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We investigate how recent changes in the distribution and abundance of a fouling

organism affect the strength of interactions between a commercially important foundation

species and a common predator. Increases in the abundance of boring sponges that

bioerode the calcified shells of oysters and other shelled organisms have been attributed

to increased salinization of estuarine ecosystems. We test the hypothesis that fouling by

boring sponges will change the interaction strength between oysters and a common

predator (stone crabs). We generated five oyster density treatments crossed with two

sponge treatments (sponge and no sponge). We contrasted the interaction strength

between stone crabs and fouled and non-fouled oysters by comparing the parameters of

fitted functional response curves based on Rogers random predation model. We found that

fouled oysters suffered higher predation from stone crabs, and that the increased

predation risk stemmed from a reduction in the handling time needed to consume the

fouled oysters. These findings highlight the importance of understanding the effects of

abiotic changes on both the composition of ecological communities, and on the strengths

of direct and indirect interactions among species. Global climate change is altering local

ecosystems in complex ways, and the success of restoration, management, and mitigation

strategies for important species requires a better appreciation for how these effects

cascade through ecosystems.
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10 Abstract

11 We investigate how recent changes in the distribution and abundance of a fouling organism 

12 affect the strength of interactions between a commercially important foundation species and a 

13 common predator. Increases in the abundance of boring sponges that bioerode the calcified shells 

14 of oysters and other shelled organisms have been attributed to increased salinization of estuarine 

15 ecosystems. We test the hypothesis that fouling by boring sponges will change the interaction 

16 strength between oysters and a common predator (stone crabs). We generated five oyster density 

17 treatments crossed with two sponge treatments (sponge and no sponge). We contrasted the 

18 interaction strength between stone crabs and fouled and non-fouled oysters by comparing the 

19 parameters of fitted functional response curves based on Rogers random predation model. We 

20 found that fouled oysters suffered higher predation from stone crabs, and that the increased 

21 predation risk stemmed from a reduction in the handling time needed to consume the fouled 

22 oysters. These findings highlight the importance of understanding the effects of abiotic changes 

23 on both the composition of ecological communities, and on the strengths of direct and indirect 

24 interactions among species.  Global climate change is altering local ecosystems in complex 

25 ways, and the success of restoration, management, and mitigation strategies for important species 

26 requires a better appreciation for how these effects cascade through ecosystems. 

27 Introduction

28 The strength of interactions between predators and prey can be dependent upon 

29 ecological context and a plethora of environmental variables (Grabowski 2004; Laudien & Wahl 

30 1999; Menge 1995; Wahl et al. 1997). For example interactions with the abiotic environment 

31 (e.g. temperature, carbon dioxide, sea level rise) can change activity levels or physiological 

32 processes (Gilman et al. 2010), and the presence of other organisms can directly or indirectly 
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33 change the strength of species interactions (Preisser et al. 2005; Werner & Peacor 2003). For 

34 example, Schmitt et al. (1983) showed that drill holes on kelp snails that were caused by failed 

35 octopus predation attempts resulted in increased barnacle fouling the snails shells that ultimately 

36 increased the snail's proximity and risk to benthic predators by increasing the amount of  time 

37 spent on the benthos rather than on kelp.  Fouling organisms on marine mollusks can also 

38 increase susceptibility to predators by compromising the integrity of protective shells 

39 (Duckworth & Peterson 2013). These indirect effects, where one species alters the strength of 

40 interactions between other species, may become more common and important as species 

41 invasions or range expansions resulting from environmental change lead to novel direct and 

42 indirect species interactions (Gilman et al. 2010; Kordas et al. 2011; Walther 2010). 

43 In marine and estuarine ecosystems, increases in temperature, salinity, and dissolved 

44 pCO2 that are predicted to occur over the next several decades may decrease local habitat quality 

45 for some species while facilitating invasions and range expansions for others (Sorte et al. 2010; 

46 Sunday et al. 2016). Understanding how changes in biotic and abiotic conditions of ecosystems 

47 may change species interactions might be particularly important for foundation species and the 

48 communities that depend on their biogenic habitat structures (Hoegh-Guldberg et al. 2007). For 

49 example, oysters are foundation species in estuaries because their biogenically formed calcium 

50 carbonate shells provide habitat structure and refuge that support many other species (Gutiérrez 

51 et al. 2003). Oysters also provide services such as water filtration that reduces eutrophication, 

52 and their reefs provide coastal protection (Meyer et al. 1997; Newell 2004; van Wesenbeeck et 

53 al. 2013). Therefore, changes in the distribution of predators or fouling species that affect the 

54 health or survival of oysters can have important implications for both oysters and oyster reef 

55 communities and the services they provide. 
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56 In this study we investigated how the interactions between oysters and a common oyster 

57 predator are influenced by a bioeroding sponge which may be expanding its distribution as a 

58 result of  increasing salinity and temperature in coastal estuaries (Hong & Shen 2012; Lindquist 

59 2011). Specifically, we investigated how the presence of boring sponges, Cliona spp., impact 

60 trophic interactions between eastern oysters, Crassostrea virginica, and an important native 

61 predator, the stone crab Menippe mercenaria. While studies have shown stone crabs can have 

62 less of an effect on oyster reefs than other mesopredators (e.g. mud crabs) they have recently 

63 increased establishment in North Carolina oyster reefs (Lindquist 2011; Rindone & Eggleston 

64 2011), and we still do not know the magnitude of their effects on oysters interacting with other 

65 species, such as sponges. Boring sponges bioerode the calcium carbonate substrates on which 

66 they settle (Duckworth & Peterson 2013; Fang et al. 2013). Mollusks that are hosts to boring 

67 sponges have weakened shells (Stefaniak et al. 2005), slower growth, reduced condition, and 

68 lower survival than mollusks lacking these bioeroding colonists (Carroll et al. 2015). Therefore, 

69 we quantified the effects of boring sponges on the interaction strength between stone crabs and 

70 fouled and non-fouled oysters.  We compared the shape of the crab’s functional response to test 

71 the hypothesis that the weakened shells of fouled oysters caused by boring sponges will increase 

72 the strength of the predator-prey interaction.  We focused on the functional response because it is 

73 the most direct measure of the interaction strength between predators and prey and it provides a 

74 mechanistic link to their population dynamics. 

75 Specifically, to determine the effect of sponges on oyster survival we compared the 

76 parameters of type II functional responses (i.e. changes in attack rates or handling times). If 

77 sponges are distasteful then crabs will be more likely to avoid foraging on fouled oysters and this 

78 affect will be manifested in differences in attack rates. In contrast, if sponges cause changes in 
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79 shell strength that facilitate crab predation, then we might expect to see shorter handling times 

80 and thus higher maximum consumption rates by crabs on fouled oysters.  

81 Methods

82 Stone crabs were collected from Middle Marsh in Beaufort, North Carolina (NCDMF 

83 Permit No. 706671) and allowed to acclimate in 0.6 m2 tanks at the Duke Marine lab for at least 

84 48 hours. Each tank received a constant flow of unfiltered seawater and a piece of PVC pipe was 

85 provided for refuge. Ten crabs were each wet weighed (g) and the length (mm) of their carapace 

86 measured with digital calipers (mean ± st. error: 93.6 ± 10.9 g and 64.1 ± 3.1 mm, respectively). 

87 The stone crabs were maintained on a 12 hour light/dark cycle and starved for 48 hours prior to 

88 the beginning of the experiment. Oysters were collected around Morehead City, NC and sorted 

89 into two groups: fouled or non-fouled by boring sponge. Oysters of similar sizes (mean ± st. 

90 error: 5.07 ± 0.07 cm) were used to generate 5 oyster density treatments of 1,2,4,8, and 22 

91 oysters crossed with two sponge treatments (sponge and no sponge). Oysters were added to each 

92 stone crab tank at noon on the day of the experiment. Temperature was recorded in an unused 

93 tank at the start of each trial (28.4, 27.7, 25.4, and 24.3°C, for trials 1, 2, 3, and 4 respectively). 

94 The number of oysters eaten was recorded via visual surveys after 24 hours and all remaining 

95 oysters were removed. 

96 Following each trial, each crab was then fed two oysters a day for three days after which 

97 any non-consumed oysters were removed and the crabs were again starved for 48 hours and re-

98 randomized for use in another replicate. While not ideal, methods for reusing stone crabs through 

99 feeding standardization between trials has been previously reported (Wong et al. 2010). In lieu of 

100 using new stone crabs for each trial as has been done in previous studies, by using the same 

101 crabs, each was influenced by the same background environment before each trial. Additionally, 
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102 a previous study with rock crabs (Cancer irroratus) showed reused crabs had no change in 

103 mussel capture behavior over a three month holding period (Matheson & Gagnon 2012). To 

104 ensure that any uncertainty due to individuals differences among crabs were accounted for we 

105 randomly assigned each crab to a sponge x density treatment for each trial.  This distributed any 

106 individual crab effect randomly across treatments which minimizes biases in model fits. Two 

107 crabs that never consumed oysters in the lab were replaced by new wild-caught crabs for trials. 

108 This experiment was replicated four times and oyster collections were made each week to ensure 

109 survival of oysters throughout the experiment. 

110 Data were analyzed in the R statistical programming environment (R Core Team 2016). 

111 Specifically, we fit a Type II functional response curve using Rogers random predation model  

112 (Juliano 2001; Rogers 1972) to quantify predation rates for oysters with and without boring 

113 sponge. We used Roger’s formulation because it corrects for prey depletion that occurs as a 

114 result of predation over the course of the experiment. The random predator model predicts the 

115 number of prey eaten, N, as:

116 N  N0 1 e
 T hN    (1)

117 where T is time, N0 is the initial prey abundance, h is time spent handling prey and a is the 

118 instantaneous attack rate. Rogers equation can be solved iteratively (Juliano 2001) as expressed 

119 in equation 1, however we fit our data to a closed-form solution by expressing equation 1 in 

120 terms of Lambert's W function (Bolker 2008; McCoy & Bolker 2008) so that the number of prey 

121 eaten, N, equals:

122 N  N0 
W (hN0e

 (T hN0 ))

h
 (2)
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123 Models were fit using the method of maximum likelihood in the bbmle package (Bolker 

124 & R Development Core Team 2016) with a binomial error distribution. Specifically, we used a 

125 flexible parameter approach to fit 1) a model that estimated attack rates and handling times for 

126 the two prey types independently (i.e. a 4 parameter model), which tests the hypothesis that 

127 sponges affect both the attack rate and handling times of the prey; 2) a single estimate of attack 

128 rate, but separate estimates of handling times (for fouled and non-fouled) (3 parameter model), 

129 which test the hypothesis that sponges affect the interaction strength by facilitating crab feeding 

130 rates; 3) a model that permitted separate estimates of attack rates (for fouled and non-fouled), but 

131 only a single estimate of handling time (3 parameter model), which test the hypothesis that 

132 sponges change the likelihood of attack by crabs, and 4) a completely random model that fits 

133 only a single estimate of attack rate and handling time (2 parameter model), which serves as our 

134 null model. We did not directly measure attack rate or handling time, consequently these 

135 parameters were completely estimated from the model. Model fits and inferences about the 

136 effects of boring sponges on the interaction between crabs and oysters were made based on 

137 sample size-corrected Akaike Information Criterion (AICc).

138 Results

139 There was similar support for models 1 and 2 (Table 1), which is interesting given that 

140 both of these models allow separate estimates of handling times for crabs eating oysters with and 

141 without sponges. This may suggest that sponges are having the largest impacts on crab handling 

142 times, which is consistent with previous work indicating that boring sponges weakened mollusks 

143 shells (Duckworth & Peterson 2013).  Indeed, handling times (and therefore maximum 

144 consumption rates) were approximately 280% longer according to model 1 and 180% longer 

145 according to model 2 for crabs eating oysters without sponges relative to oysters with sponges 
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146 (Table 1). However, the most supported model (model 1in Table 1) also includes separate 

147 estimates of attack rates on oysters with and without boring sponges. While there is no evidence 

148 that Cliona sp. are unpalatable (Guida 1976), lower attack rates on fouled oysters may suggest 

149 stone crabs have a higher propensity to attack and consume unfouled oysters.  Regardless, the 

150 differences in attack rates were offset by longer handling times resulting in overall higher 

151 consumption of oysters in sponge treatments than in no sponge treatments (Figure 1). 

152 Discussion

153 We investigated how a fouling species that has expanded its range may be indirectly 

154 impacting the eastern oyster. Our results show that the presence of fouling from boring sponges 

155 will make oysters more susceptible to predation by crabs and likely other shell-crushing 

156 predators. One potential mechanism that we present here, is a decrease in predator handling time 

157 for oysters with sponges compared to those without sponges. Indeed, boring sponges (Cliona 

158 celata) have been shown to weaken scallop shells by as much as 28% (Duckworth & Peterson 

159 2013). However, other studies have suggested that infestation by boring sponges did not impact 

160 stone crab handling times (Coleman 2014).  However, this difference may due in part to 

161 difference in the sizes of the stone crabs used in the two studies (mean carapace from Coleman 

162 2014 = 98.5 and current study 64.1 mm), such that defenses in shell strength were only evident 

163 for smaller crabs.

164 Understanding the potential effects of changes in species ranges and interactions are 

165 especially important for foundation species that provide structure that serves as primary habitat 

166 for communities of other species (Dayton 1973). Specifically, global environmental change can 

167 facilitate species range expansions and alter local trophic interactions (Walther et al. 2002), 

168 which is critical information for mitigating and managing affected ecosystems. Boring sponges, 
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169 Cliona spp., are experiencing range expansions potentially as a result of increased salinization of 

170 some estuarine ecosystems (Dunn et al. 2014; Lindquist 2011). Boring sponge are generally 

171 found in areas with >15 ppt salinity (Carver et al. 2010; Hopkins 1962; Lindquist 2011), and 

172 they are being documented in increasing abundances further up-estuary as sea level and salinity 

173 rise (Hong & Shen 2012; Lindquist 2011). 

174 Therefore, changes in the range of a fouling species in response to changes in habitat 

175 characteristics or climate change can have indirect consequences on the trophic interactions 

176 between important species (such as oysters and corals) and their natural enemies. Indeed, studies 

177 have shown that boring sponges are not impacted by high water temperatures or decreases in pH 

178 (due to an increase in atmospheric CO2) but instead these factors increase shell boring rates 

179 (Duckworth & Peterson 2013). In addition, documented increases in stone crab northward 

180 expansion along with boring sponges, could enhance potential negative impacts to oyster 

181 fisheries in states such as Virginia and North Carolina. Overall, understanding how increases in 

182 predation risk as a result of fouling by boring sponges works in concert with other effects of 

183 global climate change (i.e. sea level rise, ocean acidification and increasing salinity) will have 

184 important implications for managing foundation species and the services they provide through 

185 fisheries, coastal protection, and ecosystem engineering.  

186 This study highlights the need to consider how indirect biotic interactions can alter the 

187 interaction strengths between predators and prey. Indeed, boring sponges alone have modest 

188 impacts on oyster fitness. However, changes in the distribution and abundance of sponges, 

189 increases in boring efficiency, and the interactions between boring sponge and other species can 

190 lead to strong negative impacts on oysters and oyster reef communities. Such context dependent 
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191 and indirect effects must be considered in future restoration and management aimed at 

192 recovering already heavily damaged oyster reef ecosystems (Beck et al. 2011; D'Anna 2016). 
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Table 1(on next page)

Maximum likelihood results

AICc values for each model. Estimates are presented for all parameters (α = attack rate and

ℎ = handling time) allowed to vary by treatment in a model (95% confidence intervals are

presented underneath each estimate). With few observations (nobs=38), corrected AIC

(AICc) was used instead of AIC.
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1

α h
Model Parameters dAICc df weight

No Sponge  Sponge No Sponge  Sponge

1 a*h 0 4 0.597
4.079 

(1.457,6.701)
 

1.970 

(-3.416,7.357)

0.112 

(0.075,0.149)
 

0.039 

(-0.043,0.123)

2 h 1.1 3 0.352  
2.534 

(1.660,3.408)
 

0.093 

(0.063,0.123)
 

0.051 

(-0.011,0.113)

3 a 5.5 2 0.038
2.414 

(1.140,3.688)

1.97 

(0.060,5.353)

0.072 

(0.048,0.095)

4 1 7.7 3 0.013  
2.62 

(1.690,3.551)
  

0.074 

(0.052,0.096)
 

2
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Figure 1(on next page)

Prey Consumed Over 24 Hours

Amount of prey consumed by predators over a 24 hour period using five increasing densities.

Lines represent oysters (Crassostrea virginica) with sponges (Cliona spp.) (black) and oysters

without sponges (gray), with standard error bars for each point (n = 4 trials). Attack rates

and handling times used for each line were obtained from model 1 (see Table 1).
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