1

New species of the endemic Neotropical caddisfly genus *Contulma* from the Andes of Ecuador (Trichoptera: Anomalopsychidae) (#20103)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes

Editor and deadline

Joseph Gillespie / 21 Sep 2017

Files 4 Figure file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

Declarations Involves a field study on animals or plants.

Describes a new species.

2

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

New species of the endemic Neotropical caddisfly genus Contulma from the Andes of Ecuador (Trichoptera: Anomalopsychidae)

Ralph Holzenthal $^{\text{Corresp.},-1}$, Blanca Rios-Touma 2 , Ernesto Rázuri-Gonzales 1

Corresponding Author: Ralph Holzenthal Email address: holze001@umn.edu

Adults of 3 new species of *Contulma* Flint (Trichoptera: Anomalopsychidae) are described and illustrated from the Andes of Ecuador, *Contulma lina*, new species, *Contulma quito*, new species, and *Contulma sangay*, new species. These species are similar to previously described species from the region, including *C. paluguillensis*, *C. nevada*, and *C. lancelolata*. New provincial records are provided for *C. bacula*, *C. cataracta*, and *C. echinata*. *Contulma duffi* Oláh, 2016 is considered a junior, subjective synonym of *C. penai*, Holzenthal and Flint, 1995, **new synonym**. Also, we provide an identification key to males of the 30 *Contulma* species now known. The genus is composed mostly of regionally endemic species occurring above 2000 m, with a few more widespread species and some that are found at lower elevations.

¹ Department of Entomology, University of Minnesota - Twin Cities Campus, Saint Paul, Minnesota, United States

² Facultad de Ingenierías y Ciencias Agropecuarias. Ingeniería Ambiental, Universidad de las Americas, Quito, Ecuador

1	
2	New species of the endemic Neotropical caddisfly genus Contulma from the Andes of
3	Ecuador (Trichoptera: Anomalopsychidae)
4	
5	Ralph W. Holzenthal ^{1*} Blanca Ríos-Touma ² , Ernesto Rázuri-Gonzales ¹
6	¹ Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA
7	² Universidad de las Américas, Facultad de Ingenierías y Ciencias Agropecuarias, Ingeniería
8	Ambiental, Campus Queri, Quito, Ecuador
9 10 11 12	* Corresponding author = Ralph Holzenthal, holze001@umn.edu
13	

14	
15	Abstract. Adults of 3 new species of Contulma Flint (Trichoptera: Anomalopsychidae) are
16	described and illustrated from the Andes of Ecuador, Contulma lina, new species, Contulma
17	quito, new species, and Contulma sangay, new species. These species are similar to previously
18	described species from the region, including C. paluguillensis, C. nevada, and C. lancelolata.
19	New provincial records are provided for C. bacula, C. cataracta, and C. echinata. Contulma
20	duffi Oláh, 2016 is considered a junior, subjective synonym of C. penai, Holzenthal and Flint,
21	1995, new synonym. Also, we provide an identification key to males of the 30 Contulma species
22	now known. The genus is composed mostly of regionally endemic species occurring above 2000
23	m, with a few more widespread species and some that are found at lower elevations.
2.4	

25	Introduction
26	
27	Neotropical Trichoptera currently includes more than 3,200 described species representing 155
28	genera and 25 families (Holzenthal and Calor, 2017) occurring in Mexico, the Caribbean,
29	Central, and South America. Remarkably, 115 genera, or ca.75% of the total, are endemic to the
30	region, making the fauna the second most diverse in the world for endemic genera after the
31	Australasian (de Moore and Ivanov 2008). Moreover, several Neotropical genera are highly
32	endemic regionally at the species level such as Amphoropsyche (Holzenthal 1985, Holzenthal
33	and Rázuri-Gonzales 2011), Atananolica (Holzenthal 1988, Henriques-Oliveira and Santos,
34	2014), and Contulma (Holzenthal and Robertson 2006), the latter the main subject of this paper.
35	Nevertheless, the Neotropical caddisfly fauna is incompletely known, mainly because there are
36	regions in the Neotropics where the aquatic ecosystems are far from being well studied (e.g.,
37	Ríos-Touma et al., 2017). There is also a lack of regional researchers studying the order,
38	especially in the Andean countries of Venezuela, Colombia, Ecuador, Peru, and Bolivia, which
39	undoubtedly harbor 100s of species. For example, co-author Ríos-Touma is the first Ecuadorian
40	to describe new species of caddisflies and Rázuri-Gonzales only the second Peruvian to do so.
41	A comprehensive revision of the endemic Neotropical genus Contulma was completed by
42	Holzenthal and Flint (1995) and included 21 species, 18 described as new. Since then, 7 new
43	species have been described, including 1 we synonymize here. Species in the genus are known
44	from Costa Rica, the Andes of Colombia to Chile, and in the mountains of southeastern Brazil.
45	This genus seems to display a high degree of local endemism among its species (Holzenthal and
46	Robertson 2006), which are rarely collected using standard light trap techniques. Hand netting
47	during the day, especially at high elevations, or the use of Malaise traps is generally more
48	effective (Holzenthal and Ríos-Touma, 2012). The infrequency of collection does not mean the
49	species are rare in nature, but most of the species have been described from only 1-5 individuals.
50	The habitats of these species are small waterfalls, seeps, and small streams in lush forested
51	mountainous areas as well as high elevation páramo streams above the tree line in the Andes
52	(Holzenthal and Flint 1995).
53	Of the 30 species now known in the genus, including 3 new species described here, 19
54	occur in the tropical Andean countries (Ecuador, Colombia, Peru, Bolivia) and all occur above
55	2000 m. except for 2 of these species also found in lower elevations (Holzenthal and Flint 1995.

56	Holzenthal and Robertson 2006). Nine species occur in Ecuador, 5 endemic and 3 present also in
57	Colombia. The 3 new species described here are from localities were no caddisfly collecting
58	occurred previously, confirming the pattern of high endemicity of species in the genus.
59	
60	Materials & Methods
61	
62	We used the methods described by Blahnik and Holzenthal (2004) to prepare adult specimens for
63	taxonomic study. Genitalia were cleared in 85% lactic acid heated to 125°C for 20 min (Blahnik
64	et al. 2007). An Olympus BX41 compound microscope outfitted with a drawing tube was used to
65	observe specimens. Genitalic structures were drawn with pencil on paper and final illustrations
66	were rendered in Adobe Illustrator. Morphological terminology follows that of Holzenthal and
67	Flint (1995). Descriptions of species and generation of the identification key were accomplished
68	using the software packages DELTA and INTKEY (Dallwitz 1980, Dallwitz et al. 1999).
69	Types of the new species are deposited in the collections of the Museo Ecuatoriano de
70	Ciencias Naturales, Quito, Ecuador (MECN) and the University of Minnesota Insect Collection,
71	St. Paul, Minnesota, USA (UMSP). All specimens examined in this study were affixed with a
72	barcode label containing a unique 9 digit numeric code starting with the prefix UMSP. These
73	codes are provided here for holotypes only. All associated specimen data are stored in the UMSP
74	database. This study was performed under the Environmental Ministry of Ecuador study permits
75	36-2010-IC-FLO/FAU-DPA-MA and 005-15-IC-FAU-FLO-DNB/MA.
76	The electronic version of this article in Portable Document Format (PDF) will represent a
77	published work according to the International Commission on Zoological Nomenclature (ICZN),
78	and hence the new names contained in the electronic version are effectively published under that
79	Code from the electronic edition alone. This published work and the nomenclatural acts it
80	contains have been registered in ZooBank, the online registration system for the ICZN. The
81	ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed
82	through any standard web browser by appending the LSID to the prefix http://zoobank.org/.
83	The LSID for this publication is: urn:lsid:zoobank.org:pub:54BC56DC-5CC1-4DA0-82E4-
84	AF69599C2F5D. The online version of this work is archived and available from the following
85	digital repositories: PeerJ, PubMed Central and CLOCKSS.
86	

87	
88	Results
89	Species descriptions
90	
91	Contulma lina, new species, Holzenthal, Ríos-Touma, Rázuri-Gonzales
92	LSID urn:lsid:zoobank.org:act:310DDC54-0008-4535-A385-BD71BB630F21
93	
94	Figures 1A-E, 4
95	
96	Diagnosis: The discoveries of C. lina, n. sp., as well as C. quito, n. sp., and the recently
97	described <i>C. paluguillensis</i> , all from the high Andes of Ecuador, are beginning to fill the
98	morphological gaps found between some of the species described by Holzenthal and Flint
99	(1995). These 3 species, in addition to <i>C. bacula</i> , <i>C. caldensis</i> , <i>C. cataracta</i> , <i>C. echinata</i> , <i>C.</i>
100	nevada, C. papallacta, and perhaps C. spinosa, all from either Ecuador or Colombia, share
101	several features. All have some degree of development of a dorsolateral process on segment IX
102	in the male genitalia and a development of setae or a setose process on the mesal face of the
103	same segment below the dorsolateral process. In some species, one or the other of these
104	characters may be more or less developed or absent, but the combination of characters shared by
105	these species indicate that they may have a common origin. All are known from only a handful
106	of specimens, most from only the type and a few paratypes, and the species each occur from only
107	one or a few high altitude localities spread across a vast expanse of the northern Andes. With the
108	collection of additional specimens, it may prove that some of these species are synonyms. On the
109	other hand, the phallic structures seem to be unique to each species and attest to their
110	distinctiveness. We predict that additional collecting will discover yet more new species in this
111	radiation of Andean Trichoptera biodiversity. Contulma lina is distinguished from the above
112	mentioned species, all illustrated by Holzenthal and Flint (1995) and Holzenthal and Ríos-
113	Touma (2012), by the following combination of characters: mesal surface of segment IX bearing
114	a sinuous band of setae from below dorsolateral process and continuing to near sternum IX;
115	mesal process of sternum IX with prominent posteromesal, heavily sclerotized, strongly
116	emarginate projection, without excavation; and phallus without spine-like setae, but instead with
117	the apex bearing a lightly sclerotized scale-like structure, shallowly excavate at apex.

118	Description: <i>Male</i> : Forewing length 5.5 mm (n=1). Forewing color gray brown, immaculate,
119	vestiture rubbed (specimen was netted during the day in light rain and mist). Male genitalia:
120	Segment IX very short dorsally, narrow, deeply excavate mesally; in lateral view, IX quadrate,
121	extended anterolaterally; posteriorly with short, broad, dorsolateral, spatulate process; posterior
122	margin of IX produced medially to form broad, prominent, quadrate, heavily setose, paired
123	lateral lobe; lobes widely separated ventrally; mesal face of segment IX bearing sinuous band of
124	setae from below spatulate process continuing to near sternum IX; sternum IX with prominent
125	posteromesal, heavily sclerotized, spatulate projection. Inferior appendages short, subtriangular,
126	apices broadly rounded and bearing apical setae; inferior appendages apparently fused to base of
127	IXth sternal projection, together forming highly complex structure as in Figs. 1A, C. Processes of
128	subphallic membranes present, membranous, mound-like, setose. Segment X entirely
129	membranous, apex entire, extending beyond apices of dorsolateral processes. Phallus complex;
130	phallobase tubular, elongate, slender, sclerotized; phallicata very lightly sclerotized, dorsally
131	with paired, very lightly sclerotized, semi-membranous lobes; apicoventral phallic membranes
132	with paired, broad, lightly sclerotized, dorsolateral plates, membranes inflated anteroventrally,
133	apically with lightly sclerotized scale-like structure, shallowly excavate at apex; phallotremal
134	sclerite present, tubular, curved.
135	Female: Forewing length 6.5 mm (n=1). Color and vestiture as in male. Vaginal apparatus in
136	ventral view elongate, hourglass shaped, narrowest in middle; base widely emarginate,
137	subtriangular; apex trident shaped with wide, paired, sclerotized, slightly sinuate midlateral
138	processes, their apices truncate; single medial process elongate, narrow, slerotized, about same
139	length as midlateral processes; medial membranes highly convoluted, as approximated in Fig. 4;
140	apical membranes highly convoluted, with heavily sclerotized, rounded, beaklike apical sclerite.
141	Holotype male: ECUADOR: Napo: Reserva Ecológica Cayambe-Coca, waterfall, rd. to
142	Oyacachi, 0.32621°S, 78.15049°W, el. 3690 m, 16.x.2011, Holzenthal, Ríos Touma, Pita
143	(UMSP000098532) (UMSP). Paratype: same data as holotype, 1 female (MECN).
144	Etymology: This species in named for Lina Pita, lifelong friend of Blanca Ríos-Touma and
145	one of the collectors of this species.
146	
147	Contulma quito, new species, Holzenthal, Ríos-Touma, Rázuri-Gonzales

148	LSID urn:lsid:zoobank.org:act:97969526-CF58-48A8-8548-8817326D04A0
149	
150	Figures 2A-F
151	
152	Diagnosis: This new species is very similar to <i>C. nevada</i> of the group of species mentioned
153	above (C. bacula, C. caldensis, C. cataracta, C. echinata, C. lina, C. nevada, C. paluguillensis,
154	C. papallacta, C. spinosa). Contulma quito, n. sp., and C. nevada have similar short dorsolateral
155	processes on segment IX, a small setal patch or setal bearing process below the dorsolateral
156	process, emarginate sternal projection of sternum IX, and short spines in the phallus. The major
157	differences between C. quito and C. nevada are the broader excavation of the IXth sternal
158	projection and the many more spine-like setae in the phallus of <i>C. quito</i> .
159	Description: <i>Male</i> : Forewing length 5.5 mm (n=3). Forewing color brown, with small patch
160	of cream colored hairs at apex of subcosta and arculus, vestiture intact. Male genitalia: Segment
161	IX very short dorsally, narrow, deeply excavate mesally; in lateral view, IX quadrate, slightly
162	extended anterolaterally; posteriorly with very short, narrow, dorsolateral, spatulate process;
163	posterior margin of IX produced medially to form broad, prominent, broadly rounded, heavily
164	setose, paired lateral lobe; lobes widely separated ventrally; mesal face of segment IX with short
165	sclerotized, setose process below spatulate process. [Variation: in male paratype
166	UMSP000148995, the spatulate processes and the short setose processes below them are each
167	fused on both sides of the specimen to form a thin, crecentic shelf (Fig. 2F). In male paratype
168	UMSP000148996, the spatulate processes and the setose processes below them are variously
169	slightly longer or shorter on either the right or left sides than they are in the holotype]. Sternum
170	IX with prominent posteromesal, heavily sclerotized, strongly emarginate projection. Inferior
171	appendages short, crescentric, apices rounded and bearing apical setae; inferior appendages
172	apparently fused to base of IXth sternal projection, together forming highly complex structure as
173	in Figs. 2A, C. Processes of subphallic membranes present, membranous, mound-like, setose.
174	Segment X entirely membranous, apex divided, with lightly sclerotized lateral flanges. Phallus
175	complex; phallobase tubular, elongate, slender, sclerotized; phallicata very lightly sclerotized,
176	dorsally with paired, very lightly sclerotized, semi-membranous lobes; apicoventral phallic
177	membranes with paired, broad, lightly sclerotized, dorsolateral plates forming broadly rounded
178	trough, apicoventrally with paired patches of numerous (ca. 50) very short spine-like setae;

179	phallotremal sclerite very lightly sclerotized, difficult to discern.
180	Female: Unknown.
181	Holotype male: ECUADOR: Pichincha: Distrito Metropolitano de Quito, Quebrada
182	Guapalito, 0.40113°S, 78.38378°W, el. 2807 m, 26.vii.2015, Rázuri, Ríos-Touma, Amigo
183	(UMSP000148997) (UMSP). Paratypes: ECUADOR: Pichincha: Distrito Metropolitano de
184	Quito, Quebrada Convalescencia, 0.40060°S, 78.38256°W, el. 2813 m, 26.vii.2015, Morabowen
185	Hernández, 2 males (UMSP, MECN).
186	Etymology: Named for Quito, the capital of Ecuador, where the species was collected and
187	where the surrounding Andes seem to harbor a multitude of species in the genus.
188	
189	Contulma sangay, new species, Holzenthal, Ríos-Touma, Rázuri-Gonzales
190	LSID urn:lsid:zoobank.org:act:38C17810-F31C-45A5-BFAC-3D3C5E68AD47
191	
192	Figures 3A-D, 5
193	
194	Diagnosis: This new species is similar to <i>C. lanceolata</i> , also from Ecuador. Both share a
195	similar shape of segment IX, which is strongly extended anterolaterally and with the posterior
196	portion excavated medially in both species. In addition, both have an elongate dorsolateral
197	lanceolate process on segment IX, but in C. sangay the process is divided apically into a pair of
198	narrow, terete lobes. Most distinctively, the new species lacks the ventrolateral process of
199	segment IX seen in C. lanceolata (Holzenthal and Flint, 1995, fig. 70).
200	Description: <i>Male</i> : Forewing length 4.5 mm (n=1). Forewing color brown, immaculate,
201	vestiture intact. Male genitalia: Segment IX short dorsally, narrow; in lateral view, IX
202	trapezoidal, strongly extended anterolaterally; posteriorly with elongate, dorsolateral, lanceolate
203	processs, apically divided into pair of terete, narrow, closely appressed lobes; process bearing
204	minute setae dorsally along length; posterior margin of IX excavated medially, produced
205	ventrally, to form prominent, semiquadrate, setose, paired lateral lobes; lobes close together
206	ventrally, forming acute separation; mesal face of segment IX without setae or processes;
207	sternum IX short, subquadrate projection, its suface rugose and with very small, mesal
208	sclerotized spur. Inferior appendages very short, crescentric, apices subacute, directed ventrally,

209	and bearing apical setae; inferior appendages apparently fused to base of IXth sternal projection,
210	together forming highly complex structure as in Figs. 3A, C. Processes of subphallic membranes
211	absent (or not apparent). Segment X entirely membranous, apex cleft, extending to apices of
212	dorsolateral processes. Phallus complex; phallobase tubular, elongate, slender, sclerotized;
213	phallicata very lightly sclerotized, dorsally with prominent membranous lobe; apicoventral
214	phallic membranes with paired, broad, lightly sclerotized, ventrolateral plates, fused ventrally
215	and forming apparent pore, apex with pair of small papillate lobes; phallotremal sclerite present,
216	small, subquadrate.
217	Female: Forewing length 4.5 mm (n=1). Color as in male, but vestiture rubbed. Vaginal
218	apparatus in ventral view short, oval, widest in middle; base rounded, urn-shaped; apex trident
219	shaped with narrow, paired, lightly sclerotized, indistinct midlateral processes, their apices acute;
220	single medial process elongate, narrow, slerotized, longer than midlateral processes; medial
221	membranes highly convoluted, as approximated in Fig. 5; apical membranes highly convoluted,
222	with lightly sclerotized, broad, thin, shelf-like apical sclerite.
223	Holotype male: ECUADOR: Morona-Santiago: Río Salado, Highway E46 (via Riobamba-
224	Macas), 2.24253°S, 78.27791°W, el. 1646 m, 26.i.2015, Holzenthal, Huisman, Ríos-Touma,
225	Amigo (UMSP000147014) (UMSP). Paratype: same data as holotype, 1 female (MECN).
226	Etymology: Named for the type locality, Sangay National Park, where the species was
227	collected from the Río Salado.
228	
	Non-Provincial Decords
229	New Provincial Records
230	Contribute Language Hallow that and Elicate 1005 11 France Language Francisco Name 1 and Elicate De-
231	Contulma bacula Holzenthal and Flint, 1995:11 [Type locality: Ecuador, Napo, 1 mi E of Pa-
232	pallacta; type depository: NMNH; holotype 3]. —Medellín et al., 2004:201 [distribution;
233	biology]. —Holzenthal and Calor, 2017:21 [catalog].
234	Distribution. Colombia, Ecuador.
235	New provincial record: ECUADOR: Morona-Santiago: Río Tinguichaca; Highway E46 (via
236	Riobamba-Macas), 02.21474°S 078.44218°W, el. 2772 m, 25.i.2015, Holzenthal, Huisman,
237	Ríos-Touma, Amigo, 1 male, 2 females (UMSP).

238	
239	Contulma cataracta Holzenthal and Flint, 1995:12 [Type locality: Ecuador, Napo, Río Maspa
240	Chico, 2 km W Cuyuja; type depository: NMNH; holotype ♂]. —Holzenthal and Calor,
241	2017:22 [catalog].
242	Distribution. Ecuador.
243	New provincial record: ECUADOR: Morona-Santiago: Sangay National Park, waterfall 2,
244	2.18111°S, 78.5062°W, el. 3516 m, 12.xi.2015, Ríos-Touma, Thomson, Amigo, 3 males, 1
245	female (UMSP).
246	
247	Contulma echinata Holzenthal and Flint, 1995:15 [Type locality: Colombia, Caldas, 5 km W
248	Termales de Ruíz; type depository: NMNH; holotype \circlearrowleft ; \circlearrowleft]. —Muñoz-Quesada, 2000:274
249	[checklist]. —Holzenthal and Calor, 2017:22 [catalog].
250	Distribution. Colombia, Ecuador.
251	New provincial record: ECUADOR: Napo: Reserva Ecológica Cayambe-Coca, waterfall, rd.
252	to Oyacachi, 0.32621°S, 78.15049°W, el. 3690 m, 16.x.2011, Holzenthal, Ríos-Touma, Pita, 1
253	male (UMSP); same, except 26.ii.2012, Ríos-Touma & Pita, 1 male (UMSP).
254	
255	New synonymy
256	
257	Contulma penai Holzenthal and Flint, 1995:18 [Type locality: Ecuador, Zamora-Chinchipe, 30
258	km E Loja; type depository: NMNH; holotype \circlearrowleft ; \circlearrowleft ; larva]. —Muñoz-Quesada, 2000:274
259	[checklist]. —Holzenthal and Calor, 2017:23 [catalog].
260	—Contulma duffi Oláh, 2016:169 [Type locality: Colombia, Antioquia, Dusky Starfrontlet Bird
261	Reserve, Cordillera Occidental, Urrao, 6°25'N, 75°05'W, 9.ii.2014, caught by hand, leg. A.G.
262	Duff; type depository: private collection of J. Oláh; holotype ♂] NEW SYNONYM
263	Distribution. Colombia, Ecuador.
264	
265	Contulma duffi, described from Antioquia, Colombia, fits clearly within the variation we have
266	seen in the species C. penai, which also occurs in Antioquia, Colombia, and Ecuador, where it is
267	rather common compared to other species in the genus. There are no features illustrated or
268	diagnosed in the original description that distinguish the species from C. penai. Most of the

characters discussed by Oláh are those common to the genus as a whole. The membranous
structure of tergum X is identical in the 2 species. The dorsolateral processes of segment IX are
illustrated as slightly curved in $C.$ $duffi$ compared to those illustrated for $C.$ $penai$, but this slight
difference is variable, and the inferior appendages are identical in the 2 species. In Oláh's
diagnosis, the species is said to be most similar to C. bacula, but it shares little in common with
that species. The inferior appendages, the posteromesal process of sternum IX, and the phallus
are completely different between the 2 species. Further, the species is known from the holotype
alone and is housed in the private collection of the author, making it unavailable to the scientific
community.

Key to Males of Contulma Species¹

1.	Posterior margin of segment IX with dorsolateral processes (HF 24, 44, 58, 79, 90,
	107) (these processes are short, but present in <i>C. quito</i> , Fig. 2A, B)
	Posterior margin of segment IX without dorsolateral processes, although there may be
	small setose projections or patches of setae (HF 40, 49, 86, 95, 112)
2(1).	Dorsolateral processes of segment IX very long, slender, strongly down curved, their
	apices rugose (HF 107, HR 2A, 4A)
	Dorsolateral processes of segment IX shorter and/or differently shaped, their apices
	not rugose6
3(2).	Phallus with pair of large, highly membranous convoluted dorsolateral lobes (in some
	specimens these lobes may not evert during the clearing process) (HR 2D-F, 4D-E)
	4
	Phallus without highly membranous convoluted lobes or with much smaller, less
	well-developed lobes (HF 110, JN 5)
4(3).	Segment IX extended anterodorsally (HR 4A); setose lobe of posterior margin of
	2(1). 3(2).

¹ Citations of previously published illustrations referenced in the key are abbreviated as follows: HF=Holzenthal and Flint 1995, HR= Holzenthal and Roberston 2006, JN=Jardim and Nessimian 2011, HRT=Holzenthal and Ríos-Touma 2012.

294		segment IX situated close to middle of segment (HR 4A)
295		Segment IX only slightly extended anterodorsally, if at all (HR 2A); setose lobe of
296		posterior margin of segment IX situated close to ventral margin of segment (HR 2A)
297		
298	5(3).	Posterior margin of segment IX extended into a long, narrow, acute, setose lobe (JN
299		1)
300		Posterior margin of segment IX extended into a much shorter, subtriangular, setose
301		lobe (HF 107)
302	6(2).	Phallus with pair of large, highly membranous convoluted dorsolateral lobes (in some
303		specimens these lobes may not evert during the clearing process) (HF 28, 33, 56, 93)
304		7
305		Phallus without highly membranous convoluted lobes or with much smaller, less
306		well-developed lobes
307	7(6).	Segment IX with pair of elongate, heavily setose, ventrolateral lobes (HF 24, 26)
308		
309		Segment IX without such lobes
310	8(7).	Dorsolateral processes of segment IX, in lateral view, long, linear, directed ventrad
311		along entire length (sinuous and crossing apically in dorsal view) (HF 52-53);
312		segment IX very short dorsolaterally (HF 52); segment X membranous, almost
313		obliterated (HF 53)
314		Dorsolateral processes of segment IX, in lateral view, much shorter, linear to lorate,
315		directed posteriad, apex only slightly to strongly directed ventrad (straight and not
316		crossing apically in dorsal view); segment IX long dorsolaterally; segment X
317		membranous, but well developed9
318	9(8).	Dorsolateral processes of segement IX, narrow, terete, apex slightly directed ventrad

9 (HF 30-31)	la
Dorsolateral processes of segment IX lorate (strap-shaped with apex flexed), apex strongly directed ventrad (HF 90)	sa
2 10(6). Segment IX with mesolateral patch of long or short spine-like setae or with	
mesolateral setose protuberances (HF 57, 75, 79; HRT 1B; Figs 1A, B, 2B)	11
Segment IX without mesolateral setae or setose protuberances	15
5 11(10). Apex of phallus with pair of large, tooth-like structures and/or with smaller	
6 apicoventral spines (HF 60, 81, Fig. 2D)	12
Apex of phallus without such spines, although small setae or papillae may be preser	ıt .
8	14
9 12(11). Apex of phallus with pair of large, tooth-like structures and smaller apicoventral	
0 spines (HF 60)	ıta
Apex of phallus with pair of large, tooth-like structures only (HF 81)	
2	:ta
Apex of phallus with smaller apicoventral spines only (HF 77; Figs 2D, E)	13
4 13(12). Projection of sternum IX subtriangular in ventral view, with broad, angulate mesal	
5 excavation (Fig 2C)	es
6 Projection of sternum IX quadrate in ventral view, with narrow mesal excavation (H	ſF
7 76)	da
8 14(11). Mesolateral setae of segment IX forming sinuous band from below dorsolateral	
process continuing to near sternum IX (Figs 1A, B); projection of sternum IX	
o rounded (entire) apically (Fig. 1C)	es
1 Mesolateral setae of segment IX restricted to patch below dorsolateral process (HR)	Γ
2 1A, B); projection of sternum IX emarginate apically (HRT 1C)	

3	sis
Segment IX extended anterodorsally (HF 44, 61, 70, 82; HR 1A; Fig. 3A); inferior appendage, in lateral view, crescentic	16
Segment IX only slightly extended anterodorsally, if at all (HF 66); inferior appendage, in lateral view, subtriangular or quadrate (HF 66) <i>Contulma inorna</i>	ata
Apex of phallus with pair of large, tooth-like structures (HF 64, 65); tergum IX with prominent, porsteromesal extension (HF 61, 62)	
Apex of phallus without such spines, although small setae or papillae may be present tergum IX without posteromesal extension	
Dorsolateral processes of segment IX clothed with short, fine setae (HF 44, 71, 82; Figs 3A, B)	18
Dorsolateral processes of segment IX lacking vestiture of fine setae (HR 1A, B)	
	sis
Dorsolateral processes of segment IX curved mesally, widely separated, subtriangular (HF 44-46)	
Dorsolateral processes of segment IX straight, parallel, directed downward, close together, lanceolate	19
1 19(18). Segment IX posteriorly with only single long dorsolateral or lateral setose process on none at all	
Segment IX posteriorly with both long dorsolateral setose process and long, slender, sharply pointed, ventrolateral process (HF 70-72)	
4 20(19). Apex of dorsolateral processes of segment IX entire (HF 82, 83) <i>Contulma pen</i>	ıai
Apex of dorsolateral processes of segment IX divided into pair of terete, narrow, closely appressed lobes (Figs 3A, B)	ies

367 21(1)	Segment X with lightly sclerotized lateral regions that apparently articulate basally
368	with sclerotized projections of dorsolateral corners of segment IX (HF 48-49, 103-
369	104
370	Segment X without lightly sclerotized lateral regions that apparently articulate basally
371	with sclerotized projections of dorsolateral corners of segment IX
372 22(2)). Segment IX with mesolateral patch of short spine-like setae (HF 48-49); projection of
373	sternum IX truncate (HF 50); parameres long, slender (HF 51)
374	
375	Segment IX without mesolateral setae (HF 104); projection of sternum IX acute
376	apically (HF105); parameres short (HF 106)
377 23(2)). Phallus with pair of large, highly membranous convoluted dorsolateral lobes (in some
378	specimens these lobes may not evert during the clearing process) (HF 42-43, 89, 114-
379	115)
380 381	Phallus without highly membranous convoluted lobes or with much smaller, less well-developed lobes
382 24(2) 383	Segment IX with mesolateral patch of long (HF 39-40) or short (HF 86) spine-like setae
384	Segment IX without mesolateral setae or setoseprotuberances (HF 111-112)
385	
386 25(24	e). Dorsolateral membranous lobes of phallus each ending in sclerotized, scale-like
387	process (HF 42-43); pojection of sternum IX long, rounded (entire) apically (HF 41)
388	
389	Dorsolateral membranous lobes of phallus entirely membranous (HF 89); projection
390	of sternum IX short, slightly emarginate apically
391 26(2)	Segment IX with mesolateral patch of long or shorter spine-like setae (HF 95, 100) or

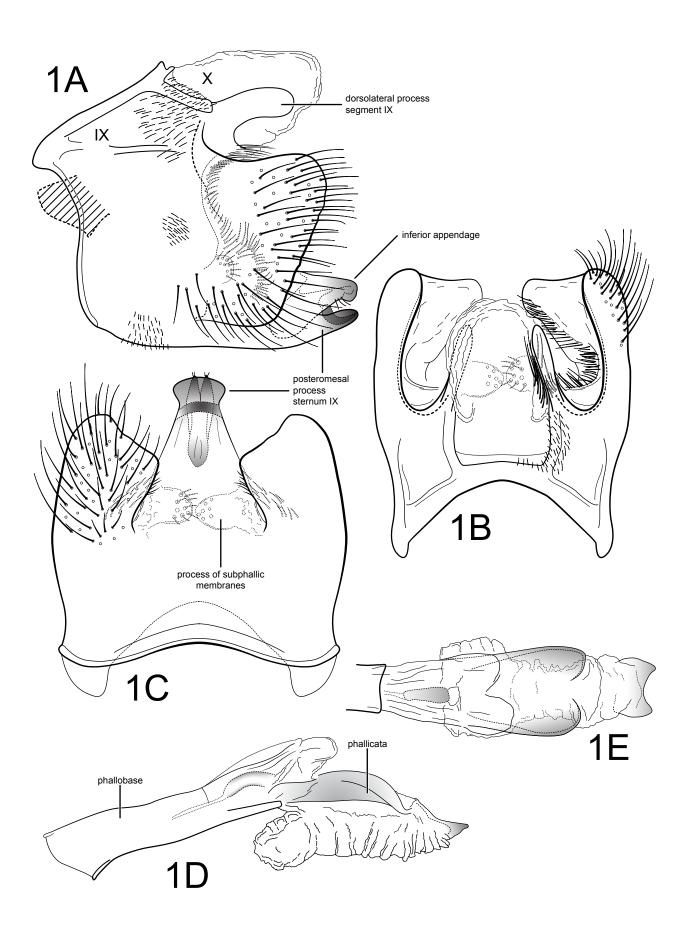
392		with mesolateral setose protuberances (HF 36); inferior appendage, in lateral view,
393		crescentic
394		Segment IX without mesolateral setae or setose protuberances (HR 3A, B); inferior
395		appendage, in lateral view, subtriangular (HR 3A)
396	27(26).	Apex of phallus with large, apicoventral spines (HF 97-98); parameres absent
397		
398		Apex of phallus without such spines; parameres present, long, slender (HF 38, 102) 28
399	28(27).	Segment IX with patch of long, stout, spine-like mesolateral setae (HF 100);
400		phallicata with parameres and lateral flanges (HF 102)
401		Segment IX without patch of long, stout, spine-like mesolateral setae, although
402		smaller setae may be present (HF 36); phallicata with parameres only, lateral flanges
403		absent (HF 38)
104	Discussio	n
405	Contulma	species appear to be highly regionally endemic (Holzenthal and Flint 1995, Holzenthal
406	and Robe	rtson 2006). We confirm this pattern in our collections in Ecuador. Patterns of high
407	endemicit	y in macroinvertebrate benthic larvae are well known in high altitude glacial streams;
408	these habi	tats are highly threatened by climate change (Jacobsen et al. 2012). On the other hand,
109	we added	records to the Ecuadorian fauna of species that were previously known only from

² Contulma meloi is a member of the group of species including *C. fluminensis, C. sana, C. tijuca*, and *C. tripui* from southeastern Brazil. However, it lacks the very long, slender, strongly downcurved, apically rugose dorsolateral processes of segment IX. The species is known only from the male holotype and a male paratype. In the holotype, there are no dorsolateral processes (HR 3A), but in the paratype, a rudimentary process occurs (HR 3G). However, it shares all other diagnostic features of this group, including the posterior, setose extension of segment IX, the broad, shelf-like structure of sternum IX, including the flat, tooth-like, apical setae, and the complex, membranous lobes of the phallus. It appears artificially in couplet 26, separated from related species because it lacks the strongly downcurved, apically rugose dorsolateral processes indicated in couplet 2. The collection of additional specimens may prove that the absence of the dorsolateral process is an aberration; if so, the specimens would lead to *C. fluminensis* in the key presented above.

410	Colombia, demonstrating that some species may have spread across the Andes. Despite this
411	distribution pattern, aquatic insect species, especially mayflies, have shown genetic isolation in
412	the various ranges of the Ecuadorian Andes, even with relatively short distances between
413	populations and with recent volcanic eruption history (Finn et al. 2016). No similar study has yet
414	been performed with any Andean caddisfly species, but we expect a similar pattern of isolation
415	among populations. This isolation could become intensified by the intense land use changes and
416	water pollution occurring throughout the inter-Andean valleys (Ríos-Touma et al., 2014)
417	potentially preventing dispersion among mountain populations and also local extinctions.
418	
419	Acknowledgements
420	
421	This study was supported by Universidad de Las Americas project AMB.BRT.17.005
422	"Diversidad y Distribucion de Trichoptera de Ecuador" and Minnesota Agricultural Experiment
423	Station projects MIN17-017 and 17-029. ERG was funded through a doctoral fellowship from
424	Cienciactiva, Consejo Nacional de Ciencia, Tecnologia, e Innovacion Tecnologica Peru (contract
425	277-2015- FONCECYT). The funders had no role in the study design, data collection and
426	analysis, decision to publish, or preparation of the manuscript.

127	References
128	
129	Blahnik RJ, and Holzenthal RW. 2004. Collection and curation of Trichoptera, with an emphasis
430	on pinned material. Nectopsyche, Neotropical Trichoptera Newsletter 1:8-20.
431	Blahnik RJ, Holzenthal RW, and Prather AL. 2007. The lactic acid method for clearing
132	Trichoptera genitalia. In: Bueno-Soria J, Barba-Álvarez R, and Armitage BJ, eds.
133	Proceedings of the 12th International Symposium on Trichoptera. Columbus, Ohio: The
134	Caddis Press, 9-14.
135	Dallwitz MJ. 1980. A general system for coding taxonomic descriptions. Taxon 29:41-46.
136	Dallwitz MJ, Paine TA, and Zurcher EJ. 1999. User's guide to the DELTA editor. Available
137	from: http://delta-intkey.com/.
438	de Moor FC, and Ivanov VD. 2008. Global diversity of caddisflies (Trichoptera: Insecta) in
139	freshwater. Hydrobiologia 595:393-407.
440	Finn DS, Encalada AC, and Hampel H. 2016. Genetic isolation among mountains but not
441	between stream types in a tropical high-altitude mayfly. Freshwater Biology 61:702-714.
142	10.1111/fwb.12740
443	Henriques-Oliveira AL, and Santos APM. 2014. Two new species of Atanatolica Mosely 1936
144	(Trichoptera: Leptoceridae) from Peru and Northeastern Brazil. Zootaxa 3869:537-547.
145	Holzenthal RW. 1985. Studies in Neotropical Leptoceridae (Trichoptera) II: Amphoropsyche, a
146	new genus and species of Leptocerinae from northern South America. International
147	Journal of Entomology 27:255-269.
148	Holzenthal RW. 1988. Studies in Neotropical Leptoceridae (Trichoptera), VIII: the genera
149	Atanatolica Mosely and Grumichella Müller (Triplectidinae: Grumichellini).
450	Transactions of the American Entomological Society 114:71-128.
451	Holzenthal RW, and Calor AR. 2017. Catalog of the Neotropical Trichoptera (Caddisflies).
452	ZooKeys 654:1-566. 10.3897/zookeys.654.9516
453	Holzenthal RW, and Flint OS, Jr. 1995. Studies of Neotropical caddisflies, LI: systematics of the
454	Neotropical caddisfly genus Contulma (Trichoptera: Anomalopsychidae). Smithsonian
455	Contributions to Zoology 575:1-59.
456	Holzenthal RW, and Rázuri-Gonzales LE. 2011. A new species of Amphoropsyche (Trichoptera,
457	Leptoceridae) from Ecuador, with a key to the species in the genus. ZooKeys 211:59-65.

458	Holzenthal RW, and Ríos-Touma B. 2012. Contulma paluguillensis (Trichoptera:
459	Anomalopsychidae), a new caddisfly from the high Andes of Ecuador, and its natural
460	history. Freshwater Science 31:442-450. 10.1899/11-067.1
461	Holzenthal RW, and Robertson DR. 2006. Four new species of Contulma from South America
462	(Trichoptera: Anomalopsychidae). Zootaxa 1355:49-59.
463	Jacobsen D, Milner AM, Brown LE, and Dangles O. 2012. Biodiversity under threat in glacier-
464	fed river systems. Nature Climate Change 2:361-364.
465	Jardim GA, and Nessimian JL. 2011. A new species of Contulma Flint (Trichoptera,
466	Anomalopsychidae) from southeastern Brazil. Revista Brasileira de Entomologia 55:220
467	228.
468	Medellín CF, Ramírez OM, and Rincón ME. 2004. Trichoptera del Santuario de Iguaque
469	(Boyacá, Colombia) y su relación con la calidad del agua. Revista Colombiana de
470	Entomología 30:197-203.
471	Muñoz-Quesada F. 2000. Especies del orden Trichoptera (Insecta) en Colombia [Colombian
472	species of the order Trichoptera (Insecta)]. Biota Colombiana 1:267-288.
473	Oláh J. 2016. New species and records of Trichoptera collected by Mr. A. G. Duff. More
474	phenomics and less genomics! Opuscula Zoologica (Budapest) 47:155-171.
475	http://doi.org/10.5281/zenodo.167120
476	Ríos-Touma B, Acosta R, and Prat N. 2014. The Andean Biotic Index (ABI): revised tolerance
477	to pollution values for macroinvertebrate families and index performance evaluation.
478	Revista de Biologia Tropical 62 (suppl 2):249-273.
479	Ríos-Touma B, Holzenthal RW, Huisman J, Thomson R, and Rázuri-Gonzales E. 2017.
480	Diversity and distribution of the Caddisflies (Insecta: Trichoptera) of Ecuador. PeerJ
481	5:e2851. 10.7717/peerj.2851


Figure 1(on next page)

Contulma lina, figure 1

Catalog of the Neotropical Trichoptera (Caddisflies) Figure 1. Male genitalia of Contulma lina, new species. (A) segments IX and X, lateral (base of phallus indicated in crosshatch).

(B) segments IX and X, dorsal. (C) segment IX, ventral. (D) phallus, lateral. (E) phallus apex, dorsal. Abbreviations: IX = abdominal segment IX; X = abdominal segment X.

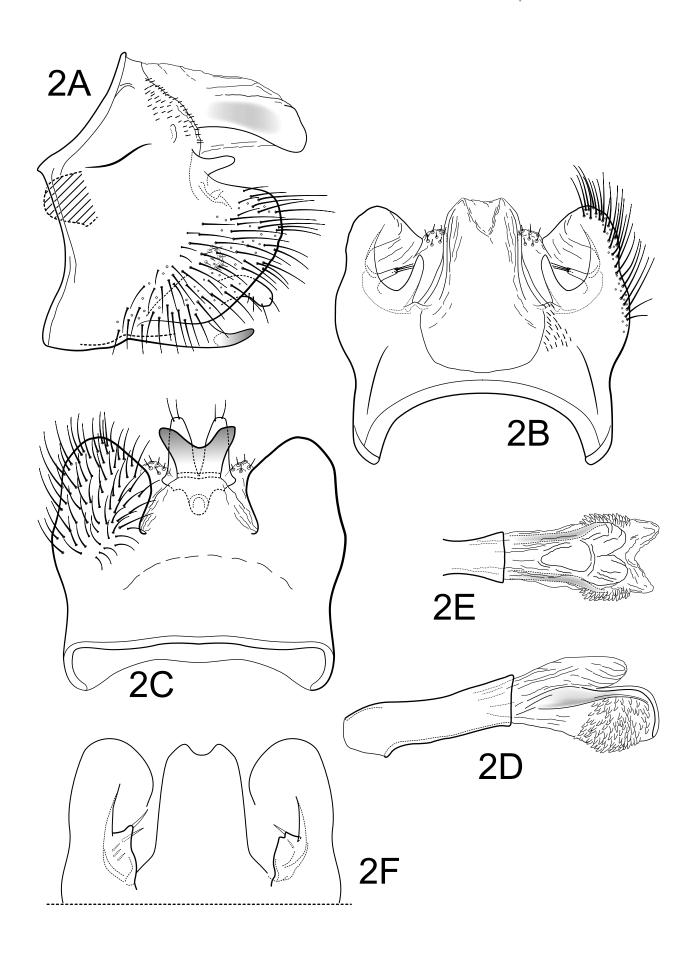


Figure 2(on next page)

Contulma quito, figure 2

Catalog of the Neotropical Trichoptera (Caddisflies) Figure 2. **Male genitalia of** *Contulma quito*, **new species.** (A) segments IX and X, lateral (base of phallus indicated in crosshatch). (B) segments XI and X, dorsal. (C) segment IX, ventral. (D) phallus, lateral. (E) phallus apex, dorsal. (F) segments IX and X, dorsal, variation in paratype specimen UMSP000148995.

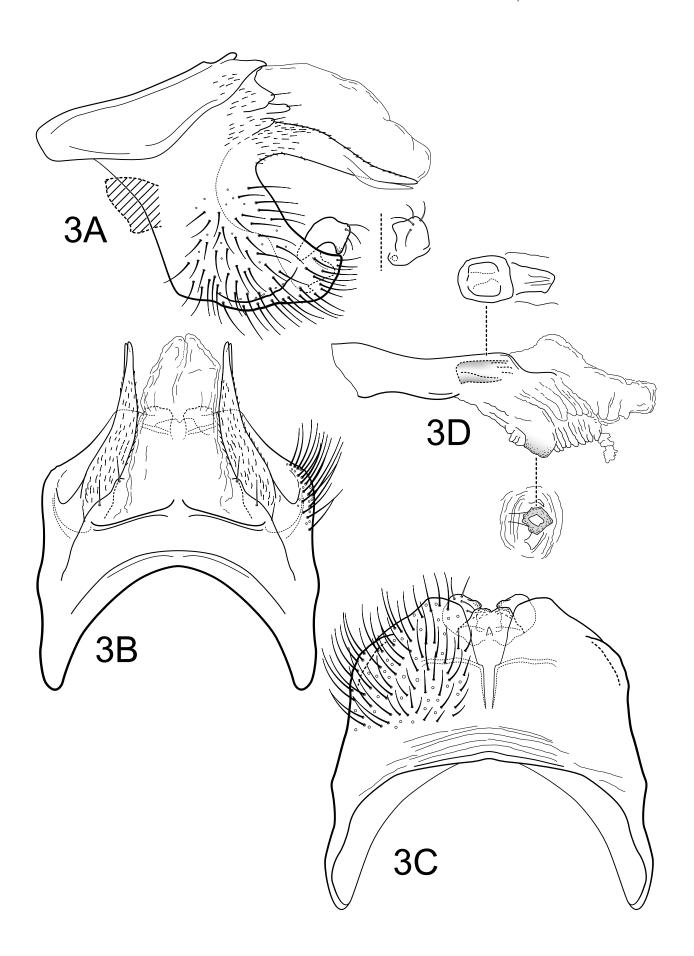


Figure 3(on next page)

Contulma sangay, figure 3

Catalog of the Neotropical Trichoptera (Caddisflies) Figure 3. Male genitalia of Contulma sangay, new species. (A) segments IX and X, lateral (base of phallus indicated in crosshatch); inset: apex of inferior appendage, caudal. (B) segments XI and X, dorsal. (C) segment IX, ventral. (D) phallus, lateral; insets: details of phallic structures.

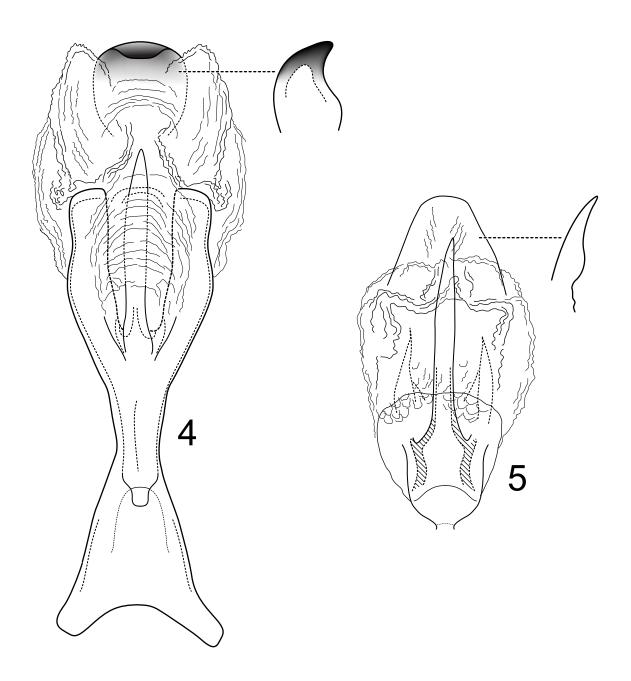


Figure 4(on next page)

Contulma females, figures 4-5

Catalog of the Neotropical Trichoptera (Caddisflies) Figures 4 and 5. **Female vaginal** apparatus of *Contulma*, new species, ventral. (4) *C. lina*, new species. (5) *C. sangay*, new species.

