These models and the calculations of
λ and generation time are described in this section.

Euler-Lotka equation
The Euler-Lotka equation (Kot, 2001) is given by

1=
∫ x3

0
λ−xb(x)l (x)dx. (12)

The fecundity b(x) and survivorship l (x) are defined for a specific life history type as
described in the previous section (Fig. 1). Provided Rm is fixed, the only unknown is
λ, which can be found numerically by searching the value that satisfies Eq. (12) using a
root-finding algorithm.

Generation time in this study is defined as the mean age of parents where the mean is
calculated over all offspring born at a given time. More specifically, generation time G1 is
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given by

G1=

∫ x3

0
xλ−xb(x)l (x)dx. (13)

(Keyfitz & Caswell, 2005). In the case where individuals mature over a range of ages, some
individuals do not reproduce in certain age ranges. Therefore, generation timeG2 is instead
given by

G2=

∫ x3

0
xλ−xb(x)q(x)l (x)dx, (14)

where q(x) is the proportion of individuals that are mature at age x .

Age-structured matrix population models (Leslie matrix)
An age-structured population matrix is given as

A=


0 f2 ... fx3−1.5 fx3−0.5
s0.5 0 ... 0 0
0 s1.5 ... 0 0
... ... ... ... ...

0 0 ... sx3−2 0

. (15)

In this study, the first age class is assumed to begin at age 0.5, and subsequent age class
is incremented by one year. It should be noted that survival rate sx gives the proportion
of individuals that survive from time x to x+1 and fertility fx gives the mean number of
offspring of age 0.5 produced by a parent alive at age x−0.5 by reproducing between age
x−0.5 and x+0.5 (see Eq. (9)). It is assumed that the reproduction begins at the mean
age of maturation x2.

In the case where individuals mature over a range of age, the population matrix is given
instead as

A=


0 q2f2 ... qx3−1.5fx3−1.5 qx3−0.5fx3−0.5
s0.5 0 ... 0 0
0 s1.5 ... 0 0
... ... ... ... ...

0 0 ... sx3−2 0

. (16)

Once the population matrix is constructed, λ is obtained by taking its dominant
eigenvalue. Furthermore, generation time is given by

G3=
λvw
vFw

(17)

where v and w are the left and right eigenvectors (row and column vectors), respectively,
of the population matrix, and F is a modified population matrix only consisting of fertility
terms (Bienvenu & Legendre, 2015).

Stage-structured matrix population models (Lefkovitch matrix)
Stage-structured matrix population models are given in two different forms in this study.
For early maturation types, a two-stage population matrix is used

A=

[
0 F2
S1 S2

]
(18)
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where the duration of stage 1 is from age x0= 0.5 to age x1= x2= 1.5 and the duration of
stage 2 is from age 1.5 to age x3= 40.5.

For organisms with delayed maturation, three-stage matrix population models are used

A=

 0 0 F3
S1 S2

(
1−P3,2

)
0

0 S2P3,2 S3

. (19)

The duration in stages 1, 2, and 3 are assumed to be from age x0= 0.5 to 1.5, from age 1.5
to x1= x2= 10.5, and from age x2= 10.5 to x3= 40.5. Using the stage-structured matrix, λ
and generation time can be calculated in the same way as with the age-structured matrices.

Analytical procedure
Thirty-six different scenarios of life history strategies and a population growth rate were
investigated in this study. For the early maturation type, there were six different life history
strategies (two types of survivorships and three types of fecundity schedules; Figs. 1A
and 1B). With each of the six life history strategies, the true finite asymptotic population
growth rate (λ) was adjusted to 0.900, 1.000, and 1.100 by adjusting coefficient Rm in the
fecundity function (Eqs. (3)–(5)). This adjustment was done with the Euler-Lotka equation
by searching the value Rm that gives the corresponding value of λ. Consequently, there were
18 early maturation type scenarios to investigate. For each scenario, one age-structured
population model and nine two-stage population models were constructed; the nine
models differ in the ways that adult survival rate and a fertility rate were calculated (see
Table 2). Then, with each model, λ and generation time were calculated.

Similarly, for the delayed maturation type, there were six different life history strategies
(two types of survivorships and three types of maturation schedules; Figs. 1C and 1D). For
each type, finite asymptotic population growth rate (λ) was also adjusted to 0.900, 1.000,
and 1.100. Then, two age-structured population models (Eqs. (15) and (16)) and nine
three-stage population models were constructed; these nine models differ in the ways that
a juvenile survival rate was aggregated and a conditional transition rate was obtained (see
Table 2). Then, with each model, λ and generation time were calculated.

In order to obtain the true generation time, Eq. (13) was used when organisms had a
fixed age of maturation, while Eq. (14) was used when organisms matured over a range
of age. All of the calculations were done with MathWorks (2012). For solving a system of
ODE’s, a built-in ODE solver ‘‘ode45’’ was used in most cases. When a maturation rate
was exponentially increasing with age, there was a numerical problem with the function
(equations became stiff). Therefore, ‘‘ode15s’’ was used, instead. For the methods that
require λ in aggregating a survival rate, a transition rate, and/or a fertility rate, the true λ
was used.

In actual analyses conducted with real data, estimating λ is one of the main purposes of
constructing a populationmatrix. In other words, it is not known a priori. To overcome this
issue, Caswell (2001) describes an iterative method. In this method, an initial λ is arbitrarily
selected and used for obtaining factors needed to calculate the conditional transition rate.
Then, λ is estimated from the obtained population matrix. Subsequently, the new λ is used
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Figure 2 Finite asymptotic population growth rate λwhen the true λ is 1.000 for early maturation
types. Each panel represents different life history type as was defined in Table 1. Each bar represents a
different model for estimating λ. See Table 4 for model types. (Black, Euler-Lotka equation; Gray, age-
structured model; Magenta, stage-structured with ordinary mean; Cyan, stage-structured with weighted
mean; Yellow, stage-structured with weight mean with discount). (A) Constant Hazard and Increasing
Fecundity, (B) Constant Hazard and Constant Fecundity, (C) Constant Hazard Decreasing Fecundity,
(D) Increasing Hazard and Increasing Fecundity, (E) Increasing Hazard and Constant Fecundity, (F) In-
creasing Hazard and Decreasing Fecundity.

Full-size DOI: 10.7717/peerj.3971/fig-2

to obtain a new population matrix and λ is calculated again. This process is repeated until λ
converges. For example, this method was used for developing a stage-structured population
matrix of loggerhead sea turtles (Crowder et al., 1994). In the current study, this procedure
is applied to delayed maturation life history strategy. Discounted-weight arithmetic mean
was used for aggregating juvenile and adult survival rates and a transition rate was obtained
by matching proportion transitioning also using λ as a discounting factor.

RESULTS
Finite asymptotic population growth rate
Figures 2–7 show estimated finite per capita population growth rates (λ). In each figure,
each panel shows the estimated λ of the same life history type calculated using different
methods. These methods are listed in Table 4. The first bar (black) is the true value, and
the rest of the bars are obtained with age- or stage-structured population matrices.
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Figure 3 Finite asymptotic population growth rate λwhen the true λ is 0.900 for early maturation
types. Each panel represents different life history type as was defined in Table 1. Each bar represents a
different model for estimating λ. See Table 4 for model types. (Black, Euler-Lotka equation; Gray, age-
structured model; Magenta, stage-structured with ordinary mean; Cyan, stage-structured with weighted
mean; Yellow, stage-structured with weight mean with discount). (A) Constant Hazard and Increasing
Fecundity, (B) Constant Hazard and Constant Fecundity, (C) Constant Hazard Decreasing Fecundity,
(D) Increasing Hazard and Increasing Fecundity, (E) Increasing Hazard and Constant Fecundity, (F) In-
creasing Hazard and Decreasing Fecundity.

Full-size DOI: 10.7717/peerj.3971/fig-3

For the early maturation types (Figs. 2–4), one age-structured model and nine stage-
structured models that differ in the methods for calculating an adult survival rate were
used. The three figures are different in the true λ’s. For all life history types and all true
λ’s (Figs. 2–4), the Euler-Lotka equation (Model a) and age-structured model (model c)
show the similar values (black and gray bars in Figs. 2–4). This suggests there is no bias
introduced by discretizing age.

When adults experience a constant risk of mortality (Eq. (1)) and constant fecundity
(Eq. (4)), all conversion methods performed well (within 2% of the true value; see of
Figs. 2B–4B). In all other cases, some of the methods performed poorly (see Figs. 2A,
2C–2F, 3A, 3C–3F and 4A, 4C–4F).

Comparing the use of the geometricmean, arithmeticmean, and harmonicmean of adult
survival rate (Models d–f in Figs. 2A–2C, 3A–3C and 4A–4C), all gave the similar results
for adults experiencing a constant risk. However, for adults experiencing an exponentially
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Figure 4 Finite asymptotic population growth rate λwhen the true λ is 1.100 for early maturation
types. Each panel represents different life history type as was defined in Table 1. Each bar represents a
different model for estimating λ. See Table 4 for model types. (Black, Euler-Lotka equation; Gray, age-
structured model; Magenta, stage-structured with ordinary mean; Cyan, stage-structured with weighted
mean; Yellow, stage-structured with weight mean with discount). (A) Constant Hazard and Increasing
Fecundity, (B) Constant Hazard and Constant Fecundity, (C) Constant Hazard Decreasing Fecundity,
(D) Increasing Hazard and Increasing Fecundity, (E) Increasing Hazard and Constant Fecundity, (F) In-
creasing Hazard and Decreasing Fecundity.

Full-size DOI: 10.7717/peerj.3971/fig-4

increasing risk (Figs. 2D–2F, 3D–3F and 4D 4F, the threemeans (Models d–f) gave different
results. In particular, the harmonic mean (Model f) grossly underestimated λ, as did the
geometric mean (Model d) although to a lesser extent. Among the three, the arithmetic
mean (Model e) performed better, but it still underestimated λ.

Weightedmeans (Models g–i) improved the estimation of λ, compared with unweighted
means (Models d–e). For example, when the weighted arithmetic mean was used,
declining populations (λ= 0.9) were always identified as declining (λ< 1), and increasing
populations (λ= 1.1) were always identified as increasing (λ> 1). The use of discounted
weight (Models j–k) further improved the estimation of λ, especially, when λ was not at
1.0 (Figs. 3 and 4).

For the delayed maturation types, two age-structured models and nine stage-structured
models were used (Figs. 5–7). The two age-structured models differed in whether the age
of maturation was assumed to be fixed at the mean age of maturity (Model b; Eq. (15)) or
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Figure 5 Finite asymptotic population growth rate λwhen the true λ is 1.000 for delayed maturation
types. Each panel represents different life history type as was defined in Table 1. Each bar represents a
different model for estimating λ. See Table 4 for model types. (Black, Euler-Lotka equation; Gray, age-
structured; Blue, stage-structured with an arithmetic mean; Green, stage-structured with a weighted arith-
metic mean; Red, stage-structured with a discounted-weight arithmetic mean). (A) Decreasing Hazard
and Fixed Age of Maturation, (B) Constant Hazard and Fixed Age of Maturation, (C) Decreasing Hazard
and Constant Rate of Maturation, (D) Constant Hazard and Constant Rate of Maturation, (E) Decreasing
hazard and Increasing Rate of maturation, (F) Constant Hazard and Increasing Rate of Maturation.

Full-size DOI: 10.7717/peerj.3971/fig-5

the proportion of mature individuals at a given age is incorporated (Model c; Eq. (16)).
The nine stage-structured models differed in the method for calculating the conditional
transition rate (Table 3) and in how juvenile survival was aggregated (Table 2). For the
latter aggregation, arithmetic mean, weighted arithmetic mean, and discounted-weight
arithmetic mean were used. First, age-structured models gave λ consistent with the true
value (cf. Model a and Models b–c of all panels of Figs. 5–7). This suggests discretization
of age did not introduce bias in λ. Furthermore, the incorporation of the proportion
of mature individuals did not improve λ (cf. Model b and c of all panels of Figs. 5–7),
suggesting the assumption of the fixed age of maturation was appropriate.

For stage-structured models, bias introduced in the estimation of λ was not as large as
that with the earlymaturation types. Among the three conditional transition rate estimation
methods (Table 3), the third method (T3) to match the proportion of individuals making
the transition after discounting with λ (Models o, r, and u) performed best, and the first
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Figure 6 Finite asymptotic population growth rate λwhen the true λ is 0.900 for delayed maturation
types. Each panel represents different life history type as was defined in Table 1. Each bar represents a
different model for estimating λ. See Table 4 for model types. (Black, Euler-Lotka equation; Gray, age-
structured; Blue, stage-structured with an arithmetic mean; Green, stage-structured with a weighted arith-
metic mean; Red, stage-structured with a discounted-weight arithmetic mean). (A) Decreasing Hazard
and Fixed Age of Maturation, (B) Constant Hazard and Fixed Age of Maturation, (C) Decreasing Hazard
and Constant Rate of Maturation, (D) Constant Hazard and Constant Rate of Maturation, (E) Decreasing
hazard and Increasing Rate of maturation, (F) Constant Hazard and Increasing Rate of Maturation.

Full-size DOI: 10.7717/peerj.3971/fig-6

method to match the average duration (Models m, p, and s) performed the worst. The
estimation was less sensitive to how the juvenile survival rate was aggregated.

Generation time
Generation time is shown in Figs. 8–13. In all cases, age-structured models (Model b in
Figs. 8–10 and Models b and c in Figs. 11–13) gave a generation time that was consistent
with the true values (Model a). This suggests discretization of age does not introduce bias.
However, stage-structured models gave substantially different values for most scenarios.
They gave similar results to the true values only for populations experiencing constant
hazard and constant fecundity for early maturation types as long as the population was
steady (λ= 1, Fig. 8B) or growing (λ> 1, Fig. 10B). These results suggest generation time
obtained from stage-structured models are generally not accurate.
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Figure 7 Finite asymptotic population growth rate λwhen the true λ is 1.100 for delayed maturation
types. Each panel represents different life history type as was defined in Table 1. Each bar represents a
different model for estimating λ. See Table 4 for model types. (Black, Euler-Lotka equation; Gray, age-
structured; Blue, stage-structured with an arithmetic mean; Green, stage-structured with a weighted arith-
metic mean; Red, stage-structured with a discounted-weight arithmetic mean). (A) Decreasing Hazard
and Fixed Age of Maturation, (B) Constant Hazard and Fixed Age of Maturation, (C) Decreasing Hazard
and Constant Rate of Maturation, (D) Constant Hazard and Constant Rate of Maturation, (E) Decreasing
hazard and Increasing Rate of maturation, (F) Constant Hazard and Increasing Rate of Maturation.

Full-size DOI: 10.7717/peerj.3971/fig-7

Iterative methods
All of the iterative methods in this study converged very quickly. The estimated λ value
obtained using the iterative method is shown in Table 5. Overall, the iterative method
performed well in estimating λ. It was accurate to the first digit of λ at least. However,
generation time was estimated almost equally poorly with that obtained assuming λ was
known a priori (i.e., Model u of all panels of Figs. 11–13).

DISCUSSION
Population growth rate (λ) and generation time are two of the most important pieces
of information in determining the status of threatened species (see IUCN, 2012). The
former tells us how quickly a population is expected to be declining or growing over time,
and the latter tells us an appropriate time-scale for a population. Accurate determination
of these parameters is essential. For example, the overestimation of generation time or
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Table 4 Model types for estimating λ and generation time.

Models Description Generation time
calculation

a Euler-Lotka equation G1 or G2

b Age structured model with proportion mature G3

c Age structured model with fixed age of maturity G3

d Two-stage model with a geometric mean survival rate G3

e Two-stage model with an arithmetic mean survival rate G3

f Two-stage model with a harmonic mean survival rate G3

g Two-stage model with a weighted geometric mean survival rate G3

h Two-stage model with a weighted geometric mean survival rate G3

i Two-stage model with a weighted harmonic mean survival rate G3

j Two-stage model with a weighted geometric mean survival rate with λ used as discounting factor G3

k Two-stage model with a weighted geometric mean survival rate with λ used as discounting factor G3

l Two-stage model with a weighted harmonic mean survival rate with λ used as discounting factor G3

m Three-stage model with an arithmetic mean survival rate and matching duration (T1) G3

n Three-stage model with an arithmetic mean survival rate and matching proportion transitioning
(T2)

G3

o Three-stage model with an arithmetic mean survival rate and matching proportion transitioning
with discount (T3)

G3

p Three-stage model with a weighted arithmetic mean survival rate and matching duration (T1) G3

q Three-stage model with a weighted arithmetic mean survival rate and matching proportion
transitioning (T2)

G3

r Three-stage model with a weighted arithmetic mean survival rate and matching proportion
transitioning with discount (T3)

G3

s Three-stage model with a discounted-weight arithmetic mean survival rate and matching
duration (T1)

G3

t Three-stage model with a discount-weight arithmetic mean survival rate and matching
proportion transitioning (T2)

G3

u Three-stage model with a discount-weight arithmetic mean survival rate and matching
proportion transitioning with discount (T3)

G3

Table 5 Population growth rate estimated using the iterative method. Six different life history strate-
gies of organisms with delayed maturation at three different levels of true λ were investigated.

True λ Life history types (see Table 1)

D.H-F.M. C.H.-F.M. D.H.-C.M. C.H.-C.M. D.H.-I.M. C.H.-I.M.

λ= 0.90 0.900 0.903 0.899 0.902 0.900 0.902
λ= 1.00 0.994 1.000 0.992 0.995 0.994 0.999
λ= 1.10 1.090 1.100 1.085 1.089 1.090 1.096

underestimation of λ will result in species being erroneously placed in categories of
higher threat than they should be. In this study, we have evaluated the performance of
stage-structured population models in calculating λ and generation time, when life table
data are used to parameterize the models.
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Figure 8 Generation time for the early maturation types where the true finite population growth rate
λ is 1.000 for delayed maturation types. Each panel represents different life history type as was defined in
Table 1. Each bar represents a different model for estimating λ and generation time. See Table 4 for model
types. (Black, Euler-Lotka equation; Gray, age-structured model; Magenta, stage-structured with ordinary
mean; Cyan, stage-structured with weighted mean; Yellow, stage-structured with weight mean with dis-
count). (A) Constant Hazard and Increasing Fecundity, (B) Constant Hazard and Constant Fecundity,
(C) Constant Hazard Decreasing Fecundity, (D) Increasing Hazard and Increasing Fecundity, (E) Increas-
ing Hazard and Constant Fecundity, (F) Increasing Hazard and Decreasing Fecundity.

Full-size DOI: 10.7717/peerj.3971/fig-8

Overall, discretization of age does not introduce much bias in population growth
rate (λ) or generation time (comparing the first and second bars of all panels of
Figs. 2–13). Similarly, assuming a fixed age of maturation at the mean age of maturity,
does not introduce much bias (comparing the second and third bars of all panels of
Figs. 5–7 and 11–13). Although only three types of maturation schedule have been
investigated in this study, the latter conclusion is expected to remain true as long as the
age-range of maturation is not substantially wide. On the other hand, the aggregations of
age-specific vital rates into a stage-structured vital rate introduces bias.

In order to aggregate survival rates for stage-structured population matrices, the
use of the discounted-weight arithmetic mean is the most robust method to estimate λ
(Figs. 2–4). However, themethod requires the use of λ to discount the weight, which defeats
the purpose of constructing a stage-structured population model to obtain λ. Therefore,
the use of the weighted arithmetic mean is a better option although it can still introduce
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Figure 9 Generation time for the early maturation types where the true finite population growth rate
λ is 0.900. Each panel represents different life history type as was defined in Table 1. Each bar represents
a different model for estimating λ and generation time. See Table 4 for model types. (Black, Euler-Lotka
equation; Gray, age-structured model; Magenta, stage-structured with ordinary mean; Cyan, stage-
structured with weighted mean; Yellow, stage-structured with weight mean with discount). (A) Constant
Hazard and Increasing Fecundity, (B) Constant Hazard and Constant Fecundity, (C) Constant Hazard
Decreasing Fecundity, (D) Increasing Hazard and Increasing Fecundity, (E) Increasing Hazard and
Constant Fecundity, (F) Increasing Hazard and Decreasing Fecundity.

Full-size DOI: 10.7717/peerj.3971/fig-9

some bias when the population is either growing or declining. For the calculation of the
conditional transition rate, the best approach is to match the proportion transitioning,
with λ being used as a discounting factor; however, the use of the method without the
discounting factor also performs well (Figs. 5–7).

The study also suggests that aggregating adult stage needs to be done more carefully
than aggregating juvenile stage (compare Figs. 2–4 and 5–7). Adults experience survival
and reproduction whereas juveniles experience survival and maturation. Because they
experience different population processes, it is not surprising to see the difference.However,
the results may also be because the adult stage is much longer than the juvenile stage in
this study. For example, some organisms exhibit a short-lived adult stage with delayed
maturation. For such organisms, the aggregation for the juvenile stage would need to be
done more carefully than for the adult stage.
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Figure 10 Generation time for the early maturation types where the true finite population growth
rate λ is 1.100. Each panel represents different life history type as was defined in Table 1. Each bar repre-
sents a different model for estimating λ and generation time. See Table 4 for model types. (Black, Euler-
Lotka equation; Gray, age-structured model; Magenta, stage-structured with ordinary mean; Cyan, stage-
structured with weighted mean; Yellow, stage-structured with weight mean with discount). (A) Constant
Hazard and Increasing Fecundity, (B) Constant Hazard and Constant Fecundity, (C) Constant Hazard
Decreasing Fecundity, (D) Increasing Hazard and Increasing Fecundity, (E) Increasing Hazard and Con-
stant Fecundity, (F) Increasing Hazard and Decreasing Fecundity.

Full-size DOI: 10.7717/peerj.3971/fig-10

One of the problems is the heterogeneity among individuals within a stage. In our
model, the heterogeneity exists because either the risk of mortality or the fecundity rate
changes with age. However, a matrix population model assumes that all individuals are
the same within a stage. When both mortality risk and fecundity rate are constant over
age, λ and generation time are estimated accurately with stage-structured population
models (see second columns of Figs. 2 and 7). However, variation in mortality with age
is commonly experienced. For example, young individuals may grow out of a predation
risk, and older individuals may experience senescence. The former is common among any
animal populations, and the latter is common among long-lived mammals. Fecundity also
changes with age. For example, it is often a function of the size of adults, which increases
with age, a common change seen in fish. One way to overcome the issue of a non-constant
mortality risk or non-constant fecundity may be to aggregate smaller number of age classes
into one stage by including a large number of stages in a model. This could be done after
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Figure 11 Generation time for the delayed maturation types where the true finite population growth
rate λ is 1.000. Each panel represents different life history type as was defined in Table 1. Each bar
represents a different model for estimating λ and generation time. See Table 4 for model types. (Black,
Euler-Lotka equation; Gray, age-structured; Blue, stage-structured with an arithmetic mean; Green,
stage-structured with a weighted arithmetic mean; Red, stage-structured with a discounted-weight
arithmetic mean). (A) Decreasing Hazard and Fixed Age of Maturation, (B) Constant Hazard and Fixed
Age of Maturation, (C) Decreasing Hazard and Constant Rate of Maturation, (D) Constant Hazard and
Constant Rate of Maturation, (E) Decreasing hazard and Increasing Rate of maturation, (F) Constant
Hazard and Increasing Rate of Maturation.

Full-size DOI: 10.7717/peerj.3971/fig-11

fitting a competing risk model (Siler, 1979) and a flexible fecundity function to life table
data and examining the age classes with a similar mortality risk and fecundity.

Our results suggest estimating generation time is more problematic than estimating λ.
For example, when fecundity was declining with age under the early maturation model
(Fig. 7C), generation time was always overestimated with stage-structured models. This
is because although in reality younger individuals contribute more to reproduction than
older individuals do, stage-structured models assume homogeneity among adults. In other
words, older adults contribute more in the models than the true population. Consequently,
generation time is overestimated. When fecundity was declining with age (Fig. 7A), the
opposite effect was observed. When survival rate was changing with age, it can lead to over-
or under-estimation of generation time, and it is difficult to predict. For these reasons,
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Figure 12 Generation time for the delayed maturation types where the true finite population growth
rate λ is 0.900. Each panel represents different life history type as was defined in Table 1. Each bar
represents a different model for estimating λ and generation time. See Table 4 for model types. (Black,
Euler-Lotka equation; Gray, age-structured; Blue, stage-structured with an arithmetic mean; Green,
stage-structured with a weighted arithmetic mean; Red, stage-structured with a discounted-weight
arithmetic mean). (A) Decreasing Hazard and Fixed Age of Maturation, (B) Constant Hazard and Fixed
Age of Maturation, (C) Decreasing Hazard and Constant Rate of Maturation, (D) Constant Hazard and
Constant Rate of Maturation, (E) Decreasing hazard and Increasing Rate of maturation, (F) Constant
Hazard and Increasing Rate of Maturation.

Full-size DOI: 10.7717/peerj.3971/fig-12

the construction of an age structured model or the use of the Euler-Lotka equation is
recommended for calculating λ and generation time.

Lebreton (2005) discusses potential problems with using stage-structured population
models to calculate generation time. Lebreton recommends the use of stage-structured
models in which stages are embedded within age classes. This effectively increases the
number of stages in a model. Such a population matrix can be constructed if one collects
information on the stage of individuals in addition to age in order to construct a life table in
which individuals are categorized into different age and stage classes. This approach is also
useful when life history strategies are complex or when they do not exhibit age-dependent
changes in vital rates. For such organisms, a simple life table alone may not be informative
because each age class can include multiple stages, but a stage-structured model embedded
in age structure should provide accurate estimations of both λ and generation time.
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Figure 13 Generation time for the delayed maturation types where the true finite population growth
rate λ is 1.100. Each panel represents different life history type as was defined in Table 1. Each bar
represents a different model for estimating λ and generation time. See Table 4 for model types. (Black,
Euler-Lotka equation; Gray, age-structured; Blue, stage-structured with an arithmetic mean; Green,
stage-structured with a weighted arithmetic mean; Red, stage-structured with a discounted-weight
arithmetic mean). (A) Decreasing Hazard and Fixed Age of Maturation, (B) Constant Hazard and Fixed
Age of Maturation, (C) Decreasing Hazard and Constant Rate of Maturation, (D) Constant Hazard and
Constant Rate of Maturation, (E) Decreasing hazard and Increasing Rate of maturation, (F) Constant
Hazard and Increasing Rate of Maturation.

Full-size DOI: 10.7717/peerj.3971/fig-13

Salguero-Gomez & Plotkin (2010) also discusses the relationship between the number of
stages and various statistics obtained from stage-structured population matrices.

An additional problem is the change in stage/age distribution due to growing or
declining population abundance. A population growth rate needs to be discounted when
a survivorship curve is estimated from a life table. Discounting is required for the same
reason that it is included in the Euler-Lotka equation. There are two types of life table,
dynamic or static life table. A dynamic life table is also called a cohort life table because it is
constructed using data obtained by following the same cohort over time/age. On the other
hand, a static life table is obtained by examining the age distribution of samples collected
at one sampling occasion. Throughout this paper, a dynamic life table has been assumed.
When a static life table is collected instead, a survivorship curve needs to be discounted by a
population growth rate to obtain the true survivorship curve. The discounting is necessary
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because individuals in different age classes in the data were born at different time and the
population is growing or declining so that increasing or decreasing numbers of individuals
are born from one year to the next. Interestingly, the age distribution obtained directly
from a static life table gives the discounted weight used in this study.

The iterative method allows the use of λ in constructing a stage-structured population
matrix without knowing λ a priori. This method performed well in identifying whether
λ is greater or smaller than 1. In this sense, the iterative method is a viable option for
constructing a stage-structured population model. However, when a life table is available,
an age-structured matrix population model can be used for calculating λ more accurately.
Furthermore, an age-structured matrix allows accurate estimation of generation time,
which can be substantially biased in stage-structured population models.

In this study, bias was introduced when constructing matrix population models using
information from life table data. As an alternative to life table data, Cormack–Jolly–
Seber (CJS) type capture-recapture data (Lebreton et al., 1992) can be obtained. With
additional information to categorize captured individuals into different stage classes, a
multi-type/multi-stage capture recapture method can be used for estimating parameters
in stage-structured matrix population models directly (Fujiwara & Caswell, 2002; Nichols
et al., 1992). Provided there is no heterogeneity in a capture rate within a given stage, the
method accounts for an underlying age-distribution although an actual age distribution
may not be observable. When age is not known, the use of stage-structured population
models is the only option. However, generation time obtained from such models may
not be accurate. Future investigations of the performance of generation time calculations
with stage-structured population models when vital rates are estimated from individual
capture-recapture data are needed.

CONCLUSIONS
When life table data are collected, we recommend fitting a competing risk model and
a flexible fecundity function to the data and estimating population growth rate λ and
generation time using an age-structured population matrix or the Euler-Lotka equation.
Calculating generation time using stage-structured population models should be avoided.
If a researcher is interested in constructing stage-structured population models (e.g., for
the purpose of sensitivity and elasticity analyses), the conversion from age-structured
vital rates to stage-structured vital rates should be done by aggregating age classes with
similar mortality risk and fecundity into the same stage. When aggregating survival rates
for constructing stage-structured population models, discounted-weight arithmetic mean
should be used. When calculating the conditional transition rate, one should use the
method for matching the proportion making transitions with λ as a discounting factor.
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