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ABSTRACT
Lakes are dynamic and complex ecosystems that can be influenced by physical,
chemical, and biological processes. Additionally, individual lakes are often chemically
and physically distinct, even within the same geographic region. Here we show that
differences in physicochemical conditions among freshwater lakes located on (and
around) the same island, aswell as within thewater columnof each lake, are significantly
related to aquatic microbial community diversity. Water samples were collected over
time from the surface and bottom-water within four freshwater lakes located around
Beaver Island, MI within the Laurentian Great Lakes region. Three of the sampled
lakes experienced seasonal lake mixing events, impacting either O2, pH, temperature,
or a combination of the three. Microbial community alpha and beta diversity were
assessed and individual microbial taxa were identified via high-throughput sequencing
of the 16S rRNA gene. Results demonstrated that physical and chemical variability
(temperature, dissolved oxygen, and pH) were significantly related to divergence in
the beta diversity of surface and bottom-water microbial communities. Despite its
correlation to microbial community structure in unconstrained analyses, constrained
analyses demonstrated that dissolved organic carbon (DOC) concentration was not
strongly related tomicrobial community structure among or within lakes. Additionally,
several taxa were correlated (either positively or negatively) to environmental variables,
which could be related to aerobic and anaerobic metabolisms. This study highlights the
measurable relationships between environmental conditions and microbial communi-
ties within freshwater temperate lakes around the same island.

Subjects Biodiversity, Ecology, Environmental Sciences, Microbiology, Freshwater Biology
Keywords Freshwater lakes, 16S rRNA, Microbial communities, Stratification

INTRODUCTION
Lakes are complex ecosystems that span a range of physical and chemical properties, which
are driven by differences in formation, hydrology, weather patterns, and geology (Wetzel,
2001). Further, even lakes within the same geographic region can vary widely in
physicochemical conditions, both spatially and temporally based on formation, age,
and trophic status (Clement, Murry & Uzarski, 2015). The physical and chemical attributes
of a lake can impact microbial communities and the biogeochemical processes they
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mediate, since microbial communities are governed by local environmental conditions.
The essential processes regulated by microbial communities include, but are not limited
to, nutrient cycling (e.g., carbon, nitrogen, and sulfur), which supports biologically
suitable environmental conditions within lakes (Essington & Carpenter, 2000), as well as
chemical export, such as respiration of CO2, and other redox-sensitive elements (Paerl
& Pinckney, 1996; Pilcher et al., 2015). As microbial community function is related to
microbial community composition (Bier et al., 2015), and community composition is
constrained by local environmental conditions, it is important to explore microbial
communities within individual lakes.

While environmental conditions are unique to each lake, environmental gradients can
also occur within some lakes that physicochemically stratify. Water column mixing, or
turnover, followed by a return to stratified conditions is a natural ecosystem disturbance
that occurs seasonally in many lakes. This phenomenon is known to influence microbial
communities, as a consequence of shifting environmental conditions, and even impacts
microbial community assemblymechanisms (Tammert, Kisand & Nõges, 2005; Shade, Jones
& McMahon, 2008; Shade, Chiu & McMahon, 2010a; Shade, Chiu & McMahon, 2010b;
Shade et al., 2011; Shade et al., 2012b; Garcia et al., 2013; Meuser et al., 2013; Andrei et
al., 2015). The stratification of water masses at different temperatures and densities
results in a hypolimnion that is not only colder, but tends to have lower dissolved
oxygen and pH relative to the epilimnion as the rate of decomposition tends to exceed
photosynthesis (Fenchel & Finlay, 2008). Furthermore, inorganic nutrients (e.g., C, N, and
P) may accumulate in the hypolimnion (Tõnno, Ott & Nõges, 2005; Zadereev, Tolomeev
& Drobotov, 2014). Lake mixing events can transport dissolved organic carbon (DOC;
described as the amount of C within a system) throughout lakes (Mostofa et al., 2005;
Kim, Nishimura & Nagata, 2006; Li et al., 2008), and dissolved organic matter (DOM;
quality of organic matter as described in Chappaz & Curtis, 2013) has previously been
shown to vary between upper and lower layers of lakes (Mostofa et al., 2005). This suggests
that structurally different organic compounds may not only differ among lakes, but
also characterize each layer in some lakes. In addition, both DOC and DOM have been
found to shape microbial community composition depending upon carbon source and
concentration (Cotner & Biddanda, 2002; Burkert et al., 2003; Crump et al., 2003; Eiler et
al., 2003; Grossart et al., 2008; Amaral, Graeber & Calliari, 2016; Lucas et al., 2016). As
previously stated, chemical and physical components are major drivers of bacterial
community structure and population shifts, therefore, lake stratification can present a
major disturbance for bacterial communities and may impact microbial communities
structure as lakes gradually stratify post-mixing.

Research to date demonstrates that microbial communities respond to disturbance with
various degrees of resistance and resilience, depending upon the existing community and
qualities of the disturbance (Allison & Martiny, 2008; Shade et al., 2011). For example,
microbial communities may show resistance to lake mixing and physicochemical
stratification, remaining unaffected in the face of disturbance (Shade et al., 2012a).
However, depending upon the physicochemical attributes disturbed (e.g., O2, nutrients,
pH, specific conductance etc.), disturbance influences microbial communities differentially
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in extent of community change, resistance, and resilience (Shade et al., 2011). Additionally,
different subsets of microbes within a community (e.g., generalist vs. rare taxa) can
experience different patterns of resistance and resilience. Illustrating this, Shade, Chiu &
McMahon (2010b) found that many generalist taxa are resistant to mixing and subsequent
changes of temperature and dissolved oxygen levels. Nevertheless, individual taxa (often
specialist or rare) can be positively or negatively influenced as a result of physicochemical
shifts and show fundamentally different reactions to mixing than dominant community
members (Shade, Chiu & McMahon, 2010a; Shade, Chiu & McMahon, 2010b). As such,
microbial communities can vary between lakes due to differences in lake chemistry, as well
as within lakes at finer scales for the same reason.

In this study, three freshwater inland lakes of Beaver Island, Michigan, USA, as well as an
adjacent location within Lake Michigan, were sampled to evaluate the relationship between
microbial communities and local physicochemistry within surface-water and bottom-water
habitats (epilimnion and hypolimnion during stratification). These lakes were selected as
they each hosted unique and contrasting physicochemical properties (Clement, Murry &
Uzarski 2015). Two of the lakes were holomictic and experienced oxygen stratification,
while another holomictic lake (LakeMichigan) did not experience stratification at the point
of sampling, but did experience a thermocline. The final lake (Barney’s Lake) is a shallow
lake which did not experience a mixing event and lacked physicochemically stratified
layers. Specifically, we sought to explore the relationships between microbial community
diversity and environmental variables known to stratify within lakes. We also explored
microbial community diversity change over time within each lake with respect to post-
mixing stratification of environmental variables or a lack thereof. Physical and chemical
parameters were collected in conjunction with high resolution microbial community data
(via 16S rRNA gene sequencing) to explore relationships between microbial taxa and
natural physicochemical gradients among and within sampled lake systems.

METHODS
Sampling locations
Three inland lakes on Beaver Island, MI (Fox Lake [FL], Barney’s Lake [BL], and Lake
Geneserath [LG], located on Beaver Island, MI) and Lake Michigan (St. James Harbor
[LM]; Fig. 1) were sampled during three collection periods in the summer of 2014: period 1
(June 10–11), period 2 (July 28–30), and period 3 (Aug. 30–31). Sampling sites for the three
inland lakes were located at the region of greatest depth (at 3.6 m for Barney’s Lake, 15.2
m for Lake Geneserath, and 6.1 m for Fox Lake). Lake Michigan bottom sampling depth
ranged from 14.5–18.3 m, depending upon small-scale spatial bathymetric differences.
While Lake Michigan was not sampled at the point of greatest depth (as were other lakes
in this study), we attempted to sample Lake Michigan to a similar depth as inland lakes
within this study.

Surface and bottom-water samples were collected using a Kemmerer (Wildco R©, Yulee,
FL, USA)water sampler. During each collection period, samples were retrieved from surface
(one meter below the surface) and bottom-water (one meter above the lake sediment)
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Figure 1 Map of sampling region.Map of sampled lakes in the Beaver Island region. Shapes correspond
to lake sampled. (Map data c© 2017 Google; 2017 TerraMetrics, Inc., http://www.terrametrics.com).

Full-size DOI: 10.7717/peerj.3937/fig-1

locations for each site. For each sample, water was collected in an acid washed sterile
bottle. From this bottle, 90 ml of water was filtered through a 0.45 µm filter (Whatman,
GE Healthcare, Little Chalfont, Buckinghamshire, UK) into acidified vials (resulting pH
of 3) and stored on ice for DOC analysis. For collection of microbial samples, 120 ml of
water was syringe filtered through a combination of two filters (2.2 µm first, followed by
0.22 µm filters). The filters were flash frozen (dry-ice and ethanol bath) in the field, and
then stored at−80 ◦C. Once per sampling period, 120 ml of sterilized Nanopure water was
filtered and frozen in the field as a control for microbial samples. The remaining water was
stored on ice and then filtered (0.45 µm) in the lab for nutrient analyses.

A calibrated Hydrolab R© DS5 (OTT Hydromet, Kempten, Bavaria, Germany) was used
to generate a physicochemical profile of each lake prior to sample collection. Measured
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parameters included dissolved oxygen (percent and mg/L), temperature (◦C), and pH (raw
data can be found in Table S1).

Water chemistry analyses
For nutrient analysis, 250ml of water from each sampling location and depth was filtered in
the lab through a 0.45µm filter (Whatman) and frozen at−20 ◦C. AQuaatro Bran+Luebbe
Auto Analyzer with an XY-2 Sampler (Seal Analytical, Mequon, WI, USA) was used to
determine soluble reactive phosphorus (SRP), ammonium (NH4), nitrate (NO−3 ), total
nitrogen (TN), and total phosphorus (TP) concentrations in the water. An additional 10 ml
of water was filtered (0.45 µm) and acidified for dissolved organic matter (DOM) analysis.
Proxies of DOM were characterized by their specific absorption coefficient (SAC340)
(Chappaz & Curtis, 2013; Curtis & Adams, 1995) and specific UV absorbance (SUVA254)
(Mcknight et al., 2001; Weishaar et al., 2003). Triplicates of each sample were placed into
quartz cuvettes (1 cm width) and UV absorbance readings were taken at two different
wavelengths: 254 nm and 340 nm. Samples collected for DOC analysis (described above)
were quantified using a Shimadzu TOC-V analyzer (Kyoto, Japan). Raw water chemistry
data can be found in Table S2.

Microbial taxonomic analysis
DNA was extracted from frozen filters using the MoBio PowerWater R© DNA isolation kit
(following the manufacturer’s protocol). DNA was extracted from both .22 and 2.2 µm
filters from the same sample simultaneously. All samples were concentrated in a ZymoDNA
Clean & ConcentratorTM kit before being quantified by a Qubit R© 2.0 Fluorometer (Life
Technologies, Carlsbad, CA, USA). Control samples yielded DNA that was below detection
limits (<0.5 ng/mL). In order to obtain a sufficient amount of DNA for downstream
sequencing, PCRs were completed for each sample to amplify the 16S rRNA gene using
high-fidelity Taq polymerase (New England BioLabs Inc., Ipswich, MA, USA) and 27F and
1492R primers (Weisburg et al., 1991). PCR conditions implemented were as follows: initial
denaturation at 95 ◦C for 5 min, followed by 36–40 cycles (denaturation at 95 ◦C for 30 s,
annealing at 56 ◦C for 30 s, and extension at 72 ◦C), and final extension at 72 ◦C for 10 min.
The number of cycles for each sample varied due to differences in amplification (Table S3),
which was visualized through gel electrophoresis. Replicate PCRs for each sample were
pooled. PCR samples were purified using the QIAquick

R©
Gel Extraction Kit (Qiagen,

Hilden, North Rhine-Westphalia, Germany). Three sampling points were excluded from
microbial community data analysis, which included bottom-water time point ‘‘1’’ for Lake
Michigan and both surface and bottom-water community profiles for Fox Lake time point
‘‘3’’. These samples were excluded, as they either did not contain sufficient concentration or
quality of DNA for sequencing or analysis. V4 16S rRNA amplicons were generated using
previously described methods and primers 16Sf-V4 (515f) and 16Sr-V4 (806r) (Kozich
et al., 2013) and sequenced on an Illumina MiSeq platform using a paired end 2 × 250
bp format (accomplished by Michigan State University’s Research Technology Support
Facility).

Sequence data were processed using MOTHUR v.1.35.1 (Schloss et al., 2009). Quality
control and clustering steps were implemented following the publicly available MiSeq SOP
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(found at http://www.mothur.org/) with modifications. Briefly, sequences which were less
than 251 bp or greater than 254 bp in length were removed from further analyses, as were
sequences which contained >8 homopolymers. Sequences were aligned using the SILVA
(v. 119) reference database (Quast et al., 2012). Sequences which were not aligned within
the V4 region were also removed. UCHIME (Edgar et al., 2011) was used to check for
chimeric DNA, which was subsequently removed. Sequences were classified using the RDP
database (training set v9; Cole et al., 2013). Classifications corresponding to chloroplast,
eukaryotic, or mitochondrial DNA, as well as sequences that classified as unknown, were
removed. The remaining data were clustered into operational taxonomic units (OTUs)
using a 0.03 dissimilarity threshold. The Mothur workflow associated with this study can
be found within an online repository located on GitHub (https://github.com/horto2dj/
CMUBS_microb). Sequences obtained for this study have been deposited in the MG-RAST
database (Meyer et al., 2008) under accession numbers mgm4732740.3–mgm4732751.3,
mgm4732757.3, mgm4732760.3, mgm4733677.3–mgm4733686.3, mgm4733688.3,
mgm4733690.3–mgm4733704.3, and mgm4733784.3–mgm4733785.3. Additional
metadata associatedwith submitted environmental sequences can be foundwithin Table S3.

Statistical analyses
Statistical analyses (both chemical and biological) were completed using the R statistical
software v.3.2.1 (R Core Team, 2015). Protocols and files associated with quality control and
statistical tests can be found on GitHub (https://github.com/horto2dj/CMUBS_microb).
Differences in lake chemistry among lakes and time points within lakes were analyzed
through principal component analysis (PCA).

Prior to alpha and beta diversity analyses, singletons and doubletons were removed and
samples were normalized using the DeSeq2 package (Love, Huber & Anders, 2014) in R,
followed by a variance stabilizing transformation (McMurdie & Holmes, 2014).

Using the PhyloSeq package (McMurdie & Holmes, 2013), Shannon’s diversity was
calculated for microbial communities of each sample. Linear mixed-effect models (with
‘Lake’ as random effect) and ANOVA were used to test significance of habitat (i.e., surface
vs bottom-water) on levels of alpha diversity. Linear models and ANOVA were used to
test for differences in alpha diversity between lakes. Alpha diversity values were correlated
with measured environmental variables using Spearman’s rank correlation to explore
relationships between environmental variables and alpha diversity.

Non-metric multidimensional scaling (NMDS) based on Bray–Curtis distance was
performed to compare dissimilarity between the samples, also employing the PhyloSeq
package. A total of 20 iterations were accomplished to reach the lowest stress during
NMDS and two dimensions (k = 2) were used for visualization. Analysis of Similarity
(ANOSIM) was used to test for significant differences in community composition between
microbial communities of different lakes. Correlation of environmental variables with
microbial communities was determined using envfit of the Vegan package (Oksanen
et al., 2017). Canonical Correspondence Analysis (CCA) was implemented to explore
relationships between environmental variables significantly correlated to beta diversity in
NMDS and microbial community beta diversity. Permutation tests were implemented to
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test significance of axes and environmental variables within CCA in explaining microbial
community beta diversity patterns using 999 permutations in all tests. Partial Canonical
Correspondence Analysis (pCCA) was implemented to specifically examine potential
effects of oxygen gradients on microbial communities in the same way as described above.

Spearman’s Rank correlations were used to identify OTUs significantly correlated to
environmental variables (i.e., dissolved oxygen, pH, and temperature). Only OTUs which
appeared within aminimum of five samples with at least two sequences were considered for
correlation analyses. Variance stabilizing transformation was used to normalize sequence
abundances across samples for these OTUs to account for uneven sequencing depth
between samples. Correlations with p> 0.001 and r < 0.65 were excluded as an attempt
to reduce spurious correlations. OTUs which could not be identified as belonging to a
phylum were removed from analyses.

RESULTS & DISCUSSION
Physicochemical variation among and within lakes
Fundamental differences in lake physicochemistry were observed between Lake Michigan
and inland lakes on Beaver Island (Fig. 2; Table 1). Lake Michigan water chemistry was
distinguished based upon DOC, NO−3 , and SAC340 concentrations, showing considerable
divergence from the remaining three lakes (Fig. 2). Lake surface physicochemistry
(temperature, DOC concentrations, and DOM properties) was nearly indistinguishable
between Barney’s Lake and Lake Geneserath. Fox Lake surface water chemistry was also
similar to that of Barney’s Lake and Lake Geneserath, but was slightly dissimilar due to a
lower pH with respect to other lakes.

Of the lakes sampled, Lake Geneserath and Fox Lake experienced oxygen, temperature,
and pH stratification over time between surface and bottom-waters (Fig. 2, Table S2).
The bottom-water in both lakes experienced lower temperatures, elevated acidity, and
lower oxygen levels with respect to the surface-water. DOC concentrations and DOM
quality did not vary significantly (two-tailed t -test, p> 0.05) between surface-water and
bottom-water environments for any lake. Barney’s Lake and Lake Michigan did not
experience physicochemical stratification at the points sampled. However, Lake Michigan
bottom water experienced decreased temperatures, but did not plateau with increasing
depth, suggesting that the thermocline rather than the hypolimnion was developed at the
sampling location.

Microbial community taxonomy and alpha diversity among lakes
A total of 3,415,100 sequences were obtained across all samples prior to filtering and quality
control steps. After quality filtering steps, 2,058,143 sequences remained and from these
sequences 51,831 OTUs were identified. Sequencing depth ranged from 54,802 to 136,518
total sequences among samples. After singletons and doubletons were removed, a total
of 20,372 OTUs remained for diversity analyses. There were no significant differences in
alpha diversity among lakes according to linear models and ANOVA. However, linear
mixed-effect models and ANOVA found that habitat type (i.e., surface vs bottom-water)
significantly influenced Shannon diversity levels (p< 0.01), with higher levels of diversity
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Full-size DOI: 10.7717/peerj.3937/fig-2

occurring in bottom-water habitat versus the surface-water (Table 2). Previous literature
that suggests anoxic hypolimnion communities are more diverse (alpha diversity) than
their respective epilimnion (Humayoun, Bano & Hollibaugh, 2003; Shade et al., 2012b;
Meyerhof et al., 2016), which is consistent with our findings in lakes which developed
anoxic hypolimnia (Fox Lake and Lake Geneserath). Two of the lakes within this study,
Barney’s Lake and Lake Michigan, did not develop anoxic hypolimnia, yet these systems
experienced higher alpha diversity in their bottom-water environments with respect to
surface waters. These differences in alpha diversity (namely evenness) between surface and
bottom-water environments may be driven by other variables, such as temperature (in
Lake Michigan), or other variables not measured in this study, such as light penetration.
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Table 1 Limnological characteristic ranges for the surface and bottomwater of each lake during the
duration of this study.

Habitat Temp (◦C) pH DO (%) DOC (mg/L)

Barney’s Lake Surface 20.7–21.7 8.57–8.75 103.1–118.7 10.7–11.4
Bottom 20.4–21.2 8.52–8.75 103.7–113.9 10.6–11.2

Fox Lake Surface 20.7–21.5 6.13–6.53 90.7–93.8 16.0–17.6
Bottom 11.1–12.5 5.46–5.79 0–25.4 16.2–18.5

Lake Geneserath Surface 19.7–21.4 8.05–8.29 97.8–103.4 9.2–9.8
Bottom 8.8–9.1 6.49–6.78 0–64.0 9.0–9.2

Lake Michigan Surface 16.1–18.2 8.12–8.28 102.1–124.5 2.4–2.8
Bottom 8.1–15.9 7.84–8.08 103.4–120 2.1–2.6

Notes.
Temp, temperature; DO, dissolved oxygen; DOC, dissolved organic carbon.

Table 2 Shannon diversity values for microbial communities from each collection point.

Lake Habitat Time Shannon

BL B 1 4.21
2 4.83
3 4.32

S 1 3.59
2 4.07
3 4.27

FL B 1 4.19
2 4.91

S 1 3.22
2 4.72

LG B 1 4.01
2 4.33
3 4.67

S 1 3.73
2 4.7
3 4.29

LM B 2 4.49
3 4.91

S 1 3.48
2 3.74
3 3.18

A separate study exploring microbial communities along a Lake Michigan transect south
of our sampling location did not find differences in alpha diversity between epilimnion
and hypolimnion environments (Fujimoto et al., 2016). However, as we did not sample
the hypolimnion of Lake Michigan in our study, our results are not directly comparable
to the findings of Fujimoto et al. (2016). Despite this, we found differences between Lake
Michigan epilimnion and thermocline environments, which suggests potentially higher
diversity within the thermocline with respect to the surface water environment.
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Taxonomically, members of Proteobacteria, primarily Betaproteobacteria, were generally
the most dominant taxa (based on relative abundance) found within the sequenced
microbial community in all the explored lakes (Fig. 3). Other dominant phyla (>1%
community composition) within the lake systems included Acidobacteria, Actinobacteria,
Armatimonadetes, Bacteroidetes, Firmicutes, Gammatimonadetes, Planctomycetes, and
Verrucomicrobia. These phyla have frequently been shown to dominate freshwater
communities (Attermeyer et al., 2015; Boucher, Jardillier & Debroas, 2006; Taipale, Jones
& Tiirola, 2009; Zwart et al., 2002). The most abundant OTU within the inland lakes,
and second most abundant in Lake Michigan, was related to Polynucleobacter within
Betaproteobacteria. This microbial genus has been commonly found in freshwater systems,
with levels up to 60% community composition found in one freshwater pond (Hahn, 2003;
Hahn, Pockl & Wu, 2005; Hahn et al., 2010; Jezbera et al., 2011) and represented the third
most dominant OTU of another stratified lake (Garcia et al., 2013).

Environmental relationships with microbial beta diversity
Beta diversity ordinations incorporating all sites showed microbial communities separated
based on the sampling location (or lake) (Fig. 4; ANOSIMR= 0.789, p= 0.001). Significant
relationships (p< 0.001) were found between environmental conditions and microbial
beta diversity, including correlations between community structure and dissolved oxygen
(r = 0.645), dissolved organic carbon (r = 0.790), pH (r = 0.593), and temperature
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(r = 0.699). Environmental variables found to significantly correlate to beta diversity in
NMDS (i.e., DO, DOC, pH, and temperature) were tested as constraining variables on beta
diversity. CCA was found to be significant (F = 1.4245, p< 0.001) in explaining microbial
beta diversity among all samples (Fig. S1). Constraining variables explained 26.26%
of variation in CCA. CCA1 and CCA2 were both significant (p < 0.001), explaining
31.28% and 28.56% of constrained variation, respectively. DO and pH were significant
constraints on microbial community beta diversity (p< 0.001), as was temperature to
a lesser degree (p< 0.05). DOC, however, was not found to be significantly related to
microbial community beta diversity. Similarly, Jones, Newton & McMahon (2009) found
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that DOC concentration does not predict microbial community structural differences, but
rather quality of organic carbon (as measured by water color: chlorophyll-a) is significantly
related to microbial community structure in freshwater lakes. The influence of DO on
microbial community structure is of particular interest due to oxygen’s influence on
regulation of redox cycles within aquatic systems. As such, partial CCA (pCCA) examining
the strength of dissolved oxygen as an environmental constraint on microbial community
structure was accomplishedwhile controlling for temperature and pHwithin sampled lakes.
Partial CCA found that oxygen alone was significantly related to microbial community
composition (p< 0.001, Fig. S2) irrespective of the influence of pH and temperature.
The lakes sampled within our study were all located on (or near) Beaver Island within 17
km of each other, yet they were physicochemically diverse, suggesting that environmental
constraints on microbial communities are stronger than geographic distance. These results
are consistent with established theory that microbial community structure and taxa can be
highly constrained by environmental factors within lakes, while geographic proximity of
lakes may explain to a lesser degree microbial community structure (Yannarell & Triplett,
2005; Van der Gucht et al., 2007).

Surface and bottom-water microbial communities within lakes that experienced oxygen
and pH stratification (Lake Geneserath and Fox Lake) separated over time (Fig. 4). These
results are consistent with previous research that has found divergence of microbial
community beta diversity between epilimnia and hypolimnia after lake mixing events
(Shade, Chiu & McMahon, 2010a), particularly in relation to differences in oxygen as
a strong constraint (Shade, Jones & McMahon, 2008; Shade et al., 2011). Interestingly,
while surface-water microbial communities remained relatively stable within these
stratifying lakes, bottom-water communities showed marked divergence over time.
Previous studies have illustrated that hypolimnetic communities are not resistant to
disturbances, particularly disturbances related to oxygen or key nutrient shifts (Allison
& Martiny, 2008; Shade et al., 2011; Shade et al., 2012b). Our results corroborate that
lake stratification may be an important factor in shaping these communities across
freshwater lakes which experience water columnmixing events. Contrastingly, within lakes
which did not experience stratification, community composition was indistinguishable
between surface-water and bottom-water communities within each lake respectively.
Previous research has found that microbial communities within oxygenated hypolimnia
of Lake Michigan and other deep lakes are often structurally distinct from the respective
epilimnia (Fujimoto et al., 2016; Okazaki et al., 2017). It is likely that we did not find
distinctness between surface water and bottom water communities of Lake Michigan, as
the hypolimnion of Lake Michigan was not sampled within this study. The Lake Michigan
sampling point was also shallower in depth than locations explored byOkazaki et al. (2017)
and a separate location than studied by Fujimoto et al. (2016).

Taxonomic relationships to environmental variables
Nine hundred twenty-eight microbial OTUs were found within a minimum of five samples
and these shared OTUs were analyzed for correlations with measured environmental
variables. In general, specific taxonomic groups (at the level of genus or higher) appeared
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to be either positively or negatively correlated to levels of dissolved oxygen, as there
was little contrast in correlation direction from the same taxonomic group (Fig. 5A).
Specifically, members of the phylum Bacteroidetes were primarily positively correlated
with dissolved oxygen (n= 6), where only one Bacteroidetes OTU was negatively related to
dissolved oxygen. Within Bacteroidetes, a representative OTU from the genus Algoriphagus,
which has been described as a strict aerobe (Bowman, Nichols & Gibson, 2003; Liu et al.,
2009), was found to positively correlate with dissolved oxygen concentrations. Members
of Flavobacteria have been known to be primarily aerobic (Bernardet et al., 1996), and
were also found to positively correlate to dissolved oxygen concentration. Other OTUs,
related to Sphingobacteriales (including Chitinophagaceae), contain representative aerobic
microbial taxa (Rosenberg, 2014) and are common in freshwater bodies within the Great
Lakes basin (Mou et al., 2013), so it is not surprising to find these taxa within aerobic
freshwater environments within the temperate freshwater lakes of the Great Lakes region.
Comamonadaceae were generally positively related with dissolved oxygen levels, however,
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one representative was negatively correlated. Research has demonstrated that some
members of this primarily aerobic family indeed can grow under anaerobic conditions
(Ramana & Sasikala, 2009). Many OTUs related to the order Burkholderiales also increased
with oxygen availability. It is likely that these taxa are unable to adapt to developing anoxia
within the hypolimnion of chemically stratifying lakes, and may play more dominant roles
within the epilimnion after stratification has occurred post-mixing.

To the contrary, several individual OTUs negatively correlated with dissolved
oxygen. Members of the phyla Acidobacteria, Actinobacteria, Alphaproteobacteria, and
Deltaproteobacteria only had representative OTUs found to be inversely correlated to
dissolved oxygen concentrations. Representative OTUs from Alphaproteobacteria included
taxa related to Caulobacter and Rhodocyclaceae, both of which are bacteria that could thrive
under anaerobic conditions (Song et al., 2013; Oren, 2014). From Deltaproteobacteria,
Geobacter, a well-renowned anaerobe (Lovley & Phillips, 1988; Lovley et al., 1999), was
found to be negatively correlated to oxygen, as was Bacteriovorax, of which much less is
known regarding its metabolism in freshwater systems. These results point towards taxa
that may prosper in developing anaerobic hypolimnetic environments after a lake mixing
event has disturbed the water column.

Frequently, OTUs were idiosyncratic in their relationships to higher or lower pH
levels within the same Phylum and ranging down to Genus (Fig. 5B). This suggests that
preferences for ideal environmental pH are often at the level of OTU, and generalizations
cannot be drawn for many taxonomic groups. Despite this, there were groups of bacteria
that correlated predominantly with decreasing [H+], with few or no representative OTUs
correlating with increasing [H+]. For example, Polynucleobacter OTUs almost resoundingly
correlated to decreasing [H+], despite previous research suggesting that members within
this genus comprise a higher proportion of microbial communities within environments
characterized by circumneutral to acidic pH (Jezbera et al., 2012). It is possible that these
taxa may have been constrained by other factors (such as DOM or lack of O2), which
limited them from thriving within lower pH environments often corresponding with
lower O2 levels. From the phylum Bacteroidetes, OTUs related to Chitinophagaceae,
Flavobacterium, and Sphingobacteriales negatively correlated to [H+], as did Proteobacteria
members such as Acetobacteraceae, Hyphomonas, Methylobacter, and Roseomonas. As pH
generally decreases with increasing depth within a water column, it could be superficially
suggested that these taxa may be more abundant in shallower depths of the water column.
As an example, Bacteroidetes which negatively correlated to [H+] contained OTUs which
positively correlated to dissolved oxygen, suggesting that these OTUs are likely present
within epilimnia of stratified lakes. Interestingly, the family Acetobacteraceae, which
contains members of the acetic acid bacteria (including Roseomonas), are often adapted
to lower pH levels due to their ability to produce acetic acid during metabolism (Raspor
& Goranovič, 2008). However, members within this group are obligate aerobes (Raspor &
Goranovič, 2008), and thus may have been unable to tolerate lower O2 conditions as may
have been the case for OTUs related to Polynucleobacter.

Temperature did not appear to have a large influence on individual microbial taxa
within these lakes relative to the potential influences of pH and dissolved oxygen (Fig. 5C).
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However, individual OTUs spread across several phyla periodically correlated with
temperature either positively or negatively. Most notably, Actinomycetales, which possess
thermophilic taxa (Korn-Wendisch et al., 1995), contained three OTUs which positively
correlated to temperature, suggesting that these taxa may be most prevalent in shallow
lakes or epilimnia.

CONCLUSION
This study has found that microbial communities within actively physicochemically
stratifying lakes, particularly stratification of dissolved oxygen, pH, and temperature,
diverge to a larger degree over time relative to communities within lakes (or points
within lakes) that do not chemically stratify. Additionally, despite their relatively close
geographic proximity, each lake harbored a distinct microbial community, suggesting that
lake physicochemistry is a stronger constraint on microbial communities than geographic
region. Correlations of individual microbial OTUs to physical and chemical variables,
such as dissolved oxygen, pH, and temperature, could be related to metabolic capabilities
of microbial taxonomic groups or individual OTUs. This suggests that lake stratification
and environmental conditions unique to each lake may influence the prevalence of some
microbial taxa more strongly than others, thereby potentially influencing ecosystem
processes carried out by these taxa. This research highlights the importance of sampling
lakes in the same geographic area but distinct in physical and chemical attributes, as well
as the potential impact of lake mixing and stratification as a disturbance to microbial
communities within temperate freshwater lake systems, which could ultimately influence
microbial community functional diversity and biogeochemical processes.
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